
COMMUNICATIONS OF THE ACM November 2003/Vol. 46, No. 11 121

Software is arguably the world’s most impor-
tant industry, according to Grady Booch.
Software development environments used to
build and support software are the major fac-
tor in software productivity. Yet, unlike hard-
ware, there are no accepted measures that
afford benchmark comparisons.

Gross measures presented in the literature
indicate that software productivity has been
dropping more rapidly than any other
industry. The semiconductor industry had
the most productivity growth (86%) from
1990 to 1995. In that same period, produc-
tivity for the software industry decreased by
10%, indeed, the worst decline of all indus-
tries surveyed.

We have heard arguments that denounce
these numbers, particularly regarding
attempts for more sophisticated applica-
tions. This factor alone might account for
negating a portion of the gross measure of

productivity. On the other hand, one can
argue the amount of memory we now use
and the speed of hardware compensate for
this. However, none of these arguments
have a scientific basis. And that is the point
of this article.

Borrowing from Tom DeMarco’s Control-
ling Software Projects, “You can’t control what
you can’t measure.” Before we can expect to
improve productivity, we must measure it. A
framework is offered that we believe is essen-
tial for making improvements in software
productivity. We start by addressing issues
concerning productivity of software develop-
ment environments.

MEASURING PRODUCTIVITY
IN THE SOFTWARE INDUSTRY

�By Donald Anselmo and Henry Ledgard

“When you can measure what you are

speaking about, … you know something about

it; but when you cannot measure it, … your

knowledge is of a meager and unsatisfactory

kind… —Lord Kelvin

“… rapid growth in the power of hard-

ware has … permitted sloppy, unprofes-

sional programming to become the virtual

standard … . Hardware has allowed the

software profession to … remain in an

irresponsible adolescence in which unsta-

ble products with hundreds of thousands

of bugs are shipped and sold en masse.”

—Larry Constantine

Effective IT curricula balances tradition with innovation.
One way to enhance that balance is to examine the
common threads in the various knowledge areas.

We take for granted our ability to compare com-
puter hardware productivity using benchmarks and
purchase hardware based upon them. There are no
acceptable productivity benchmarks for a software
environment. Comparisons are generally based upon
literature advocating a given method. Invariably they
lack scientific data to support the claims.

Ability to deal with complexity. Software complexity
grows rapidly when dealing with interactive user
inputs, complex databases, dynamic graphics, net-
works, and so on. When functionality grows and soft-
ware becomes more complex, development and
support tools are put under the stress of a production
environment. The more
facilities contained in
that environment to ease
the development of these
functions, the higher the
productivity.

Scalability. The increas-
ing complexity of software
products stresses the scala-
bility of the development
environment in different
directions. Various fea-
tures of this environment
can help or hinder the
growth of an evolving
product. What may
appear unnecessary in
solving a classroom problem may be critical in control-
ling the evolution of a large system in production.

Approaches to producing complex systems not
evolved in a production environment typically don’t
scale well. Intel’s approach to chip design and fabrica-
tion is an example of the evolution of a good produc-
tion environment. We question the ability to achieve
the equivalent of a Moore’s curve for software produc-
tivity relying on technology not evolved in a produc-
tion environment.

Reusability. Reuse is critical as a major justification
for object-oriented programming (OOP). Unfortu-
nately, there is no accepted definition of reuse nor a
measure of its achievement.

One can take the view that reuse only has meaning
when functionality is inherited as defined in the OOP
sense. One then “bends the metal” around the reused
module (class) to accommodate the changes. We call
this “reusability in the OOP sense.” One must consider
the resulting modification effort and the possibility of
inheriting functionality one does not want. If visibility
into what one is inheriting is low, conflicts can arise
downstream.

Our concern is that measuring the effort required to

reuse a software module in a new function. We want to
minimize the energy spent in development and sup-
port. This leads to a practical definition of reusability as
the reduction in effort when one starts with a previous
module and modifies it to produce the new function.
The amount of modification is subordinate to the
energy required to build and support resulting mod-
ules. Given a development environment that mini-
mizes this energy, we can expect higher productivity.

