
Visual Software International Seeking the Truth Page 1

Is Silicon Valley Headed Toward Detroit?
Or Ready to Benefit from Software CAD Technology

William Cave† - March 12, 2015

The Need For Speed

 Starting with the atomic bomb, computer technology has been driven by the need for
speed. An all-electronic version of mechanical calculators - the ENIAC - solved part of this
problem. But programmers still had to wire boards to create instructions to add, multiply, and
manipulate the data, and had to account for circuit delays and race conditions.

 The complexity of the hydrogen bomb led to the first stored program computer - the
MANIAC, where instructions were stored in memory along with data. Since instructions were
accessed sequentially, they were independent. Programmers no longer worried about timing or
synchronization, which was shifted to the logic designers of the machine. Computer
programming became simple. But the key to speed was memory which has increased from a few
Kilobytes on the first machines to about 10 Terabytes on today’s PCs.

 From 1982 to 2006, software application speeds doubled every 18 months - aided simply
by increases in computer clock speeds. Then chip power dissipation densities forced clock rates
to level off. To meet the need for speed, hardware manufacturers have put multiple processors
(cores) on a chip, forcing programmers to decompose a task into parallel parts. But when
software must be split across multiple processors running concurrently, the great simplification
of Von Neumann’s instruction set architecture - the independence of sequential instructions - no
longer applies. Various people have invented new architectures, but every time someone tries to
change this paradigm, programmers get hit with the synchronization problem.

Changes in Software Productivity

 Prior to the 1980s, software productivity increased rapidly. Since the late 1980s, thanks
to the move to C-based languages and OOP, software productivity has gone down - faster than
any other industry in the U.S. (see charts below). Whereas computer chips had the highest
productivity growth of all industries in the 5 years prior to 1995 (chart 1), software productivity
growth was negative (red bar). Recent studies make it clear that this situation hasn’t changed. In
the year ending 2004 (chart 2), computer chips still had the highest productivity growth while
software still had the most negative growth (red bars). This is before parallel processors
changed the market. The high cost of building and maintaining software, and large number of
project failures has put many projects on hold. Large companies are now outsourcing software
projects overseas to India, China, and similar countries.

 The most recent exposure of this problem is described in the February 21, 2015 issue of
the Economist magazine. The underlying cause is the same job protection mentality that
occurred on shop floors in the automobile industry in the 1960s, recently putting Detroit into
bankruptcy. As discussed below, this is putting Silicon Valley on the same course as Detroit.

† The author is with Visual Software International - www.VisiSoft.com

Visual Software International Seeking the Truth Page 2

CHART 1. Data From Business Week - January 1995.

PRODUCTIVITY CHANGE
over the years 1990 to 1995

(A survey of 25 U.S. industries)

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

%
 P

ro
du

ct
iv

ity
 C

ha
ng

e
..

CHIPS

SOFTWARE

CHART 2. Data From Groth, IEEE Software, November/December 2004.

PRODUCTIVITY CHANGE
over the years 1998 to 2003

 (A survey of 10 U.S. Industries)

-10

10

30

50

70

90

1 2 3 4 5 6 7 8 9 10

%
 P

ro
du

ct
iv

ity
 C

ha
ng

e
 ..

.

CHIPS

SOFTWARE

Hardware Manufacturers Caught In The Middle

 As indicated above, increases in software application speeds were due to computer clock
speeds doubling every 18 months. This concealed problems that led to (Niklaus) Wirth’s Law:
“Software gets slower faster than hardware gets faster.” But by 2006, computer clock rates had
leveled off. To keep the speed curve headed up, hardware manufacturers started putting multiple
processors (cores) on a chip, leading one to believe that having 8 processors on a chip would
speed up applications by a factor close to 8. Faced with the problem of decomposing a task into
separate parallel parts, the benefits of sequential instruction independence are gone, and the
problem of timing and synchronization is back. Programmers must now split software across
multiple processors running concurrently, a task not supported by popular software languages.

 This new level of complexity has programmers looking back to the chip designers to
solve their problems by moving special software functions into the hardware. The chip space
wasted trying to accommodate these false needs is huge. This is going in the wrong direction!

Visual Software International Seeking the Truth Page 3

The Right Direction For Change

 Enter the age of Computer-Aided Design (CAD). VisiSoft - a CAD system for software -
has been providing huge simplifications for building complex systems for many years.
Understandability is a critical aspect of software productivity. Linearization of complexity
requires that the system be decomposed into modules that are maximally independent.

 Implementing understandability and independence depends directly on the language used
to produce the code. It must be highly readable by subject area experts and easily support
substantial layers of hierarchical structures of both data and instructions. Current languages have
none of these properties.

