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Preface 

 
 
 This book is a combination of exact science and engineering observation.  We treat two 
broad issues: the state of the US software industry, and a new technology to challenge this 
industry.  We cover a number of different topics including competition, productivity, 
programming, object-oriented approaches, software environments, and software architecture. 
 

 Many recent reports show that software productivity in the U.S. has been in decline for at 
least the past 15 years.  We hold that the root problem is the outdated technology foundation 
upon which current software is built.  The software industry has followed a path of promises 
based upon assumptions that, when revealed, call into question the supposed scientific nature of 
the industry itself.  It is our intent to show how the US software industry can quickly reverse this 
trend and achieve dramatic improvements in productivity. 
 

 This is also a book about a new technology that can make this happen.  This technology 
is a clear departure from existing approaches.  It does not require the steep learning curve of 
current approaches.  It allows subject area experts to become good programmers.  It places a 
premium on true software reuse.  This means the resulting software must be highly 
understandable, to a level not seen in current programming environments.  The differences in 
true reuse between this new technology and current approaches are dramatic.  We provide cases 
that illustrate equally dramatic improvements in productivity. 
 

 Use of this new technology will require acceptance of innovative new paradigms, 
something historically shunned in the software industry.  This predicament is described in one of 
the best books on new technology, “The Innovator’s Dilemma,” by Clayton Christensen.  It 
describes the difficulty in understanding the cause and effect of driving forces in industries 
where inertia is very high and change is very slow, obvious characteristics of the software 
industry.  In such an industry, innovation does not come about from within.  This is because the 
major players have extremely high vested interests that may be toppled by a so-called disruptive 
technology. 
 

 Revolutions impose sweeping changes upon the frame of reference used to measure the 
values of a system under siege.  They can impart significant improvements, wreak havoc on the 
system, or anything in between.  Major revolutions are usually preceded by smaller waves, ones 
with much smaller force.  When the big wave comes, everyone knows it has happened.  For 
software, the major wave has not yet come - but it is on the horizon.  This book presents a 
disruptive technology to the field of software.  The technology itself has not come about by 
revolution, but by evolution - since 1982. 
 

 Our challenge is to convince the readers that this new technology is clearly worth any 
disruption that it will cause.  In articles written by prominent people in the software field, e.g., 
[AN], [LAS], [LE2], [PO], there is a sense that everyone is getting ready to accept a major 
paradigm shift.  Hardly anyone is disputing the need for it.    Based upon observations, the 
disruption that a user encounters using the technology described here is small compared to the 
return on investment.  The goal of this book is to help potential users understand why this 
technology works, and help make a long overdue change happen in the software industry. 
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Chapter 1 - Surviving In A Competitive Market 
 
 
Freedom And Competition 
 

 U.S. politicians do a fine job expounding the virtues of free markets and the importance 
of world trade.  That is, until it looks like another country is going to dominate a market for an 
important U.S. industry.  Then the protection mechanisms start.  The members of that industry 
start paying attention to what it will take to get the government to protect them instead of trying 
to become more competitive, or shifting their focus to other opportunities. 
 

 Very often, becoming more competitive requires unpleasant choices that certain groups 
perceive as not being in their best interests.  Spending money to lobby, and fighting to garner 
votes for protection from other countries does not help to improve the basic infrastructure of the 
country to become a strong competitor.  In fact, it teaches people the wrong lesson.  Don’t work 
hard to figure out better solutions than the other guy.  Just get the government (read the 
taxpayers) to bail us out. 
 

 When people complain that other countries compete based upon cheap labor, they are 
really saying that the U.S. consumer has a better choice when buying the same, or even higher 
quality goods.  This certainly makes life better for those who buy those goods.  If the country 
producing those goods makes more money selling them to the U.S., it improves the lives of their 
own people.  This happened in Japan.  After enough years, lifestyles in Japan moved up the 
curve, to the point that their own costs of labor and everything else became unsupportable.  This 
was due in part to government support for banks that in turn were supporting private industry 
beyond justified bounds.  We now know the rest of the story.  It all came crashing down. 
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 Wal-Mart provides an appropriate example.  Many are opposed to “outsourcing”.  Yet, 
those purchasing items at Wal-Mart are asking “Is it better for me?  Does it cost me less?”  From 
an increasing number of purchasers the answer is “Yes!”  Yet, the goods they buy were made in 
China, Japan, Mexico, or Brazil.  Did that contribute to the loss of manufacturing jobs in the US?  
Of course!  Is that a kind of “outsourcing”?  Indeed!  Yet, shoppers that are given total freedom 
to choose will keep purchasing at Wal-Mart. 
 

 So what’s the answer?  We can stick our heads in the sand and hope the government will 
make it difficult for the importers.  Or we can try to understand how to be a stronger competitor, 
and how we can take maximum advantage of our skills and the freedom to use them.  Our best 
approach is to the face the truth.  If someone can provide goods or services of the same or better 
quality at a sufficiently lower cost for people to make a buy decision, so be it.  To face the truth, 
we must ask ourselves if we can improve our productivity and do better in the foreseeable future.  
If the future is too far out, then we better look for another investment. 
 

 But we do not have to look outside the country to find those who would restrict freedom 
and competition.  Many large organizations, including the U.S. Government, have tried to restrict 
the efforts of Microsoft.  Microsoft lives without government help.  That makes some politicians 
mad, but historically it is the best way to serve the country. 
 

 Microsoft is where it is because it produces what people want.  Many people dislike 
Windows and the Office applications that go with it.  They use Microsoft’s products because of 
their own need to be productive - to be competitive.  Many Microsoft products have become a 
defacto (real) standard - not licensed or imposed by government decree.  This helps everyone 
become more productive. 
 
 
WHAT FOSTERS PRODUCTIVITY? 
 

 Productivity is directly affected by the way people view their job security and the 
protective or competitive nature of the work environment.  The differences are considered below. 
 
 
Protective Environments 
 

 A protective environment is typically characterized by attempts to reduce real measures 
of output or productivity.  For example, piece work (getting paid by the number of pieces you 
produce) is not allowed in a union environment.  Such measures of value are now taboo, being 
effectively banned by the government.  Another characteristic is being protected by who you 
know.  Protective environments are typically political in nature - they depend on “who you 
know”.  In such environments, survival does not depend upon the number of points you can 
score for the team (that would imply a competitive environment).  The only score kept is the 
number of favors one owes. 
 

