
126 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

“If you can’t measure it, you can’t
improve it.”

—W. Edwards Deming

“However, just as a sailor can sense
a changing sea, I note subtle signs
that point to a marked transfor-
mation, a disruptive technology,
on the horizon”

—Grady Booch

The true problem with software is
hardware. We have been seduced
by the promise of more and more
and have become entranced under
the spell of Moore’s Law. Contin-
ued progress in hardware is not a
friend, but our nemesis. We have
been shielded by hardware
advances from confronting our
own incompetence as software pro-
fessionals and our immaturity as
an engineering profession.

—Larry Constantine

I
s it possible that the software
industry is finally about to
make a bold step? Are we
ready to uncover our eyes and

look at the software problem—
from a scientific standpoint?

We have, so far, experienced
different theories of software con-
struction paradigms in the last
three decades, such as structured
programming in the 1970s, and
object-oriented programming
(OOP) and CASE in the 1980s.

Although OOP dominates cur-
rent beliefs, there is no measure
of the productivity of this
methodology relative to another.

A View of History
Relevant to our view is the C lan-
guage. C started in the early
1970s with an attempt to build a
Fortran compiler on the PDP-7
at Bell Laboratories, and the
desire to build compilers and
utilities for Unix in a language
for which it was easy to write a
compiler [5]. Coming out of Bell
Laboratories was a plus. And it
was good—in the time and con-
text for which it was designed. As
time passed, investments in C
grew. The ACM and IEEE
became sources for significant
publications on Unix and C.

In parallel with the develop-
ment of C and Unix in the
1970s, there was a totally separate
movement to improve program-
mer productivity. International
conferences were held that
pointed to the lack of a disci-
plined approach to building soft-
ware. Topics ranged from
configuration management to
top-down design, structured pro-
gramming, one-in one-out con-
trol structures, and goto-less
programming. The concepts for
improving programmer produc-
tivity during this movement were

sound. The problem was that no
technology (language) existed to
implement the high-level design
concepts and programmer disci-
plines described.

The interest in productivity
also led to CASE. This was possi-
bly a solution to the software
problem, going from specifica-
tions to working code in a disci-
plined way. After about five years,
it was realized that once program-
mers started to code, CASE did
not really help.

In parallel with the develop-
ment of CASE came the C++ lan-
guage [7]—a super set of C, but
still a simple language. As
described in the initial paper by
Bjarne Stroustrup, C++ made up
for some obvious faults in C. This
evolved with OOP and classes.
OOP and classes are now a domi-
nant part of the programmer
landscape, and in Java as well.

Java was developed in the mid-
1990s, and was originally aimed at
building Web pages. It, in turn,
attempted to solve some C++
problems. Java eliminated the C++
facilities for pointers and memory
management—the three largest
causes of software bugs. In short
order, Java has evolved as direct
competition to C++. There is no
evidence Java is any more produc-
tive than C++ for developing large
pieces of software.

The Emperor with No Clothes

M
A

R
TI

N
 M

A
YO

Henry F. Ledgard

Examining the software problem from a scientific standpoint.

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 127

The OOP Paradigm
The OOP paradigm is derived
from the notion of abstract data
type (ADT). Since this is an alge-
braic concept, ADT works well
on nonmathematical objects. In
real-world programs, however, we
encounter nonmathematical
objects far more frequently than
mathematical objects. Program-
mers deal with functions, com-
mon data, intermediate structure,
complex operations, and the like.
Therefore, in order to map those
mathematical objects to alge-
braic-type-based classes, program-
mers often have to twist the
structure.

The results tend to be far from
a natural representation of every-
day experiences [3], contrary to
what many OO supporters advo-
cate. Thus, much of what can be
observed as OOP is just a varia-
tion of “encapsulation.” It is my
contention that many OO
designs are really a complex form
of “encapsulation” that is not an
OO approach.