Consider reuse in a production environment. Given
we can copy a module and modify it, the relative
amount of change affects our approach. If we modify a
significant percentage of the module, then supporting

two distinct modules is
difficult to argue. On the
other hand, for large com-
plex modules, one may
find the percentage change
quite small. In these cases,
the original module is
usually composed of sub-
modules, most of which
remain unchanged. The
unchanged submodules can
become utilities that remain
intact to support both
higher-level modules.

Most important is the ability to see these modules just
as designers of hardware chips can see their modules. This
implies visualization of the architecture, a property that has
no counterpart in OOP.

Product Measures
Before addressing measures for comparing software
development environments, we consider measures of
the end product under development.

Functionality. Software systems are serving an ever-
widening range of functionality. When comparing
software development environments, one must evalu-
ate their ability to handle the increasing functionality.

Poorly specified requirements are often cited as the
cause for late and buggy software. Sometimes this is
true. However, the authors are aware of multiple cases
where functionality was well specified, including user-
supplied test data, to determine whether requirements
were met, and the software efforts still failed.

A more important factor appears to be the amount
of functionality one must deal with. We need to be able
to quantify the size and complexity of the function
space specified for a software product in order to deter-
mine the difficulty one faces in development and sup-
port for that product. This has been addressed in the
function-point method. Measures of this type can be
quantified for benchmark experiments.

122 November 2003/Vol. 46, No. 11 COMMUNICATIONS OF THE ACM

Development
Costs

Rate
of

Investment
$

Revenue
Generation

$

IOC SOB Time

IOC SOB Time

Support
Costs

Sales and Maintenance Fees

SOFTWARE LIFE CYCLE
INVESTMENT CHARACTERISTICS

Measuring the productivity
of software development

and support.

COMMUNICATIONS OF THE ACM November 2003/Vol. 46, No. 11 123

Complexity. Information about the number of func-
tions built into software is likely to be insufficient when
trying to predict levels of difficulty. Productivity can
take on significant variations due to different levels of
complexity of the functions. The level of complexity of
each function must be considered when measuring the
difficulty in developing a piece of software. Complexity
factors can be quantified for benchmark experiments.

Quality. As functionality and complexity grow, the
number of opportunities for bugs multiplies. Knowing
that two pieces of software have equal numbers of new
bugs found per month is not sufficient to determine the
comparative quality of each. One may have much more
functionality than the other. Furthermore, one may
have much heavier usage than the other. These factors
must be accounted for when comparing the quality of
different pieces of software.

Quality of software can be measured in terms of the
availability of its specified functions; the time and cost
to support that software to maintain an acceptable level
of availability, which must be determined by the users
of that software. Measures of availability can incorpo-
rate the level-of-usage factor. Here, we assume software
is designed to meet a quantified level of quality.

Productivity Measurement
Considerations
The accompanying figure depicts two characteristics
that can be used to derive a measure of the productiv-
ity of a software development environment. The top
characteristic shows an investment curve for develop-
ment and support of software. The area under the
curve represents the product of time and cost per unit
time, yielding the total dollar investment to build and
support a piece of software. More time and money is
spent supporting product enhancements and error cor-
rections than in development.

The second characteristic illustrates the revenues
generated from product sales and maintenance fees per
unit time. Revenues start to flow when an Initial Oper-
ational Capability (IOC) is reached, and cease upon
System OBsolescence (SOB).

If the development time (to IOC) is stretched, and
total development costs remain constant, that is, the
expenditure rate is slower, then the time to reach rev-
enue growth is pushed out. Total revenues can be
reduced if competition enters earlier or if the product
becomes obsolete. This causes loss of Return On
Investment (ROI = total revenue - total investment).
This can happen if initial product quality is not suffi-
ciently high since customer dissatisfaction will inhibit
sales growth and encourage competition.

Improvements in productivity must be reflected in
improvements in ROI. Therefore, productivity is

inversely proportional to the costs incurred. This com-
prises development costs and support costs. Addition-
ally, if development costs remain fixed while IOC is
reached in half the time with equal quality, revenues
can start flowing earlier. This implies that if developer
A spends money twice as fast as developer B, but
reaches the same quality at IOC in half the time, A can
expect a higher ROI. It takes much higher productivity
for A to achieve this.