This leads to another characteristic - irreplaceability.  This is imposed by hidden or secret 
processes that only one or two “inside” people know.  Sometimes it is born out by exotic rituals 
that outsiders have difficulty relating to.  In the end, person A cannot understand what person B 
has done to get ahead, rendering person B irreplaceable. 
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Competitive Environments 
 
 In competitive environments, everyone must be a team player.  There is no time for 
politics or rituals that waste time and energy, and produce no direct results.  To ensure that 
production is strong and stable, parts and people must be quickly replaceable so they are 
independent of the process.  Standardization is set to help - not stymie - people’s understanding 
of what each other has done, so one can easily take over from another.  If one person discovers a 
way to improve productivity, it is quickly shared among those on the team so everyone can score 
higher.  Being able to communicate ideas quickly is critical to survival in a competitive 
environment. 
 
 
The Business Environment Versus The Work Environment 
 
 We must also distinguish between the business environment (sales and marketing), which 
may be very competitive, and the work environment (production), which may be protective.  If 
company A views the business environment as very competitive, and creates a work environment 
to match, and B harbors a protective work environment, then A will move ahead of B.  There are 
many examples of has-been companies that found themselves unable to compete in their line of 
business as competitors moved into their market.  Such companies typically had it easy before 
the competition came along, so the work environment was protective.  Unless the business 
environment is constrained, typically by politics, the most productive company will eventually 
prevail - just as in sports. 
 
 
THE SOFTWARE INDUSTRY 
 

 So what does this have to do with software?  Everything.  The number of hardware 
devices that do not depend upon software is shrinking everyday.  The number of devices using 
computer chips is growing everyday.  As we build more computational power into these devices, 
they do more for us.   They help us to become more productive, and therefore more competitive. 
 

 Software is likely to be a critical industry for any country.  It is already a major factor in 
determining the productivity - and thus the competitiveness - of nations as well as industries.  
We encourage those within the software industry to seek the truth on this important topic, for all 
is not well. 
 
 
Productivity In The Software Industry 
 

 Let us look at the U.S. software industry.  In a September 1991 Business week article 
titled “Software Made Simple,” [19], industry experts offered great hope for productivity gains 
in the future with Object Oriented Programming (OOP) technology.  The article admitted that 
there were naysayers who compared OOP to the promises of Artificial Intelligence (AI).  But it 
was stated that, unlike AI, object technology would have an immediate and practical payoff. 
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 In 1995, leading technologists John Warnock (CEO of Adobe) and Gordon Bell (architect 
of the DEC VAX) were quoted in Upside [97]as saying that OOP is a disappointing technology, 
that it does not deliver real improvements in software productivity. 
 
 In the July 1996 issue of Software Developer & Publisher magazine, an article by Cave 
[25],  “Software Survivors,” analyzed the reasons for declining software productivity.  It quoted 
two other articles,  [18] and [86], showing that, while productivity in the computer hardware 
industry was increasing faster than in any other industry, software industry productivity was 
declining faster than all others for the period 1990 - 1995. 
 
 One of the quoted articles was a 1995 Business Week issue, [18], that surveyed 
productivity in 25 industries.  From this article, Cave derived percent productivity change over 
the previous five year period and came to some astounding conclusions.  These are shown in 
Chart 1-1.  Productivity changes in chips were at the top of the productivity list (+153%), and 
Software was dead last (-11%). 
 
 Independently, in February 1995, the Standish Group published a report, [SG], on the 
software industry supporting the negative productivity findings and describing software failure 
statistics.  When discussing these negative results with higher-level managers responsible for 
funding software projects, the managers agreed with the data, saying it matched their experience. 
 
 In a March 23, 2003 press release [87] on software, the Standish Group noted that 
“Project success rates have increased to just over a third or 34% of all projects.”  Can you 
imagine such poor statistics in any other industry but software?  But even that success came at a 
price.  They also said that “Time overruns have increased to 82% from a low of 63% in the year 
2000.  In addition, this year’s research shows only 52% of required features and functions make 
it to the released product.” 
 
 A December, 2004 article by Robert Groth, published in IEEE Software, [44], showed the 
percent productivity gain per year of various major industries over the 1998-2003 period, see 
Chart 1-2.  Again, over this period, computer chips (up 95%) had the most gain in productivity.  
Software was again last on the chart with a decline (down 5%).  The general productivity issue is 
discussed in Groth’s article, where different views of this dilemma are offered. 
 
 Some would argue that software applications are becoming increasingly complex, and 
when taking complexity into account, simple statistics such as those in Business Week do not 
convey a true picture.  Thus we have heard arguments that denounce these numbers, e.g.,  
arguments noting that we are attempting more sophisticated applications.  This factor alone 
might account for negating a portion of the gross measure of productivity. 
 
 However, a January 15, 2004 article on the 2004 CHAOS report by the Standish 
group [88], indicated that software project success rates improved over 10 years, stating that 
“The primary reason is that projects have gotten a lot smaller.”  Another reason given was that 
“People have become much more savvy in project management.” 
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CHART 1-1.  Data From Business Week - January 9, 1995 

PRODUCTIVITY CHANGE
over the years 1990 to 1995

(A survey of 25 U.S. industries)
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CHART 1-2.  Data From Groth [44], IEEE Software, November/December, 2004 
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 Additionally, one can make arguments that the amount of memory available, the speed of 
hardware, the documentation facilities, the editors, and automatic control and test facilities 
compensate for any increase in complexity.  However, none of these arguments have a scientific 
basis.  Our experiences, as well as those whom we have queried in the business of producing 
software, support the observations about the low productivity of current software technology. 
But none of these observations seem to stop the software industry from following a path that 
clearly puts it further behind in the productivity race each year. 
 

 An article in the November 2003 issue of the Communications of the ACM, "Measuring 
Productivity in the Software Industry", [1], discussed the productivity problem in software.  But 
it did more than just report on the problem.  It developed a rationale for measuring the 
productivity of development and support environments as a first step to solving this problem. 
 

 As we approach what appear to be physical limits in the semiconductor industry, engineers 
have continually removed the barriers.  Through the use of Computer-Aided Design (CAD) tools 
and graphical visualizations, the promise of Moore’s law continued to be fulfilled for many 
years.  Microprocessor speed, memory size, and affordability skyrocketed.  As stated by Larry 
Constantine, [30], software engineering has capitalized on these advances to offset its own poor 
productivity.  But in recent years, Moore’s law has not held.  Improvements in hardware speed 
have been slowing dramatically.  And this is putting more pressure on software productivity. 
 
 
Improving Software Productivity 
 

 In hardware design, approaches must evolve in a proper experimental environment in 
order to scale well.  Intel’s design and fabrication processes are an example of the evolution of 
technology evolved in a production environment.  We question the ability to achieve software 
productivity increases that come anywhere near to those of hardware without suitable 
experimentation in a production environment. 
 

 Unlike hardware, software has yet to capitalize on fundamental engineering concepts to 
improve productivity.  This is described by Poore, [73], and also by Anselmo, [2].  Maybe it is 
time for the software industry to start questioning its own underpinnings and start trying to 
understand what is required to turn the software productivity curve around. 
 

