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BACKGROUND 
 

 In the early Renaissance, artists sketched buildings that represented their imagined plans.  
Their renderings contained no measurements.  Builders were expected to follow the illustrations 
and work out the details.  There were no engineering principles or drawings.  Even now, one 
need not go to engineering school to design a dog house.  It needs no drawings or measurements. 
 

 As buildings became large and more complex, the artist’s approach was forced to change, 
eventually becoming known as architectural engineering.  By careful design of many levels of 
detail, an engineering process has evolved for solving construction problems - before the 
construction begins.  Improvements are implemented on a drawing board and in written 
specifications, avoiding costly mistakes, huge delays and corresponding cost overruns. 
 

 In the ACM article, The Emperor with No Clothes, [1], Henry Ledgard quoted W. 
Edwards Deming who stated “If you can’t measure it, you can’t improve it,” see [8]  The same 
point was made by David Parnas, [2], 10 years earlier: “Without measures from repeatable 
experiments, software is not a science.”  Although an initiator of Computer Science curricula, 
Parnas said: “most CS PhDs are not scientists; they neither understand nor apply the methods of 
experimental science.”  Ledgard and Parnas are highly knowledgeable in computer languages. 
 

 At the top is Grace Hopper, who wrote the first compiler while at Univac in 1952.  In 
1959, after the CODASYL conference initiated the development of COBOL, Hopper’s group at 
Univac spearheaded the language design based upon her own FLOW-MATIC language, see 
Beyer, [3].  Hopper stated that programs should be written in a language close to English rather 
than those close to machine code or assembler, see Ledgard [9].  This was captured in the new 
language, COBOL, which would become the most ubiquitous data system language to date.  
Hopper went on to develop CMS-2, a language for the U.S. Navy, adding math and scientific 
facilities to COBOL.  CMS-2 contained the same hierarchical data and hierarchical instruction 
syntax that contributes huge productivity gains and applies directly to parallel processing. 
 

 But now the time has come to apply engineering science to software.  The dog house 
approach to memorizing snippets of code does not provide the knowledge required to design 
complex software systems and simulations.  To meet pressing requirements for increased speed, 
computers have gone parallel with large numbers of processors on each chip, and many chips on 
a board.  Today’s applications are the equivalent of skyscrapers.  Moving the software field 
forward into an engineering discipline is an obvious necessity. 
 
 
INTRODUCTION 
 

 This paper describes an engineering approach to software based on a theory that is an 
extension of mathematics.  Achieving speed in development and support - as well as at run time - 
requires a solid science foundation.  This implies conducting repeatable laboratory experiments 
to ensure that theories are adopted based on fair comparison of carefully measured results. 
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 When designing a complex system, one breaks it into modules to gain architectural 
independence of various operations.  As individual modules become more complex, they are 
layered into hierarchies.  Without a clear hierarchy of modules, it is difficult to understand the 
bottom layer of detail - where careful design decisions are made.  When moving from scalars 
into complex state spaces, one must be able to understand the hierarchies of a space in order to 
design the “best” algorithms, i.e., those that are fast and easy to understand.  This requires 
visualization of hierarchies that directly represent the space. 
 

 When dealing with complex software module architectures, one must be able to visualize 
the hierarchies of functions that simplify and speed operations.  This implies the ability to 
observe directly how complex data structures are shared with complex sets of instructions.  In 
VSE, this is accomplished by separation of data from instructions, also known as the “Separation 
Principle,” [4].  This separation has existed in computer hardware design since the RISC chip.  
Having separated instructions (processes) from data (memory resources), one can represent 
software architectures using engineering drawings.  The intent of this paper is to show how 
architecture is as important to software as it is to the design and construction of physical 
structures and devices. 
 
 
APPLICATION SPACE ARCHITECTURE - THE ISA FOR PARALLEL PROCESSORS 
 

 The first stored program computer (the MANIAC) was used to design the first hydrogen 
bomb.  It required solving a much larger system of equations.  This required a relatively huge 
increase in memory to store the data as well as instructions required to meet the speed constraints.  
The MANIAC design was based on von Neumann’s Instruction Set Architecture (ISA), 
developed to support a broad base of applications.  These first computer designs made it clear 
that memory size was the major factor in achieving speed. 
 

 To solve the parallel processor software technology problem, one must take maximum 
advantage of the inherent parallelism in each particular application to minimize running time.  
This requires designing the best spaces in which to map the inherent parallelism to solve the 
problem.  As shown in Figure 2, this requires mapping the application requirements into a 
software space that is defined by the software development environment.  This environment must 
support ease of translation of the application requirements into a software language.  It must also 
map into the seven layer model for software depicted in Figure 1. 
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Figure 1.  The ASA spaces of software design. 
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Software Spaces - An Extension of Mathematics 
 

 Having defined an application space, one can focus on the design of a software space that 
meets the requirements and makes optimal use of the hardware space.  Demanding applications 
require the breakthrough speeds of advanced parallel processors.  This implies software spaces 
that maximize the simplicity and understandability of the software design while meeting the 
application requirements, particularly the speed and accuracy constraints, on the latest parallel 
processor hardware technology. 
 