If mi is man-hours spent in time period i, then total
cost, C, can be estimated to be proportional to

C = K•� mi = K•M,

where M is the total man-hours expended during devel-
opment and integration, and K is a constant that
depends on overhead and general and administrative
expenses. We note this only reflects the cost part of pro-
ductivity. If time to complete the project, T, is factored
in directly, then productivity can be inversely propor-
tional to

C•T = K•M•T.

We are not stating this is the measure of productivity.
We are asserting that one must conduct experiments
and take measurements to validate such an hypothesis.
We encourage other hypotheses; but whatever the mea-
sure, it must be supported by valid repeatable experi-
ments. We note that the support mode is typically
dominated by incremental developments (enhance-
ments), and can be treated accordingly. We also note
that, if a given level of quality is achieved for compet-
ing software systems, then the revenue side is accounted
for fairly, since other factors, (for example, marketing
costs), are neutralized.

Factors Affecting Productivity
Here, we offer the properties of a software develop-
ment environment that have been known to affect the
man-hours and time to develop and support a software
product.

Independence. Since reuse of modules has been a
stated objective in the OOP revolution, we start with
reuse. When attempting to reuse a module, one must
be concerned with the independence of that module
relative to its use by different higher-level modules. If it
is not in the same task, then one may have to copy it,
for example, as a library module, for use in different
directories or platforms. If it needs other modules to
operate, they must also be copied.

The more a module shares data with other modules
in a system, the higher its connectivity to other parts of
a system. The number of connections is measurable.

The higher the connectivity, the lower the indepen-
dence. When designing hardware modules to be inde-
pendent, one works to reduce the number of
connections to other modules to a minimum. We note
that visualization of the architecture is critical to per-
forming this design task.

When building software using OOP, class abstrac-
tions cloud the ability to visualize connections. Under-
standing how data is shared between software modules
can be difficult, especially when inheriting classes that
inherit other classes. It is difficult to inspect a module
to determine its degree of connectivity and understand
the way it interacts with other parts of the system. Hid-
ing and abstraction in the OOP sense makes it difficult
to simply pull (copy) a module from one system and
place (reuse) it in another. This difficulty in reuse as
defined by OOP stems from the effort required to
determine the level of independence.

In the case of hardware, one designs for minimum
connections between modules. Using CAD tools pro-
vides a visualization of the architecture. Connectivity
(coupling) is a key property affecting design productiv-
ity. This is true in software as well. But to fully under-
stand this principle, one must be able to really see the
architecture.

Understandability. When managing a large software
project, one gets to witness the loss of energy that
occurs as two programmers reinvent the same module.
Energy is also lost trying to decrypt algorithms coded
to minimize the number of keystrokes used to write
them, or to maximize “economy of expression.”

If these algorithms are passed on to others, they may
become enveloped in comments that explain the code,
sometimes multiplying the size of a listing by whole
numbers. Some claim that understandability of a lan-
guage can be gauged by the average number of com-
ments in the code. Understanding the code is a major
factor in software productivity, especially in the support
phase of the life cycle of a product.

More important than language is the underlying
architecture of a system. This property is difficult to
fathom if you have never seen a direct visualization of
software architecture. This is only accomplished if
there is a one-to-one mapping from drawings of the
architecture to the physical layer, such as the code,
just as there is in a drawing of a complex computer
chip. We believe that without this visualization, sig-
nificant productivity improvements can never be
achieved for software.

The opposite situation occurs using OOP. The
architecture is hidden behind the code—the only visual
representation of the real system. Diagrammatic repre-
sentations are abstractions and do not reveal the true
complexity or hidden dependencies.

124 November 2003/Vol. 46, No. 11 COMMUNICATIONS OF THE ACM

We take for granted our
ability to compare computer
hardware productivity using
benchmarks and purchase
hardware based upon them.
There are no acceptable
productivity benchmarks for
a software environment.
Comparisons are generally based
upon literature advocating a
given method. Invariably they
lack scientific data to support
the claims.