 Part of this effort will require rethinking the programming profession.  In the chapters that 
follow, we will address many issues pertaining to improving productivity in the software 
industry, and perceptions of the many types of people it employs.  Is it really a large union that’s 
just not organized like other unions?  Is job security dependent upon ensuring the other guy can’t 
figure out what was done?  Or is job security really dependent upon being more productive than 
programmers in a competitive company, maybe somewhere around the globe? 
 

 Survival in a competitive environment depends heavily upon the ability to deal with 
increasing complexity.  This is certainly true for high technology industries, as well as military 
machines.  The organization that is best prepared to deal with increasing complexity has a 
significant edge.  In the long term, those who encumber themselves with unproven beliefs and 
rituals will be the losers, while those who make determinations based upon scientific findings 
will be the winners.  As history has shown many times over, economics will prevail in the end.   
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Chapter 2 - Software Productivity 
 

“When you can measure what you are speaking about, and express it in numbers, you 
know something about it; but when you cannot measure it, when you cannot express it in 
numbers, your knowledge is of a meager and unsatisfactory kind……”  Lord Kelvin 

 
 
 In the computer field, we have always taken for granted our ability to compare the 
productivity of one computer versus another.  We make decisions to purchase different brands of 
hardware based upon taking measurements and using benchmarks.  Most of us are familiar with 
MIPS (Millions of Instructions Per Second) and MFLOPS (Millions of FLoating point 
Operations Per Second).  Computer speeds determine how fast we get work done.  If we have to 
wait many seconds for the computer to respond to our actions, our work is interrupted.  Buying a 
computer that improves personnel productivity by a factor of 10% can be important to one’s 
work. 
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 In the early days of computers, people thought of improving their productivity when 
developing large programs.  Various programming languages, e.g., Assembler, FORTRAN, 
COBOL, etc., were developed specifically to improve programmer productivity.  Managers - 
who came up through the ranks - understood the problems.  They compared the time it took to 
build programs and selected what they considered the best language for their applications.  They 
were able to make informed decisions on what would be used in their shop. 
 

 In the 1970s, the concepts of “structured programming” and “top-down design” became 
important.  The literature was filled with approaches to improve productivity in developing 
software, and most of the contributions made a lot of sense.  It was a period of “software 
enlightenment”.  But it is barely remembered today.  This is due mainly to the fact that there 
were no languages that implemented the proposed approaches in a way that ensured 
improvements in productivity. 
 

 Without tools that implemented the concepts of this enlightenment period, it was 
impossible to measure or realize real productivity improvements.  Arguments regarding the 
desirable features of a programming language appeared to diverge in the literature.    Many of the 
authors were from the academic environment, with no real production experience.  Conflicts 
arose in the literature, conflicts that left open the next big push - to the C language.   
 

C was the result of a small and simple effort at Bell Laboratories to port a game written in 
FORTRAN. C-like languages were considered a joke by many in the field, and were said to have 
killed the concept of top-down design.  The phrase “write-only language” became popular - 
implying no one except the original author could read the resulting code.   
 

 When building and supporting software, there are many schools of thought regarding the 
“best” approach.  Bookstores are filled with selections on what is best for the programmer.  A 
common excuse for failures is the lack of well stated requirements.  Yet the vast majority of 
programmer hours are spent maintaining existing systems with well-defined requirements.  
Experienced software managers who came up through the ranks are rare today.  When you find 
them, they generally agree that it is the programming environment that is the major factor 
affecting productivity.  Yet, unlike hardware, there are no accepted measures that afford 
benchmark comparisons of productivity in building and maintaining software.  More 
importantly, productivity is hardly mentioned in the literature.  Comparisons of programming 
approaches are generally based upon literature advocating a given method.  Invariably they lack 
scientific measures to back up the claims. 
 

 What may appear to be unnecessary in solving a classroom problem may be critical in 
controlling the evolution of a large system in production.  Just as with large scale chip design, if 
an academic institution is not tied into a production environment, it may be difficult for the 
faculty to understand what may be important to that environment.  Unfortunately, many books on 
software are written by faculty members who rewrite the books they used in school, with little if 
any real software production experience. 
 

 In this chapter we offer a framework that we believe essential to making improvements in 
software productivity.  We start by addressing characteristics affecting the success of a software 
project. 
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ISSUES IN SOFTWARE PRODUCTIVITY 
 
Ability To Deal With Increasing Complexity 
 

 When building application software with interactive user interfaces, complex databases, 
dynamic graphics, networks, etc., software complexity grows rapidly.  When a large application 
becomes popular, the user base expands, and functionality requirements can grow well beyond 
original expectations.  As new features are added to a large system, the software becomes even 
more complex, and the development and support tools are put under great stress, particularly in a 
production environment.  In such an environment, managers are constantly looking at their 
calendars and wondering when the next slated release will be out.  The more facilities contained 
in that environment to ease the development of new functionality, the higher the productivity. 
 
 
Scalability 
 

 As software product size and complexity increase, the software development 
environment is stressed in different directions.  Various features of a development environment 
can help or hinder the growth of an evolving product.  Scalability is a measure of the size that 
can be achieved under full control, and the ease with which a software product can continue to 
grow. 
 

 In hardware design, it is well known that approaches not evolved in a production 
environment typically don’t scale well.  Intel’s approach to chip design and fabrication is an 
example of the evolution of a good production environment.  We question the ability to achieve 
software productivity increases that come anywhere near to those of hardware without a suitable 
software environment.   That implies relying on a technology that is engineered in a production 
environment. 
 
 
Reusability 
 

 Reuse is critical to productivity.  Reuse is also a major justification for Object-Oriented 
Programming (OOP).  Unfortunately there is no accepted definition of reuse, or a measure of its 
achievement. 
 

 One can take the view that reuse only has meaning when functionality is inherited as 
defined in the OOP sense.  Given that most of the functionality already exists in a module, then 
one must fit the desired functionality and resulting code around the reused module (class) and 
accommodate differences.  We call this “reusability in the OOP sense.”  Here one must consider 
the original module, the effort to understand fully the reused module, and the additional code 
needed to get the full functionality via inheritance.  In this approach, one may well inherit 
functionality that one does not need.  Note also that if visibility into what is inherited is low due 
to hiding, costly conflicts may arise downstream. 
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 The fundamental issue in reusability is the effort required to reuse an existing software 
module in a new function.  We want to minimize the effort (in time and dollars) in support as 
well as development.  This leads to a practical definition of reusability as:  
 

the reduction in effort when one starts with a previous module and modifies it to produce 
the new function - instead of creating it. 