 Software Spaces require an extension of mathematics beyond the concepts of State Space 
used in control theory.  Once used, the extensions become obvious.  The critical differences are 
the use of English-like words to represent binary numbers, the use of deep complex hierarchies 
representing the necessary data space descriptions, and English-like statements defining 
operations that support complex decision processes.  These are further defined below. 
 

 With a well designed software space, large parallel processor software systems can be 
built and modified easily by people with application expertise.  Their knowledge is critical to 
decomposing systems with inherent parallelism into easily understood hierarchies - at both the 
architectural and language levels.  Such knowledge is required to linearize complexity while 
maximizing run-time speed. 
 

To achieve these goals, the ASA must support critical properties, a sampling of which follows. 
 

• Spatial Selection - Application systems must be decomposed into a hierarchy of 
spaces that simplify understanding of the required transformations.  These spaces must 
be organized around the system’s events, and effects of interactions of the subsystems.  
For complex systems, this requires the deep knowledge of an application expert. 

 

• Spatial Distribution - Independent elements of systems typically share information that 
is copied and available directly to each element.  Saving memory is an abstraction that 
causes delays - waiting for access to shared spatial memory. 

 

• Spatial and Temporal Synchronization - Independent elements of systems that share 
information are synchronized based on detailed application event dynamics.  These 
event dynamics are typically only understood by application experts.  Facilities must 
exist so these experts can easily represent the required synchronization directly. 

 

• Independence of Modules - Systems must be decomposed into maximally independent 
modules.  This is apparent with interactive systems, and easily implemented following 
the physical dynamics of the independent elements of the application directly. 

 

• Understandability of Modules - Modules must be easily understood by other than the 
original author.  This implies following the principles described by Shannon in his 
work on Theory of Communications and by famous language designer Grace Hopper.  
For example, in software: 

 

− Names identifying spatial vectors, subvectors and elements must maximize 
clarity and understanding of the required transformations. 

 

− Functions must be specified explicitly as opposed to implicitly. 
 

• Hierarchy of Modules - Module decomposition must follow a hierarchy that relates 
directly to the run-time operation of the system. 
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• Orthogonality of Software Design - Software design of a non-sequential system is 
typically orthogonal to the organization of its functional requirements.  However, a 
good software design typically follows directly from the physical dynamics of the 
application.  This is particularly important with interactive systems. 

 

 Resources can be dedicated to a single process, shared by more than one process, use 
different areas of memory, be shared across tasks or simulations, or be shared across multiple 
computers.  Resources are also used to define external files, including fixed or variable length 
records, sequential or direct file access methods, and binary or printable text files.  These 
resource types are defined below. 
 
 
KEY CONCEPTS FROM PROVEN THEORIES 
 
Software Spaces For Parallel Processing  
 

 The development environment that people share is critical, especially the tools they use to 
create and communicate their parts of the design.  The best examples of such tools are 
Computer-Aided Design (CAD) systems.  This is stated emphatically by Broy, [5] and Poore, [6], 
both describing the need for an engineering approach supported by a CAD environment for 
developing software.  The companion to these papers, [7], describes the contribution of key 
concepts from prior proven theories, and introduces VisiSoft®, a CAD environment that makes it 
easy to implement the desired concepts. 
 

 To simplify software development on parallel processors, one must be able to map the 
inherent parallelism in an application into a software architecture such that processes can run 
concurrently.  This implies creating processes that are independent, i.e., they share no data 
directly.  To determine the independence of processes, designers must be able to easily see which 
processes share what data (memory resources).  This can only be done when the following 
Critical Software Architecture Requirements are met: 
 

• Data is organized into a minimum number of structures shared between processes; 
 

• Data structures can be organized into the deep hierarchies required to represent the 
best spaces to implement problem solutions; 

 

• Designers can easily determine which processes share what data so they can assure 
their independence properties. 

 

 The above requirements are best met when data is separated from instructions at the 
language level.  This separation supports the design of a data language for organizing large data 
structures using deep hierarchies.  It also supports design of an instruction language for building 
hierarchies of rule structures.  Both looping and complex IF ... THEN ... ELSE statements are 
then flattened.  What is known as Waterfall or Fall through code is gone (without GOTOs).  
These properties dramatically simplify design of the best data spaces, and concurrently, the 
design of complex algorithms.  Both lead to substantial increases in both understanding and run 
time speed - on single as well as parallel processors. 
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Modularity & Independence 
 

 In engineering, breaking complex systems into independent modules is embodied in the 
architecture, a concept that has been misunderstood in software.  This is because architecture 
describes connectivity, i.e., how a module is connected to other modules.  Engineering 
architectures represent the time-invariant properties of a system - not flow of control (they are 
not flow charts). 
 