Consider constructing an
inventory program. Such a pro-
gram requires many files, a few
packaged databases, and various
user interactions. If one pursues
OO software construction, those
objects are implemented as classes
and subclasses with deep and
complex inheritances. In general,

one cannot treat a class as a com-
plete black box. Therefore, the
programmer who intends to reuse
a class must first understand some
of the inner workings of the class.
If the class is a subclass in a class
hierarchy, one has to traverse the
path of the inheritance to find the
method or data one wants to
reuse. In a sense, the programmer
has to trace through the labyrinth
of class hierarchy.

This is known as the “yo-yo”
problem, and has existed since the
very beginning [4] of OOP. We
can say that hiding information
about data structures does not
facilitate the user’s understanding
and ability to support the pro-
gram.

The reality is, OOP is difficult
to learn, taking the average pro-
grammer about two years to mas-
ter. With the world of software
persuaded to move to this new
technology, programmers who
make the required career learning
investment quickly become valu-
able (indispensable), particularly
after they write some important
code. No one else can understand
it. If one wants a raise, one
threatens to leave.

Even the programmers them-
selves are arguing about the diffi-
culties in dealing with the high
level of complexity being placed
upon them today.

The Productivity Failure
Numerous articles have been pub-
lished in many periodicals, from
IEEE Software and ACM journals,
to Business Week and the Wall
Street Journal. Mountains of PR
suggest the great productivity
improvements we could expect
from OOP technology. Every pro-
grammer concerned about this
technology learned to embrace
this view. The truth is, the pro-
ductivity improvements never
happened. In fact, studies have
shown software productivity as a
whole has been in a decline for
more than a decade. The five
years prior to 1996 (the heydays
of OOP), a period of general
growth, software productivity was
negative, more negative than any
other industry [2].

What is most interesting is that
no one appears to be talking in
terms of productivity (for an
exception, see [1]). They are all
lost in the mazes of theoretical
beauty of their creations. Accord-
ing to quality control expert Dem-
ing, if you can’t measure it, you
can’t improve it. So why is it so
difficult to bring computer science
into the world of hard science and
to start measuring the real results
of some of these hypotheses?

In the 1960s, people actually
measured language understand-
ability (see [6])—a major factor in

PSI
Inserted Text
non

PSI
Cross-Out

PSI
Inserted Text
non

software productivity. The switch
from assemblers to higher-level
compiler languages was a clearly
measurable improvement in pro-
ductivity. But it was difficult to
effect the change. This was
because the programmers that
knew assemblers were indispens-
able. It was much easier for some-
one else to understand high-level
language code. When the existing
masses have a vested interest in the
current approach, change that
decreases the value of their invest-
ment is not in their best interests.

The field has yet to measure the
productivity of competing soft-

ware development environments.
The software industry deserves
some objective investigations in
this area. In today’s situation, one
can say that, without measures
from repeatable experiments, soft-
ware is not a science.

It is time we uncover our eyes
and face the software dilemma we
have today—an industry with no
scientific measure of productivity,
just emperors with no clothes.

Henry Ledgard (hledgard@eng.
utoledo.edu) is a professor in the Electrical
Engineering and Computer Science
Department at the University of Toledo.

References
1. Cartwright M. and Shepperd, M. An empiri-

cal investigation of an object-oriented soft-
ware system. IEEE Trans. Softw. Eng. (Aug.
2000).

2. Cave, W.C. Software survivors. Software
Developer and Publisher (July/Aug. 1996).

3. Hatton, R. Does OO sync with how we
think? IEEE Software (May/Jun. 1998),
46–54.

4. Kaehler, T. Patterson, D. A Taste of
Smalltalk. Norton, 1986.

5. Kernighan, B.W. and Ritchie, D.M. The C
Programming Language. Prentice Hall, Engle-
wood Cliffs, NJ, 1973.

6. Ledgard, H., Whiteside, J., and Singer, A.
The natural language of interactive systems.
Commun. ACM 18, 11(Nov. 1975).

7. Stroustrup, B. What is object-oriented pro-
gramming. IEEE Software (May 1988).

© 2001 ACM 0002-0782/01/1000 $5.00

c

128 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

Technical Opinion