 

Reusability pays when the amount of modification is small compared to the total effort required 
to build and support a new module.  We must also consider total life cycle costs.  Given a 
development environment that minimizes the life cycle reusability effort, we can expect even 
higher productivity. 
 

 Consider reuse in a production environment.  Given that we can copy a module and 
modify it, the relative amount of change affects our approach.  If we must modify a significant 
percentage of the module, then supporting two distinct modules is hard to argue against.  On the 
other hand, for large complex modules, one may find that the percentage change is quite small.  
In these cases, the original module is usually composed of sub-modules, most of which remain 
unchanged.  The unchanged sub-modules can become utilities that remain intact to support both 
higher level modules. 
 

 But if these modules are hidden, we cannot modify them directly.  So it is most important 
to be able to see these modules and submodules, visually, just as the designer of hardware chips 
can see the modules.  This implies visualization of the architecture, a property that has no 
counterpart in OOP.  This has nothing to do with change control, a point of confusion in OOP. 
 
 Before addressing measures for comparing software development environments, we must 
consider measures of the end product in terms of achieving success.  Clearly, we must be able to 
compare what came out of the development environment to determine if it meets the end user 
requirements.  Since we will rarely - if ever - have the luxury to build the same large piece of 
software using two different environments, we must be able to gauge the relative difficulty in 
building two different products built in two different environments.  The quality of a product, 
i.e., availability, reliability, and supportability also determines end product success as well.  The 
factors affecting end product success are addressed below. 
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PROPERTIES OF REQUIREMENTS THAT AFFECT PRODUCTIVITY 
 
 As illustrated in Figure 2-1, we are working toward the ability to compare the 
productivity of different software development environments.  Our interest in this section 
addresses the properties of the product requirements that affect the effort.  Clearly, the quality of 
a product, i.e., availability, reliability, and supportability determines end product success.  The 
properties of a product’s requirements that affect the ability to achieve a high level of quality are 
addressed below.  They affect productivity. 
 
 

PRODUCT
REQUIREMENTS

DELIVERED
PRODUCT

SOFTWARE
DEVLOPMENT
ENVIRONMENT

PRODVECT   06/01/06  
 

Figure 2-1.  Measuring productivity of a software development environment. 
 
 
 More importantly, different software development environments will fare differently 
depending upon these properties.  Small classroom exercises can be produced quickly in simple 
environments.  But these environments may fair poorly when developing and supporting large 
complex products. 
 
 
Functionality 
 

 Poorly specified requirements are often cited as the cause for late and buggy software.  
Sometimes this is true.  However, the authors are aware of multiple cases where functionality 
was well specified, including user-supplied test data to determine whether requirements were 
met, and the software efforts still failed.  In fact, the vast majority of software man-hours are 
spent in the support mode where the requirements are generally well known, and the productivity 
is considered low. 
 

 A more important factor appears to be the amount of functionality one must deal with.  
We must be able to quantify the size and complexity of the function space specified for a 
software product in order to determine the difficulty one faces in development and support for 
that product.  This has been addressed in the function-point method, see Capers Jones, [52], and 
[53].  
 

 Additionally, successful software systems typically serve an ever-widening range of 
functionality.  When comparing software development environments, one must evaluate their 
ability to handle the increasing functionality of a software product as it evolves in the 
marketplace, pushing the need for scalability in the development environment. 
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Complexity 
 

 Having good descriptions of all of the functions to be built into a software product is not 
likely to be sufficient when trying to predict the level of difficulty to produce it.  The level of 
complexity of each function must be considered as well.  Productivity can take on significant 
variations due to different levels of complexity of implementation of the functions.  Complexity 
factors can be categorized for different functions so that a weighted measure can be derived.  
But, they are hard to predict. 
 

 The difficulty in assessing complexity is particularly true when developing complex 
algorithms with huge decision spaces.  Often, one does not know all the cases to be dealt with 
until one is well into testing.  Having an environment that supports the growth of complex 
algorithms, as they are expanded to handle all of the unanticipated cases, can help to improve 
productivity dramatically.  We also note that an environment that provides the ability to easily 
isolate and test software modules also improves productivity. 
 
 
Quality 
 

 As functionality and complexity grow, the number of opportunities for bugs multiplies.  
Knowing that two pieces of software have equal numbers of new bugs found per month is not 
sufficient to determine the comparative quality of each.  One may have much more functionality 
than the other.  Furthermore, many more people may be using one, and using it more heavily, 
than the other.  These factors must be accounted for when comparing the quality of different 
pieces of software. 
 

 Quality of software can be measured in terms of the availability of its specified functions, 
and the time and cost to support that software to maintain an acceptable level of availability.  The 
acceptable level of availability will be determined by the users of that software, particularly if 
they have a choice.  Measures of availability can incorporate the level-of-usage factors for all 
functions.  In the following we assume that software is designed to meet a quantified level of 
quality, as described in [23], and [1]. 
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LIFECYCLE CONSIDERATIONS 
 
 Figure 2-2 depicts two characteristics that can be used to understand productivity of a 
software development environment.  The top characteristic shows an investment curve for 
development and support of software.  The area under the curve represents the product of time 
and cost per unit time, yielding the total dollar investment to build and support a piece of 
software.  For software products, more time and money is spent supporting product 
enhancements and error corrections than in original development. 
 

Time

Rate
of

Investment
$

IOC SOB

Development
Costs Support

Costs

SOFTWARE LIFE-CYCLE
INVESTMENT CHARACTERISTICS

Time

Revenue
Generation

$

IOC SOB

Sales & Maintenance Fees

Life-Cycle  6/9/05

 
 

Figure 2-2.  Measuring the productivity of software development and support. 
 

 
 The second characteristic illustrates the revenues generated from product sales and 
maintenance fees per unit time.  Revenues start to flow when an Initial Operational 
Capability (IOC) is reached, and start to cease upon System OBsolescence (SOB). 
 

 If the development time (to IOC) is stretched out, and total development costs remain 
constant, i.e., the expenditure rate is slower, then the time to reach revenue growth is pushed out.  
Total revenues are reduced if competition gets in earlier, or if the product becomes obsolete.  
This causes loss of Return On Investment (ROI = total revenue - total investment).  This can 
happen if initial product quality is not sufficiently high, since customer dissatisfaction will 
inhibit sales growth and encourage competition. 
 