 Descriptions of architecture are not convenient using algebraic or linguistic 
representations.  Like other engineering fields, software architecture is best described with 
drawings, depicting how modules are connected.  Only then can one visually observe 
independence - the key property supporting concurrency.  Flow charts, or graphical variations on 
flow charts, are of little use when describing the property of independence.  
 
 
SOFTWARE ARCHITECTURE 
 

 As illustrated in Figure 4, software architects can decompose a system into modules by 
grouping resources and processes into an elementary module.  Hierarchical modules are created 
by grouping modules into higher level modules.  Figure 4 shows a library module that is 
sufficiently complex to warrant its own drawing.  In general, modules are independent if they 
share no resources (i.e., they are not connected).  Having designed an architecture, developers 
can implement the data structures and rules using the resource and process languages.  Using 
this CAD system, resources and processes may be edited directly on the drawing as illustrated in 
Figure 4.  The languages do not permit the declaration of scope rules.  It is the architecture that 
determines how data is shared, and the corresponding independence of modules.  Most important, 
the languages are designed to provide for deep hierarchies in both data structures and rule 
structures to support the Critical Software Architecture Requirements defined above.  Without 
these language properties, understandability of complex software is difficult. 
 
 

Parallelism, Architecture, and Decomposition 
 

 When striving to take advantage of the inherent parallelism in a system, one must 
determine the architecture of software modules that maximizes concurrency on a parallel 
processor.  Picking the best set of state vectors is key to solving this problem.  Again, best 
translates to simplicity of transformations and run-time speed. 
 

 Having selected Generalized State Space as the framework, the mathematical analogy 
becomes one of selecting the best set of information vectors (Resources) to represent the system 
attributes.  Depending upon how the resources are designed and structured, the rules (Processes) 
may be much more simple to understand, build, and modify.  This is also determined by the 
independence properties of the architecture, i.e. the interconnection of resources and processes. 
 

 Unless one has witnessed directly the development of such architectures, the above 
discussion may take time to comprehend.  Having used it, it is apparent that architecture, as 
defined here, is as critical to software design as it is to any other engineering discipline, with or 
without parallel processing.  But the ability to design good architectures depends directly on the 
language.  It is why productivity multipliers are very high when using this CAD environment, 
especially in the support mode when a new person has to understand what another has built.  We 
now turn to the critical importance of language in taking advantage of parallel processors. 
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Software Spaces & Databases - An Extension Of Mathematics 
 

 The CAD software approach described here follows from Shannon’s Mathematical 
Theory Of Communications, [10], also known as Information Theory.  Based on the binary 
number system and Boolean algebra, this approach defines a mathematical space wherein the set 
of characters used to write software is represented by strings of bits or binary numbers.  This 
approach follows from the State Space framework formulated by control theory engineers to 
simplify complex problems in control system design.  State Space extends the mathematics of 
vectors and matrices, simplifying complex transformations using large vector spaces. 
 

 Simplification of complex mathematical problems hinges on selection of a good space, 
reducing complexity of the transformations and the corresponding time to solve the problem.  
This is apparent when dealing with multi-dimensional hierarchical spaces as occur in software.  
Software spaces are determined by the databases used to support transformations (instructions) 
that implement the application.  The entire database represents the overall software space. 
 

 If a software application is represented by a continuous-time or discrete-time linear 
mathematical model, the software and mathematical solutions are essentially the same.  However, 
most software applications require actions based upon events as they unfold, being highly 
nonlinear.  Discrete event simulation provides significant insights into this problem, see [7].  
Although time is still the basic coordinate, actions jump to the next scheduled event.  The 
difference is that actions typically depend upon complex decision processes. e.g.,  
 

IF A IS TRUE ... SCHEDULE PROCESS_A ... ELSE IF B IS TRUE ... SCHEDULE PROCESS_B 
 

 Some of the execution steps may involve solving systems of equations.  More 
importantly, they will likely contain statements that SCHEDULE a NEW_EVENT in the future.  
This facility is necessary in time-based models or real-time systems. 
 

 As illustrated in the next section, software is simply an extension of mathematics.  The 
corresponding properties of spaces, and the independence of subspaces and coordinates, apply 
directly.  These properties are critical to designing software architectures containing independent 
modules that simplify parallel processing while maximizing speed. 
 
 
The Separation Principle 
 

 The underlying principle supporting the visualization of software architectures using 
engineering drawings is the separation of data from instructions at the language level.  Defined in 
1982 in the design of the General Simulation System (GSS), this has become known as the 
Separation Principle, [4].  The developers of GSS defined the separate languages used to 
describe the data structures (Resources) and rule structures (Processes) illustrated above. 
 