Understandability of the architecture also con-
tributes to the design of independent modules. We
believe one can measure the degree to which one can
visualize software architecture and relate that to pro-
ductivity.

Flexibility. One motivation behind the eXtreme pro-
gramming movement, as well as Microsoft’s approach
to software, is the incremental approach to software,
where functionality is added in small pieces, often with
a working “daily build.”

CAD tools make hardware architectural changes
easy, especially when a system has been designed on a
modular basis. A CAD system that does the same for
software, that is, starts with a visualization of the archi-
tecture on a modular basis and provides a one-to-one
mapping into the detailed code, can ensure design
independence of modules while allowing visibility of
the desired details. This can provide real reusability.

With such a flexible facility, one can design a little,
build a little, and test a little, growing a system incre-
mentally to ensure components are meeting specifica-
tions and showing near-term results. One can quickly
detect when changes cause components to fall out of
specification ranges. Fault isolation is much more easily
accommodated. These factors should all lead to higher
productivity.

Visibility. Electronic circuits are described by systems
of differential equations. Yet, it is difficult to imagine
designers working without diagrams of circuits. As cir-
cuits get large, it is the architecture—the parsing of
functions into iconic modules and lines to show how
they are interconnected—that becomes overwhelm-
ingly important. Visualization of the architecture is the
key to productivity.

We claim this is also true with software. However, a
one-to-one mapping from the architecture diagram to
the code must be achieved in order to gain the benefits
derived from the equivalent in hardware. This is only
achievable when data is separated from instructions, as
in VisiSoft, a CAD product. If there is a silver bullet in
software, this is it. Productivity gains can multiply using
this CAD technology so as to achieve the equivalent of
a Moore’s curve.

Abstraction. No one can argue the usefulness of
abstraction. It certainly can help get through major
design problems. It can also sever ties to reality in a pro-
duction environment. It is easy to draw block diagrams
for sequential tasks that relate to the code. But in highly
interactive systems, mouse or keyboard event handlers
support many functions, and the software architecture
becomes orthogonal to user functionality. Block dia-
grams lose meaning when one faces a software design
from the extremities of the functional interface to the
detailed code.

Apparently, benchmark comparisons of different
approaches to developing software do not exist because
of the size of experiments envisioned to perform the
task. People envision two teams developing a suffi-
ciently complex piece of software using competing
environments. One can see why such an expensive
undertaking is not done.

But most experiments in science are not very large in
scope. Focus is usually on creating sequences of small
experiments that can lead to larger conclusions. We
believe software should be broken into pieces such that
the methods that produce them, including integration,
can be examined experimentally.

Conclusion
As the quote from Kelvin implies, we cannot expect to
improve software productivity without measuring it.
The measures of a software product—functionality,
complexity, and quality—are not new. They form the
foundation for measuring productivity.

If a given level of quality is achieved for the same
software system by competing organizations, their rela-
tive productivities can be measured as being inversely
proportional to the product of their cost and develop-
ment time.

Productivity of a software environment depends
upon the understandability and independence of mod-
ules produced. These are inherent properties of a soft-
ware development environment, and can be increased
or decreased by design. Visualization and CAD tech-
niques can improve these properties just as they do for
hardware designers.

Finally, we must be able to measure productivity
changes to validate our assumptions regarding its
dependence on these properties. We believe this can be
done using a large number of small experiments that,
combined statistically, will represent the productivity of
a development environment. We perceive the experi-
ments are suitable for university collaboration.

Donald Anselmo (dranselmo@usweat.net) was the director of the
Computer Development Laboratory at AT&T Bell Laboratories
responsible for Unix computer development. He is now an independent
consultant.
Henry Ledgard (ledgard@eng.utoledo.edu) is a professor in the
Department of Electrical Engineering and Computer Science at the
University of Toledo, Ohio.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/1100 $5.00

c

COMMUNICATIONS OF THE ACM November 2003/Vol. 46, No. 11 125