 Improvements in productivity must be reflected in improvements in ROI.  Therefore, 
productivity is inversely proportional to the costs incurred.  This comprises development costs 
and support costs.  Additionally, if development costs remain fixed while IOC is reached in half 
the time with equal quality, revenues can start flowing earlier.  This implies that if developer A 
spends money twice as fast as developer B, but reaches the same quality at IOC in half the time, 
A can expect a higher ROI.  It takes much higher productivity for A to achieve this. 
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 The total cost, C, can be estimated as 
 

   C  = K M, 
 

where M is the total man hours expended during development and integration, and K is a loaded 
man-hour cost that depends on overhead, general and administrative expenses.  We note that this 
only reflects the cost part of productivity.  As indicated above, a highly productive developer 
will benefit from completing a project in half the time, even though the total cost may be the 
same.  Thus, if the length of time to complete the project is factored in directly, then productivity 
may be inversely proportional to the total cost multiplied by the project duration, T.  This is 
factored into the prior estimate. 
 

   C T  =  K M T 
 

 We are not stating that this is the measure of (inverse) productivity.  We are asserting that 
one must conduct experiments and take measurements to validate such an hypothesis.  We 
encourage other hypothesis; but whatever the measure, it must be backed up by a scientific 
method, using valid repeatable experiments. 
 

 We note that the support mode is typically dominated by incremental developments 
(enhancements), and can be treated accordingly.  We also note that, if a given level of quality is 
achieved for competing software systems, then the revenue side is accounted for fairly, since 
other factors, e.g., marketing costs, are neutralized. 
 
 
DESIGN & IMPLEMENTATION PROPERTIES AFFECTING PRODUCTIVITY 
 

 Having addressed the important external (product requirements) variables that affect 
productivity, we can now investigate the internal product design and implementation properties 
that affect productivity.  Our goal is to characterize a software development environment that, 
based upon our experience, supports these properties so as to reduce the time and man hours to 
develop and support a software product.  Ideally, we would like to identify a minimal set of 
orthogonal factors.  To this end, we offer the following factors. 
 
 
Independence 
 

 When attempting to reuse a module, one must be concerned with the independence of 
that module relative to its use by other modules.  If the reused module is not in the same task, 
then one may have to copy it, e.g., as a library module, for use in different directories or 
platforms.  If it needs other modules to operate, they also must be copied. 
 

 The more a module is tied to (i.e., shares data with) other modules in a system, the higher 
its connectivity to other parts of a system.  The connectivity (number of connections) is 
measurable.  The higher the connectivity, the lower the independence.  When designing 
hardware modules to be independent, one works to reduce the number of connections to other 
modules to a minimum.  We note that visualization of the architecture is critical to performing 
this design task for hardware. This is true for software as well. 
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 When building software using OOP, class abstractions cloud the ability to visualize 
connections.  Understanding how data is shared between software modules can be difficult, 
especially when inheriting classes that inherit other classes.  It is hard to simply “inspect” a 
module to determine its degree of connectivity and understand the way it interacts with other 
parts of the system. 
 
 Hiding and abstraction in the OOP sense make it difficult to pull (copy) a module from 
one system and place (reuse) it in another.  This difficulty in reuse, from a production standpoint, 
stems from the effort required to measure the level of independence in a typical OOP 
environment.  More importantly, if one cannot measure it, one cannot design for it, let alone 
improve it. 
 

 In the case of hardware, one designs for minimum connections between modules.  One 
uses CAD tools that provide a visualization of the architecture to do this.  Connectivity 
(coupling) is a key property affecting design productivity.  This is true in software as well.  But 
to fully understand this principal, one must be able to “see the architecture” and inspect the 
connections visually. 
 
 
Understandability 
 

 When managing a large software project, one gets to witness the loss of productivity that 
occurs as two programmers reinvent the same module. Productivity is lost trying to decrypt 
algorithms and data structures that are coded so as to minimize the number of keystrokes used to 
write them, or to maximize “economy of expression”. 
 

 If these algorithms are passed on to someone else, they may become enveloped in 
comments to explain the code, sometimes multiplying the size of a listing by whole numbers.  
Some claim that understandability of a language can be gauged by the average number of 
comments in well documented code.  Taking time to choose good names - and minimizing their 
reuse for different purposes - is paid back many-fold in a large system.  In our view, 
understanding the code directly is a major factor in productivity of software, especially in the 
support phase of the life cycle of a product.  The improvement in using understandable notations 
has been measured by Ledgard, [59]. 
 
 More important than names is the use of control structures.  This has been emphasized by 
many previous authors, particularly Mills, [66].  This is a significant property affecting 
productivity when building complex algorithms.  This is addressed further in Chapter 12. 
 

 More important than language is the underlying architecture of a system.  This property is 
hard to envision if you have never seen a direct visualization of software architecture.  This is 
only accomplished if there is a one-to-one mapping from drawings of the architecture to the 
physical layer, i.e., the code, just as there is in a drawing of a complex computer chip.  We 
believe that without this visualization, significant productivity improvements can never be 
achieved for software. 
 

 Using OOP, the opposite situation occurs.  The architecture - if it exists at all - is hidden 
behind the code  - the only representation of the real system.  Diagrammatic representations are 
abstractions that do not reveal the true complexity or hidden dependencies. 
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 Understandability of the architecture contributes directly to the design of independent 
modules.  We believe that one can measure the visibility of software architectures as provided by 
different development environments and relate that to productivity. 
 
 
Flexibility 
 

 One motivation behind the Extreme Programming movement, as well as Microsoft’s 
software development philosophy, is the incremental approach to software.  This was the topic of 
a book by Cave in 1982, [24].  In this approach, functionality can be added in small pieces, often 
with a working “daily build”.  This requires an environment that supports this approach. 
 

 Computer-Aided Design (CAD) tools make hardware architectural changes easy, 
especially when a system has been designed on a modular basis.  A CAD system that does the 
same for software, i.e., starts with a visualization of the architecture on a modular basis, and 
provides a one-to-one mapping into the detailed code, can ensure design independence of 
modules while allowing visibility of the desired details.  This capability in hardware engineering 
is alluded to in Poore’s paper, [73].  Based upon first hand experience, we can attest that this 
capability, embedded in a software development environment, provides real reusability. 
 

 With such a flexible facility, one can design a little, build a little, and test a little, growing 
a system incrementally to ensure components are meeting specifications and showing near term 
results.  One can quickly detect when changes cause components to fall out of specification 
ranges.  Fault isolation is much more easily accommodated.  These factors all lead to higher 
productivity. 
 
 
Visibility 
 

 Electronic circuits are described by systems of differential equations.  Yet, it is hard to 
imagine designers working without drawings of circuits.  As circuits get large, e.g., thousands of 
elements, it is the visualization of the architecture - the parsing of functions into iconic modules 
and lines to show how they are interconnected - that becomes overwhelmingly important.  
Visualization of the architecture is the key to productivity. 
 