 Using the Generalized State Space framework, the Separation Principle is achieved by 
storing all data in Resources.  Resources are depicted as ovals in architectural drawings as 
illustrated in Figure 6.  Processes containing instructions that implement transformations are 
depicted as rectangles.  The lines connecting them determine which processes have access to 
what resources.  In this figure, each process has a dedicated resource and shared resources.  
Transformation 1 has state vector A as input, has state vector B for dedicated use, and shares 
state vector C with transformation 2.  Therefore, Transformations 1 and 2 are not independent.  
As used here, the property of independence ensures that processes running on a parallel 
processor produce complete and consistent results for a given set of initial conditions. 
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Figure 2.  State vectors and transformations. 
 
 Consider that state vectors C, D, and E have initial values Ci, Di, and Ei.  When run on a 
single processor (sequential machine), Transformation 2 will produce the same outputs: Co, Do, 
and Eo for a given set of inputs every time it runs; i.e., the results will be complete and consistent.  
If while it is running, one of the resources is changed from the outside, the results may not be 
complete and consistent.  This is because the data being accessed is not consistent relative to 
Transformation 2.  If Transformations 1 and 2 run concurrently, shared state vector C could be 
changed by either, rendering the data as recognized by the other as potentially inconsistent.  
Therefore, in general, they cannot operate concurrently. 
 

 Similarly, Transformation 2 is directly coupled to Transformation 3 by shared state 
vector E, is not independent of it, and thus cannot run concurrently with it.  However, 
Transformations 1 and 3 can operate concurrently since they share no state vector directly and 
are therefore spatially independent.  Transformation 2 can operate only when Transformations 1 
and 3 are both idle, i.e., they are temporally independent. 
 

 The Separation Principle provides the ability to represent resources and processes using 
icons on engineering drawings of software, see Figure 7.  Engineering drawings represent the 
connectivity of elements; they are not flow charts.  They provide an iconic visualization of which 
processes share what resources, and therefore their independence.  All resources are shared by 
pointer.  By grouping icons into hierarchies of modules, module independence can be visualized 
directly.  Figure 7 is a Library type module. 
 
 
SOFTWARE LANGUAGE 
 

 The requirements for the resource and process languages were driven in part by factors 
somewhat akin to those motivating the use of tiling in parallel versions of FORTRAN.  These are 
to minimize memory management overhead due to swapping processes and paging data.  This is 
accomplished by maximizing the work done on each processor while running concurrently with 
work on the other processors, thus maximizing the PUE. 
 

 To do this, the language must support design of software spaces that simplify the human 
translation of inherently parallel physical entities into an organization of independent workloads.  
As understood by Grace Hopper, likely the most knowledgeable software language designer, [3], 
such organizations are best supported by deep hierarchies of both data and instructions.  A 
simple example of such a data structure (RESOURCE) is shown in Figure 5. 
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MESSAGE_TABLE  QUANTITY(3) 
    1  MESSAGE INDEX                               INTEGER 
    1  MESSAGE ELEMENT  QUANTITY(13) 
       2  UNIT I                                   INTEGER 
       2  SLOT ID                                  INTEGER 
       2  MESSAGE_INFORMATION 
          3  MESSAGE_TYPE                          STATUS  DATA_OUTPUT 
                                                           USER_REQUEST 
          3  STATE_S 
             4  NUMBER TO BE SENT                  INTEGER 
             4  SEQUENCE_NUMBER                    INTEGER 
             4  MESSAGE_ACTION                     STATUS  SEND, HOLD 
             4  AGGREGATE STATE 
                5  MESSAGE STATE QUANTITY(7) 
                                                   STATUS  EMPTY, FULL 
             4  INDIVIDUAL STATE  REDEFINES AGGREGATE STATE 
                5  SEQUENCED MESSAGE 
                   6  GROUP MESSAGE                STATUS  EMPTY, FULL 
                   6  BUDDY MESSAGE                STATUS  EMPTY, FULL 
                   6  QUEUED MESSAGE               STATUS  EMPTY, FULL 
                   6  RESERVED_MESSAGE             STATUS  EMPTY, FULL 
                   6  INTERCOM_MESSAGE             STATUS  EMPTY, FULL 
                5  NON SEQUENCED COMMAND 
                   6  DATA_INPUT                   STATUS  EMPTY, FULL 
                   6  USER COMMAND                 STATUS  EMPTY, FULL 
 

 
Figure 5.  Example of a hierarchically structured state vector (RESOURCE). 

 
 
 Deep hierarchies allow large complex data structures to be moved in a single instruction 
fetch, with all of the individual fields directly available to instruction hierarchies as illustrated in 
Figures 6, 7, and 8.  This provides order of magnitude improvements in single processor speeds 
as well as understanding, see the experimental results in Chapter 17 in [7]. 
 