Resistance To A Disruptive Technology (The Real Software Problem)

 VisiSoft is a disruptive technology that will change the underpinnings of the software
world for decades to come: (1) using this CAD system, subject area experts can build software
directly without programmers; (2) it provides huge economic benefits to both developers and end
users. It takes less time to build software for a parallel processor than current approaches on a
single processor, being cut by factors of 2 to 5. Books by Clayton Christensen and Thomas
Kuhn describe the resistance that must be overcome when introducing disruptive technologies:

• Job Security - People with years of experience in the current technology see the loss of
value of their expertise (young people love VisiSoft; they learn it fast).

• Financial Competition - Huge investments in current technology are at risk of being
wiped out (there are new ones to be made using VisiSoft).

• Not Invented Here (NIH) - People in government/academic research must justify large
salaries they receive to develop such technologies (they can be the early evaluators).

 Having made investments in becoming proficient in a subject, one does not want to think
of that time as wasted. A university teacher of programming characterized VisiSoft technology
as “unprofessional.” When asked why he replied “Anyone can use it! ” Proficient C-based
language programmers will not use a disruptive technology. They are a significant barrier to
change. As described by George Gilder, human inertia is the major deterrent to innovation.

Comparing Software To The Automobile Industry

 On a Friday afternoon, two young computer engineers in an Austin Healey were headed
from Ann Arbor, MI to Detroit. On the way they had a business meeting with a computer
manufacturer. Before the meeting, someone said that company policy did not allow foreign cars
on the lot - the car had to be moved. After the meeting, the engineers asked about places to go in
Detroit. They were told to rethink driving in the city with the Healey - it was definitely
dangerous. They could have their tires slashed and the leather top cut off - while sitting in the
car. Someone provided directions to a parking lot in the city that hid foreign cars, indicating
that, if they could get there, it would be safe.

 At that time, new technology companies were building robots for factory automation.
But these were banned from the shop floors of U.S. auto manufacturers. Even quality control
experts - Joseph Juran and J. Edwards Deming - were banned from taking measurements to
improve quality and lower costs on the assembly lines, so they went to Japan. All of this was
justified based upon job security. To get elected, politicians stood firmly behind this policy.

Visual Software International Seeking the Truth Page 4

 But when buyers who control their economic choices are driven by their own hard-earned
money, the ball game becomes fair. Those who deliver the best results are the winners. Fifty
years later Detroit is in bankruptcy, devastated by foreign car manufacturers.

 One would believe this kind of thinking to be unacceptable in a technology field like
computers. Yet thanks to the integrated circuit chip, the computer field was split into hardware
and software. Hardware engineers use CAD tools to design chips, and take measurements to
compare designs. Software is more of an art form, particularly from a user standpoint. Who are
the major buyers? They are probably part of the fast growing social networking market - texting
to their friends, kids, and grandkids.

 In nations with low labor rates, products produced by low skilled jobs will be very
competitive. Where labor rates are high, low skilled jobs are hard to support and one must look
to sources of revenue requiring advanced capabilities. Since the U.S. has been a major developer
of high technology, it should be striving to dominate markets that demand a high technology
edge, one that can be maintained for the long haul. The auto industry is one of those markets.
As Japan’s labor rates exceeded those of the U.S., they used shop automation - everywhere!

Achieving Real Job Security - By Seeking the Truth

 The markets depending upon computers and automation are growing rapidly, a trend that
should continue for decades, and an area in which the U.S. excelled for many years. However,
since the late 1980s, productivity in the software field has dropped - faster than any other
industry. The high cost of building and maintaining software, and the large number of project
failures has put many projects on hold. Companies are outsourcing their software overseas.

 The underlying cause of this problem is hidden from public knowledge. It is the result of
the same job protection mechanisms that dominated the U.S. automobile industry in the 1960s.
This time it is the supposed “high-tech” people (the programmers) who falsely believe they are
protecting their jobs from lower skilled people, when they could dramatically improve their own
productivity using CAD systems. But, they refuse to take measurements and make comparisons.

 This problem occurred in the U.S. software field in the late 1960s when programmers
insisted that business software had to be written in assembly language. But at that time, software
managers came up through the ranks and understood what was going on (job protection). These
managers made the decision to switch to a new programming language (COBOL) where high
school graduates could produce software faster than PhDs in mathematics using assembly
language. Using COBOL, the U.S. software field expanded dramatically.

 Today’s programmers do not aspire to management, so management does not understand
what programmers do. The productivity of tools used to build software has regressed
dramatically since the 1980s. Programmers hide what they build behind difficult to understand
languages, protecting their jobs by ensuring that only they know what’s in the code. Now
Silicon Valley is following the same blind path as the programmers, trying to put into hardware
knowledge that only exists inside a specific application. Lack of knowledge of the overall
problem is causing hardware designers to head in the wrong direction - to preserve the current
approach to building software - the root cause of the problem. Watching this unfold is hard to
believe. Led by programmers, is Silicon Valley headed down the same path as Detroit?

 The software field is a clear case where new technology can be used to dramatically
improve productivity in a very desirable job market. It’s time to seek the truth and take the data!