 We claim this is also true with software.  However, one must achieve a one-to-one 
mapping from the architecture diagram to the code in order to gain the benefits derived from the 
equivalent in hardware.  This is only achievable when data is separated from instructions as 
described by Cave, [25].  If there is a silver bullet in software, this is it.  Productivity gains can 
multiply using this CAD technology so as to achieve the equivalent of a Moore’s curve for 
software allowing large complexity increases every year. 
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Abstraction 
 

 No one can argue the usefulness of abstraction.  It certainly can help to get through major 
design problems.  It can also serve to sever ties to reality in a production environment.  It is easy 
to draw block diagrams for sequential tasks that relate to the code.  But in highly interactive 
systems, mouse and keyboard event handlers support many functions, and the software 
architecture becomes orthogonal to user functionality.  Block diagrams lose meaning when one 
looks at a software design from the extremities of the functional interface to the detailed code 
that manages databases and devices. 
 

 
PRODUCTIVITY OF SOFTWARE DEVELOPMENT ENVIRONMENTS 
 

 We can now address the properties of a software development environment that lead to 
higher productivity.  Simply put, it is an environment that best supports the productivity 
properties of the requirements, the life cycle, and the architecture and implementation of the 
desired final product.  The properties described above can be used as proxies to measure the 
development environment.  For example, how easy is it for a newcomer to a project to 
understand the architecture, or the code?  How easy is it for that person to reuse already 
developed modules, possibly modifying parts of them to suit different functionality?  How easy 
is it for someone to take over a large set of modules without the original author?  Just as in 
hardware, these properties can be observed directly by knowledgeable managers in a software 
production environment. 
 

 
CONDUCTING EXPERIMENTS TO MEASURE PRODUCTIVITY 
 

Borrowing from DeMarco’s Controlling Software Projects, [35], “You can’t control what 
you can’t measure.” Before we can expect to improve productivity, we must measure it. 
 

 Since we will rarely - if ever - have the luxury to build the same large piece of software 
using two different environments, we must be able to gauge the relative difficulty in building two 
different products built in two different environments.   
 

 Apparently, benchmark comparisons of different approaches to developing software do 
not exist because of the size of experiments envisioned to perform the task.  People envision two 
teams developing a sufficiently complex piece of software using competing environments.  One 
can see why such an expensive undertaking is not done. 
 

 But most experiments in science are not very large in scope.  Focus is usually on creating 
sequences of small experiments that can lead to larger conclusions.  We believe software can be 
broken into pieces such that the methods that produce them, including integration, can be 
examined experimentally. 
 

 But just as computer chip manufacturers are constantly taking data to improve 
productivity, both in the design phase and the production phase, so can software product 
companies.  Managers in competitive environments are always looking to cut costs and time 
while improving quality.  This implies that management understands the details sufficiently to 
guide change, and that the designers and programmers are motivated to be on the same sheet of 
music - trying to improve productivity while maintaining - if not improving - quality.  
Unfortunately, there are many environments in which neither case exists. 
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CONCLUSIONS ON PRODUCTIVITY 
 
 As the quote from Kelvin implies, we cannot expect to improve software productivity 
without measuring it.  The measures of a software end product - functionality, complexity, and 
quality - are not new.  They form the foundation for measuring productivity. 
 
 If a given level of quality is achieved for the same software system by competing 
organizations, their relative productivities may be measured as being inversely proportional to 
the product of their cost and development time. 
 
 Productivity of a software environment depends upon the understandability and 
independence of modules produced.  These are inherent properties of a software system that can 
be increased or decreased by design.  Development environments that provide good visualization 
and CAD techniques can help software designers to construct systems with these properties just 
as they do for hardware designers. 
 
 Finally, we must be able to measure changes in productivity to validate our assumptions 
regarding its dependence on these properties.  We believe that this can be done using a large 
number of small experiments that, combined statistically, will represent the productivity of a 
development environment.  We perceive that such experiments are suitable for university 
collaboration. 
 
 In this book, we hope to make it clear.  It is time for the software industry to start 
questioning its own underpinnings.  It is time to start seeking the truth and trying to understand 
what is required to turn the software productivity curve upward.  Part of this effort will require 
rethinking the programming profession.  Is it really a large union that’s just not organized 
explicitly like other unions?  Is job security dependent upon complex code that another 
programmer can’t figure out, therefore making the first indispensable? See [94].  Or is job 
security really dependent upon being sufficiently more productive than programmers in a 
competitive company, maybe somewhere around the globe?  If you think the answer is the latter, 
read on and consider how you can help to make the software industry more productive. 
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Chapter 3 - A HISTORY OF PROGRAMMING 
    - LESSONS FROM THE EARLY DAYS 
 
 
Authors’ note:  In presenting the history below, we emphasize two important ideas in software.  First, 
“independence”, by which we mean the ability to make modifications to software without affecting other portions of 
the software.  And second, “understandability”, by which we mean the ease with which a programmer can read 
(and thus change) a portion of the software written by another. 
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IN THE BEGINNING ... (circa 1955 - 1965)   -  DRAMATIC JUMPS! 
 

 Back in the old days we wrote code in ones and zeros.  To be a programmer, one had to 
understand the machine.  Programming involved registers, arithmetic instructions, control 
instructions, I/O instructions, the program counter, etc.  Even writing a simple program was not 
easy.  One had to define what was in each memory location one expected to use.  Figure 3-1 
illustrates the format of a program.  This example is for a fictitious, but simple, single address 
machine with an A register. For example, OP Code 1000 cleared the A register to zero and then 
added the contents of the specified memory address, e.g., [13], into A (in our example, 
location 13 contains the value 25).   
 
 Notice “the separation of data from instructions”.  The data could be put anywhere.  The 
instructions had to follow in sequence, unless a transfer (GOTO) was used. 
 
 

MEM 
LOC 

OP 
CODE 

MEMORY 
ADDRESS 

COMMENTS 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 

1000 
1001 
0010 
1010 
0111 
1110 
1100 
1001 
0011 
1111 
0011 
1111 

00001101 
00001110 
00001111 
00010000 
00001110 
00001011 
00000010 
00001111 
00000000 
 
00001111 
 

CLEAR AND ADD [13] TO A 
ADD [14] TO A 
READ TAPE INTO 15 
SUBTRACT [16] FROM A 
STORE A IN 14 
TRANSFER TO 11 IF A IS NEGATIVE 
TRANSFER TO  2 IF A IS POSITIVE 
ADD [15] TO A 
PRINT A 
STOP 
PRINT [15] 
STOP 

13 
14 
15 
16 

00011001 
00011010 
00000000 
00110010 

25 
26 
0 
50 

 
Figure 3-1.  A computer program written in binary. 