 

PROCESS_CLASS MESSAGE 
    IF  MESSAGE_ACTION(CONTROL_UNIT, RADIO) IS SEND  
    AND MESSAGE TYPE(CONTROL_UNIT, RADIO) IS USER_REQUEST 
        MOVE INDIVIDUAL COMMAND(CONTROL_UNIT, RADIO) 
             TO AGGREGATE STATE(CONTROL_UNIT, RADIO)  
        EXECUTE CHECK_MESSAGE_INDEX . 
 

CHECK_MESSAGE_INDEX 
    IF MESSAGE INDEX(TIME_SLOT) IS GREATER THAN ZERO  
        SET MESSAGE_ACTION(CONTROL_UNIT, TIME_SLOT) TO HOLD 
        SEQUENCE_NUMBER(CONTROL_UNIT, TIME_SLOT) = MESSAGE INDEX(TIME_SLOT) 
        MOVE AGGREGATE STATE(CONTROL_UNIT, TIME_SLOT)  
             TO INDIVIDUAL COMMAND(CONTROL_UNIT, TIME_SLOT) . 
 

 
Figure 6.  Example of part of a hierarchically structured PROCESS. 
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MESSAGE 
    1  SYNC_CODE                    CHAR 6 
                 ALIAS  VALID     VALUE '101010', 
                                        '010101' 
    1  TYPE                         STATUS FORMAT_A 
                                           FORMAT_B 
    1  CONTENT                      CHAR 46 
 

FORMAT_A    REDEFINES MESSAGE 
    1  PAD                          CHAR 14 
    1  HEADER 
       2  PRIORITY                  STATUS FLASH 
                                           IMMEDIATE 
                                           ROUTINE 
       2  ORIGIN                    INDEX 
       2  DESTINATION               INDEX 
              ALIAS   BROADCAST           VALUE 0 
    1  BODY 
       2  LENGTH                    INTEGER 
    1  TRAILER 
       2  MESSAGE_NUMBER            INTEGER 
       2  TIME_SENT                 REAL 
       2  TIME_RECEIVED             REAL 
       2  ACKNOWLEDGEMENT           STATUS RECEIVED 
                                           NOT_RECEIVED 
       2  LAST_SYMBOL               CHAR 2 
            ALIAS  TERMINATOR     VALUE '\\', '//', '<<','>>' 
 

FORMAT_B    REDEFINES MESSAGE 
    1  PAD                          CHAR 14 
    1  HEADER 
       2  SOURCE                    INDEX 
       2  SINK                      INDEX 
    1  BODY 
       2  CONTENTS                  CHAR 42 
 

 
Figure 7.  Example of a hierarchically structured state vector (Resource). 

 
 
 When building complex software, human translation is simplified if a language supports 
obvious representation of physical behavior.  The examples in Figures 7 and 8 are taken directly 
from large detailed simulations of Packet Radio networks.  With hierarchical data structures like 
those shown, one can represent the complex algorithms associated with physical systems with 
ease.  This is illustrated in the above figures.  Actual systems may entail more complex resources 
and processes than those shown, but are easily understood by subject area experts. 
 

 Not shown in Figure 7 are the QUANTITY clauses used in Figure 5.  Likewise, similar 
corresponding subscripts in Figure 5 are not used in Figure 8.  This is because the resource and 
process pair are part of an instanced module, where instances are automatically handled at the 
module level, being set when a process within an instanced module is CALLed or SCHEDULEd.  
Moving instance implementation to the module level substantially enhances understanding of the 
code. 
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 PROCESS: RECEPTION 
 

 RESOURCES: TERMINAL PARAMETERS      INSTANCES: TRANSMITTER 
            MESSAGE FORMATS                     RECEIVER 
            TRANSCEIVER 

 
 

START_RECEPTION 
    IF TRANSCEIVER IS IDLE 
        EXECUTE GOOD_RECEPTION 
    ELSE IF TRANSCEIVER IS RECEIVING 
        EXECUTE CONFLICTING_RECEPTION 
    ELSE IF TRANSCEIVER IS TRANSMITTING 
        EXECUTE CONFLICTING_BROADCAST . 
 

GOOD_RECEPTION 
    IF SIGNAL_TO_NOISE_RATIO IS GREATER THAN  
 

RECEIVER_THRESHOLD 
         SET TRANSCEIVER TO RECEIVING 
         ADD SIGNAL POWER TO POWER_AT_RECEIVER 
         CALL DECODE_MESSAGE 
    ELSE EXIT THIS RULE . 
 

    IF SYNC_CODE IS VALID 
    AND LAST_SYMBOL IS A TERMINATOR 
    AND MESSAGE TYPE IS FORMAT_A 
        EXECUTE SEND_ACKNOWLEDGEMENT . 
 

CONFLICTING_RECEPTION 
    IF POWER_AT_RECEIVER IS GREATER THAN SIGNAL_POWER 
         SCHEDULE ABORT_RECEIVE NOW . 
 

CONFLICTING_BROADCAST 
    CANCEL END_RECEIVE NOW 
    SCHEDULE START_RECEIVE IN EXPON(0.83) MILLISECONDS 
        WITH PRIORITY 80 
 

SEND_ACKNOWLEDGEMENT 
    MOVE ACKNOWLEDGEMENT TO TRANSMIT_MESSAGE_BUFFER 
    IF DESTINATION IS BROADCAST 
         SEARCH RECEIVER_CONNECTIVITY_VECTOR OVER RECEIVER 
              EXECUTING TRANSMISSION 
                   WHEN LINK IS GOOD 
    ELSE EXECUTE TRANSMISSION . 
 

TRANSMISSION 
    SCHEDULE RECEPTION 
       IN LINK_DELAY MICROSECONDS 
           USING TRANSMITTER, RECEIVER 
 

 
Figure 8.  Example of a hierarchically structured transformation (Process). 

 
 
 Selection of the proper type of resource is a critical architectural decision when designing 
complex software systems.  Resource types determine the simplicity of the architecture, invoking 
substantial VisiSoft facilities that are built into the environment.  From the Visual Development 
Environment (VDE), designers can create or modify resources using the corresponding buttons 
and panels.  The panels provide the ability to explicitly specify the types of resources desired and 
enter the corresponding information required for a given type.  Each resource must be explicitly 
defined as one of the following sharing types. 
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Table 1.  VisiSoft Resource Types. 
 
 

 
 

Resources hold state data that may be organized in a hierarchical manner.  It 
can be shared by several processes or dedicated to a single process in a single 
task.  Connection to either a file or communications channel makes the 
resource “dedicated” to a single process. 

 

 
 

A resource with a memory template, typically for a utility or library module. 
Shared Alias resources are outlined in red.  They are provided a pointer to the 
actual resource.  See examples below for more details. 
 

 

A Local Inter-Task resource allows a family of  tasks to share data.  VisiSoft 
handles the OS level memory management.  Local Inter-Task resources are 
used when one task is responsible for “STARTing” another one that shares 
the same local Inter-Task resource.  Local Inter-Task resources are outlined 
in green.  See examples below for more details. 

 
 

Global Inter-Task resources are similar to Local Inter-Task resources.  A 
Global Inter-Task resource is used to allow two tasks to share data when they 
are RUN independently rather than when one task STARTs the other.  Global 
Inter-Task resources are used for SYSTEM level EVENTS.  They are 
outlined in purple.  See VSE examples below for more details. 

 

 
 

An Inter-Processor resource is used to share data between IND modules on 
different processors in the same task running on a parallel processor.  Inter-
Processor resources are outlined in blue.  See examples below for more 
details. 

 
 

PANEL resources are used to support graphical panel interfaces for input and 
output of information, which can include icons, scrolling lists, etc.  The 
contents of a PANEL resource are created and modified using the Panel 
Library Manager (PLM) - see the PLM Section of the RTG Manual.  The 
contents of a PANEL resource may be viewed, but not changed with a text 
editor.  Red text is used to label a PANEL resource. 

 
 

An HLA resource supports the use of High Level Architecture for 
communications between disparate tasks in a multi-task environment.  This 
resource and an associated HLA event handler enable easy use of HLA from 
within a VSE task.  Details on the use of this resource type are described in 
Section 15 on HLA Interface.  An HLA resource is labeled with blue text. 

 

     
 

A resource describing the record(s) on the file to 
which it is attached.  The FILE_NAME identifies the 
name of the actual file to be accessed. 
 

 

  
 

A resource describing the TCP/IP channel to which it 
is attached.  The number on top of the channel icon is 
the PORT number and that underneath is the 
SERVER ID. 

 
 Table 1 above provides another illustration of the facilities required for engineering the 
architectures of complex software systems. 
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VisiSoft Module Types 
 

 There are four types of modules that make up the layers of a software design hierarchy.  
These types provide different levels of protection with regard to their reuse in different 
hierarchies.  Both elementary and hierarchical modules can reside within each type.  With the 
exception of instanced utilities, modules may only appear once in a drawing.  The rules for these 
types are described below with examples that follow. 
 

• Modules - have a blue border.  These are the basic building blocks in a task.  In 
the CAD system described here, modules may be decomposed hierarchically, i.e., 
they may contain submodules and sub-submodules, etc.  Modules may only 
appear in a single drawing in a user directory, and are meant to be unique, i.e., not 
reused, across directories. 