 

 
 Interestingly enough, working in the binary number system was not the difficult problem.  
The problem was changing the program.  Let's suppose we wanted to put a few additional 
instructions into this program starting at memory location 8.  Then, all entries from there down 
get new memory addresses, implying that every reference to them must be changed, a real mess!  
Even if we were clever enough to insert a GOTO to some higher location with our new 
instructions, we still had to move the old instruction in 8 to the new location, and put another 
GOTO at the end of the new sequence (to get back).  Time spent debugging these changes and 
random jumps was immense.  The important lesson here is that all lines of code were dependent 
upon the sequence, and thus each other.  This lack of independence made change very difficult. 
 
The Properties of Understandability and Independence 
 

 It didn't take much time for people to start writing translators to make programs more 
readable, and therefore more understandable.  The first simplification was the use of mnemonic 
names for Op Codes and using decimal numbers for addesses instead of  binary. 
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 A major step toward improving productivity was the assembler.  Each machine had its 
own assembler, written by the manufacturer.  The first assemblers allowed programmers to 
eliminate the use of actual numeric addresses for data as well as transfer points.  Instead, 
alphanumeric labels were allowed.  Because these reference identifiers were no longer 
sequential, and were totally independent of position, one could insert new instructions anywhere 
without disturbing the rest of the code.  Figure 3-2 illustrates a simple program written in an 
assembly type language. 
 
 

LABEL OP 
CODE 

MEMORY 
ADDRESS 

COMMENTS 

 
RESTART 
 
 
 
 
 
 
 
 
END2 
 

CLA 
ADD 
RDT 
SUB 
STO 
TRN 
TRU 
ADD 
PRN 
STP 
PRN 
STP 

X1 
X2 
Y1 
Y2 
X2 
END2 
RESTART 
Y1 
A 
 
Y1 
 

A = X1 
A = A + X2 
READ TAPE INTO Y1 
A = A - Y2 
X2 = A 
TRANSFER TO END2 IF A IS NEGATIVE 
TRANSFER TO RESTART IF A IS POSITIVE 
A = A + Y1 
PRINT A 
STOP 
PRINT Y1 
STOP 

X1 
X2 
Y1 
Y2 

25 
26 
 0 
50 

 
 
 
 

 
 

Figure 3-2.  A computer program written in assembly language. 
 
 
 As the desire for new functions and features expanded, and more memory became 
available, computer programs started to grow in size.  Drum memories became sufficiently 
reliable so that sections of larger programs could be stored on the drum, and rapidly overlaid into 
main memory when they were needed.  The concept of standard overlay modules soon became a 
necessity, particularly for handling I/O devices such as keyboard input, printed output, paper 
tape input and output, etc.  This led to the separation of programs into subroutines, with 
provisions in the assembler language for jumping to them by name. 
 

 As overlays became popular, one had difficulty laying out the patchwork of where 
routines would be mapped into main memory. This was solved using relative addressing at the 
subroutine level.  Assemblers that translated code on a relative address basis were known as 
relocatable assemblers, implying that the actual starting addresses of  the program counter and 
data blocks remained undecided until they were loaded.  It was still up to the programmer to do 
the overlay and set the starting address pointers.  But, this provided for spatial independence of 
overlays, relative to where they were mapped into main memory, making them much more 
reusable. 
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Independently Linked Subroutines 
 

 And so, as subroutines became much more reusable, programs grew even larger.  This led 
to another problem.  All routines belonging to an overlay had to go through the assembler in one 
shot.  As main memory became larger, making a simple change to a single routine still required 
that the whole overlay be reassembled. 
 

 This problem led to the development of a separate link and load phase, wherein a single 
subroutine could be assembled independently of the rest.  This subroutine could then be relinked 
with the rest of the overlay that was previously assembled into a partially linked object module.  
As a final step, a load module was produced with the absolute addresses resolved.  The software 
that provided this facility was called a linking loader.  This allowed subroutines to be built and 
assembled independently, making them and their object modules the basic reusable elements.  
Object modules resided as independent entities in library pools that were scanned during the link 
process. 
 

 A growing list of library routines created the next problem, that of duplicate names.  To 
this day, the problem of duplicate object module names, amplified by flat file object libraries and 
very simple library managers and linkers, plagues a growing part of the programming world.  
This has led to a lot of bandaids in programming languages to cover up problems that are 
properly solved at the environment level.  We will address these problems downstream. 
 

 
Flow Charts 
 

 Because of the difficulty in understanding assembler code, and particularly the 
instructions for transferring control, programmers created the flow chart.  When using boxes and 
diamonds to illustrate functions and decisions, a symbol on the flow chart typicaly encompassed 
many instructions.  So the number of lines of code was larger than the number of flow chart 
symbols.  These advantages dissappeared with understandable languages and control constructs. 
 

 
THE FIRST BIG JUMP IN UNDERSTANDABILITY - FORTRAN 
 

 The desire to make the programming job easier led to still another major step toward 
making the machine do more of the work of understanding what the human meant.  People 
writing programs to solve large sets of mathematical equations were the first to invent a more 
understandable language and corresponding translator - the FORmula TRANslator 
(FORTRAN).  FORTRAN shifted the burden of translation from a language that humans could 
easily read and write, onto the computer.  Productivity went way up because of a number of 
factors. 
 

• One person could understand much more easily what another person wrote.  This 
allowed a large program to be constructed with a team effort.  It also allowed 
completion of an effort and reuse of code without the original author. 

 

• Many errors endemic to assembly language disappeared.  Probably the most 
common was scribbling on instructions (and immediately the rest of memory.)  
FORTRAN took away the Von Neumann facility of being able to write instructions 
that modified themselves (some assemblers prohibited this also). 
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• More and more smarts were built into the translation process as people learned what 
it took to be more productive.  These included improved syntax, various forms of 
error checking and prevention, run time messages, etc. 

 
 It is interesting to note that many programmers of the day looked askance at FORTRAN, 
disagreeing with the above bullets for various "technical" reasons.  One of these was efficiency 
of the code produced, until it was recognized that it was a rare programmer who could do as well 
as the designers of automatic code generators.  In spite of this resistance, FORTRAN became 
one of the best examples of the following:  
 
 When understandability takes a leap, so does ease of change, and thus productivity. 
 
 Anyone racing to build computer programs to solve mathematical problems quickly got 
on board the FORTRAN train.  If they didn't, they couldn't compete. 
 
 For people building data processing systems, FORTRAN left a lot to be desired.  It was 
cumbersome to work with files having complicated record structures.  The FORTRAN 
FORMAT statement is a quick way to get listings of columns of numbers, and some 
alphanumeric data, but there was no friendly mechanism for creating the complex data structures 
necessary for dealing with large data files.  Even the data structure capabilities existing in 
advanced versions of FORTRAN today leave much to be desired. 
 