 

• IND Modules - have a blue border.  IND Modules are Modules that can only 
share Inter-Processor (IP) Resources - and only with other IND_Modules.  When 
using parallel processors, IND_Modules must be the highest level modules on a 
processor.  IND_Modules may reside on the same or different processors. 

 

• Utility Modules - have a green border.  These are modules that are reused by 
processes in the same directory, and can appear in more than one hierarchy in 
different drawings.  They are typically used to manage separate databases or 
perform utility type functions.  The green color distinguishes them for change 
protection.  If they are changed to accommodate a different requirement, that 
change must be compatible with the other processes that use them, since the 
change is automatically embodied in them all.  A separate copy resides on each 
processor that uses it. 

 

• Library Modules - have a gold border.  These are more highly protected utility 
modules that can be shared from different directories and different computers.  
They are stored as object modules in special object library files.  The source only 
appears in the directory where they are maintained.  Processes in a library module 
are called from an application using their process name, module name, and library 
name.  Since each of these names must be unique within the next level of 
hierarchy, there can be no duplicate names when linking to library modules in the 
CAD environment described here.  A separate copy resides on each processor that 
uses it. 

 

The functions of a library module may be upgraded while at the same time 
preserving the original module in the library for prior users.  Users can call the 
new function using the same process name within the same library by using the 
new module name.  The existing CAD system has a large set of libraries that 
support various applications, including 3D graphics, that are shared easily. 

 

The CAD libraries have been designed to be controlled separately under special 
protection mechanisms.  But given access to a library directory, the responsible 
person sees everything that is needed to allow for ease of changes and testing.  
Library directories typically contain regression test drivers and data sets to ensure 
changes meet all prior, as well as new requirements. 
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INITIATING AND TERMINATING VSE TASKS 
 

 Implementation of operating systems and real-time control systems require multiple tasks.  
VisiSoft Tasks can be initiated and terminated in different ways.  The approach depends upon the 
type of task desired.  Global or “top level” tasks are initiated using the RUN statement.   
 
 
GLOBAL VSE TASKS 
 

 The RUN statement can be used to RUN a task directly, or to initiate a script that RUNs a 
task.  In either case, a Global VSE Task is initiated.  In Figure 11 below, TASK_1 is a Global 
Task that RUNs TASK_2, another Global Task.  TASK_2 then RUNs TASK_3 which becomes 
a third Global Task. 
 

 
 

Figure 11.  An example of  VSE TASK TREES. 
 
 
   Once a Global Task is running, it may initiate additional tasks.  These additional tasks 
may be Global or Local.  Global VSE tasks may share GLOBAL Intertask resources with other 
GLOBAL tasks.  Global tasks may only be terminated by themselves. 
 
 
LOCAL VSE TASKS 
 

 Any VSE task may use the START statement to start a LOCAL task.  Tasks that are 
STARTed by another VSE task are LOCAL to the task that STARTs them, and are considered 
part of the STARTing Task’s family.  In Figure 11, TASK_2 starts Local tasks TASK_2_1 and 
TASK_2_2.   They become part of TASK_2’s family’s tree.  Each of these tasks starts the two 
below it.  TASK_2_1_1 is part of TASK_2_1’s family tree.  TASK_2_2_2 is not, but belongs to 
TASK_2_2’s family tree as well as that of TASK_2. 
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 Local VSE tasks may be terminated by themselves.  They may also be terminated by a 
task that is a higher member of the tree to which they belong.  They are also terminated 
automatically when a task that is a higher member of the tree to which they belong is terminated.  
 
 
USE OF SHARED AS - ALIASED RESOURCES 
 

 When a utility is CALLed directly from more than one process, the calling processes 
typically share a resource whose attribute structure is common, or ALIASed, with the utility. 
 

 Referring to Figure 3-7, SHARED AS resource UTR_INT is ALIASed as resources 
UMR_1 and UMR_2.  The resource structure template used by process UTP is UTR_INT.  
When UMP_1 or UMP_2 calls UTP, UTP will use either resource UMR_1 or UMR_2 
respectively.  The attributes used in UMR_1 or UMR_2 can be different, as long as the data 
structure they represent maps into the template defined by UTR_INT.  The template defined by 
UTR_INT is available to as many calling processes of UTP as desired, without any need to 
modify UTP.  To accomplish this, the designer must click SHARED ALIAS’D in the Sharing 
type section of the panel while creating the resource in the CALLed utility.  For example, 
UTR_INT would then be defined as SHARED ALIAS, and its outline would be colored red. 
 

 Any resource connected to a SHARED ALIAS resource that resides in the directory 
(library modules may not) automatically becomes a SHARED AS resource to the ALIAS 
resource identified in the called process to be used.  For example, UMP_1 uses UMR_1 
SHARED AS  UTR_INT when calling UTP.  Up to eight alias resources can be connected to 
each SHARED AS resource in a calling process. 
 

 
 

Figure 9.  Use of an ALIASed Resource. 
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USE OF INTERTASK RESOURCES 
 

 Intertask resources afford communications between multiple tasks, as supported by a 
multitasking operating system.  VSE provides special facilities that eliminate the need for 
designers to deal with the operating system and special shared memory calls.  An intertask 
resource is used the same way as a normal shared resource, except that it is shared across tasks.  
In Figure 3-8, processes that share intertask resources can access the attributes of those resources 
just as normal resources.  When concurrent tasks share an intertask resource, it is up to the 
designer to use the facilities to insure data coherency, i.e., that data is not updated incorrectly, 
e.g., when one task writes over what another expects to be unchanged. 
 

 
 

Figure 10.  Use of  INTERTASK resources. 
 
 
 The difference between LOCAL and GLOBAL intertask resources is illustrated by the 
colors in Figure 3-8.  By virtue of its LOCAL intertask resources, COMM_CONTROLLER is 
part of a task family with the INTERACTIVE_MONITOR.  The GSS task may or may not be 
part of the family.  It may still share global intertask resources. 
 

 When TASK_A interfaces with TASK_B, and TASK_B may be sharing intertask 
resources with other tasks, (e.g., RTG), then the names of these resources must be known for 
TASK_B to be part of a TASK_A family.  If members of an intertask family share different 
intertask resources that happen to have the same name, they will be considered the same - as part 
of the family.  A case in point is when a pair of tasks both use RTG.  These tasks must not be 
part of the same family. 
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 USE OF INTERPROCESSOR RESOURCES 
 

 To maximize speed of full duplex communications, one must limit Inter-Processor (IP) 
resource connections to One-To-One and One-To-Many, as shown in Figure 3-9.  With this 
approach, only processes inside the IND module containing an IP Resource may write to it.  This 
ensures that only one process can write to an IP resource at a time.  This is the easiest approach 
for an application expert to use to create the best (fastest) architecture. 
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Figure 3-9.  IP Communications (IPC) Architecture contained in the Run-Time System. 
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 Considering the most difficult application that PSI has faced - determination of Electro-
Magnetic Wave propagation, this approach does not impose any restriction on architects that are 
knowledgeable in the application they are building.  It does help them to develop and enforce 
good architectures that maximize run-time speed. 
 

 When using VSE Inter-Task Resources, the resource is shared directly between tasks.  
However, Inter-Processor (IP) Resources are effectively copied between processors 
automatically by the IP Communications (IPC) system.  Copies must be RELEASEd by the 
module that contains the IP resource, and ACCESSed by the module wanting to read it.  Only 
processes in the same IND module can write to an IP resource, and copies of IP Resources are 
maintained within each IND module that reads the IP resource.  When a process that writes to an 
IP Resource completes, IPC code at the end of that process updates a system resource in the IPC 
module, indicating that a modification has been made. 
 

 Resource coherency of IP Resources is implicit because memory is moved using a single 
instruction, blocking out other instructions while it is performed.  This implicitly ensures 
resource coherency with no overhead.  Both the reading and writing processes may run 
concurrently.  By making copies, memory is used to gain speed.  All of this simplifies the IPC 
architecture in the VPOS Run-Time System. 
 
 
Architecture Of An Instanced IP Resource Facility 
 

 When using parallel processors, particularly in a simulation, one often uses instanced 
IND modules.  This is extremely convenient since instance pointers are handled implicitly within 
an instance that is scheduled or called by a process that specifies the instance to be used while 
memory is copied explicitly.  Automatic instancing of the corresponding IP Resources provides 
the same level of simplification to the user.  Equally important it provides a significant 
simplification of the architecture for IP Resource communication. 
 
 
SUMMARY 
 

 Design of complex automation systems that require advanced computer technology 
represents a difficult engineering problem.  This paper briefly skims aspects of system design to 
illustrate some of the top level concepts.  It is intended to demonstrate an architectural 
perspective that equates to similar engineering fields, e.g., aeronautical, architectural, electrical, 
etc.  In those fields, the people that implement the construction of an end product are not the 
designers.  Carpenters, electricians, masons, and plumbers require years of training to achieve 
the skills necessary to perform their specific tasks.  But their skill sets can be learned on much 
smaller projects.  The engineering skills required to design skyscrapers requires years of working 
with large complex structures.  They cannot be learned on dog houses.  Learning to program 
snippets of code using different languages is akin to learning the trades. 
 

   It has been the purpose of this paper to show that complex automation problems cannot 
be solved with programming languages.  The language must support architectural requirements, 
but it is the architectural technology that is required to design large complex systems and 
simulations, particularly on parallel processors.  This paper has been aimed at disclosing this 
pressing requirement to refocus the software field toward an engineering discipline. 
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