 A major problem with FORTRAN is the fall through approach to coding that is a carry 
over from assembly language coding.  Every line depends upon where it falls in the sequence.  
Labels exist for looping and GOTOs but, in general, one cannot isolate blocks of code inside a 
subroutine and move them around without great difficulty.  An example of a very efficient 
sorting algorithm, published in the ACM Journal in 1969, [93], is shown in Figure 3-3.  This 
algorithm is very efficient at sorting, and is a clever algorithm with a sophisticated mathematical 
background.  Unless one is familiar with the implicit statistical methods for sorting referenced in 
the paper, one is hard pressed to understand the underlying algorithm.  The example is not meant 
to reflect poorly on the excellent work of the author.  Rather it is a reflection on programming 
style and practices in that era.  Note that, to save time, GOTO's are used to replace DO loops.  
This accentuates the fall through approach.  As an exercise, try putting this example into a flow 
chart. 
 
  This program also exemplifies "economy of expression."  A minimum number of 
keystrokes is required to retype it from the journal - an important consideration of the time.  One 
can also imagine being assigned to make changes to a five to ten page subroutine of this nature - 
clearly a humbling experience for a rookie.  Of course, things just aren't done that way anymore 
(we hope), at least not in FORTRAN.  We strongly suggest that economy of expression is 
inversely correlated with the overall life cycle economics of a large software product.  We 
believe that this can be verified by experimental evidence, e.g., that reported by Fitsimmons and 
Love, [38], Ledgard et al, [59], and Sitner, [92]. 
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      SUBROUTINE SORT(A,II,JJ) 
 
C  SORTS ARRAY A INTO INCREASING ORDER, FROM A(II) TO A(JJ) 
C  ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO 2**(K+1)-1 ELEMENTS 
      DIMENSION A(1), IU(16), IL(16) 
      INTEGER A, T, TT 
      M=1 
      I=II 
      J=JJ 
    5 IF(I .GE. J) GO TO 70 
   10 K=I 
      IJ=(J+I)/2 
      T=A(IJ) 
      IF(A(I) .LE. T) GO TO 20 
      A(IJ)=A(I) 
      A(I)=T 
      T=A(IJ) 
   20 L=J 
      IF(A(J) .GE. T) GO TO 40 
      A(IJ)=A(J) 
      A(J)=T 
      T=A(IJ) 
      IF(A(I) .LE. T) GO TO 40 
      A(IJ)=A(I) 
      A(I)=T 
      T=A(IJ) 
      GO TO 40 
   30 A(L)=A(K) 
      A(K)=TT 
   40 L=L-1 
      IF(A(L) .GT. T) GO TO 40 
      IT=A(L) 
   50 K=K+1 
      IF(A(K) .LT. T) GO TO 50 
      IF(K .LE. L) GO TO 30 
      IF(L-I .LE. J-K) GO TO 60 
      IL(M)=I 
      IU(M)=L 
      I=K 
      M=M+1 
      GO TO 80 
   60 IL(M)=K 
      IU(M)=J 
      J=L 
      M=M+1 
      GO TO 80 
   70 M=M-1 
      IF(M .EQ. 0) RETURN 
      I=IL(M) 
      J-IU(M) 
   80 IF(J-I .GE. 11) GO TO 10 
      IF(I .EQ. II) GO TO 5 
      I=I-1 
   90 I=I+1 
      IF(I .EQ. J) GO TO 70 
      T=A(I+1) 
      IF(A(I) .LE. T) GO TO 90 
      K=I 
  100 A(K+1)=A(K) 
      K=K-1 
      IF(T .LT. A(K)) GO TO 100 
      A(K+1)=T 
      GO TO 90 
      END 
 
 

Figure 3-3.  Example FORTRAN program published in the late 60's. 
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 Although FORTRAN has come a long way since it was first offered, many problems still 
exist, causing it to be used less and less each year.  The problems described above caused the 
desire for a new approach early on, particularly for large data processing programs, and a new 
language was produced in the early 60's to fit the bill.  This was COBOL. 
 
 
THE SECOND BIG JUMP IN UNDERSTANDABILITY - COBOL 
 

 The COmmon Business Oriented Language (COBOL) was developed by experienced 
programmers to achieve a common goal - build a language that humans could easily understand, 
one that could read close to plain English.  To the extent that COBOL quickly became owner of 
approximately 80% of the world's code for about two decades, it was the most successful 
programming language ever devised. An October ‘95 article in Inform, [51], cites studies by 
IDC, Gartner, and Dataquest that showed COBOL still accounted for over 53% of all 
applications in the world, 80% of all business applications, 50% of all new business applications, 
and 5 billion lines of new code added each year.  This is because of its ability to improve real 
economic measures of programmer productivity, where it counts -  in the maintenance phase of a 
life cycle.  And these improvements are clearly due to its understandability. 
 

 Yet, no language has been more maligned by a vocal segment of the software industry 
than COBOL.  And, this is not a new phenomena.  In the 1960's, when the financial industry in 
New York City was going through conversions to new IBM-360s, costs to upgrade software 
were going through the roof.  At that time, experienced programmers insisted that accounting 
applications could only be written efficiently in assembly language.  (Neither EXCEL nor 
LOTUS existed then.)  What they were really concerned about were armies of high school 
graduates that were marching into Manhattan and dramatically lowering the cost of building new 
software using COBOL. 
 

 Data processing managers had to fight to dislodge the company software assets from the 
hands of the assembly language programmers and turn them over to a younger, less skilled 
workforce who could write code that everyone could understand.  In that highly competitive 
economic environment, it was only a matter of time. The cost of software development and 
support plummeted with COBOL, and the leftover money was spent developing more 
sophisticated applications.  COBOL also created a separation of skills, and a separate workforce 
of systems programmers still using assembler and Job Control Language (JCL). 
 

 As scientists, we cannot ignore the success of COBOL.  We must understand the facts 
behind its ability to cut costs and improve productivity.  Certainly, one cannot contest the 
readability of COBOL relative to any other language.  Greater readability leads directly to 
understandability.  Next, COBOL implemented the one-in one-out control structure advocated 
years later by Mills, [66].  The objective of this control structure is to eliminate "waterfall" or 
"fall through" coding, providing a hierarchy of blocks of instructions, within a subroutine.  This 
additional layer of hierarchical structure can serve to increase the understandability of 
subroutines, a feature that does not really exist in other languages.  However, as we will describe 
below, the COBOL implementation hindered the desired improvements in logical clarity. 
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 COBOL's ability to process data has been unsurpassed.  The most important factor in 
data handling is the data description.  COBOL allows a user to organize data structures the way 
one wants to see it, hierarchically, by logical organization.  Not by type.  Furthermore, What-
You-See-Is-What-You-Get (WYSIWYG) in memory.  There is no such thing as "word boundary 
alignment" behind the scenes.  Most programmers do not understand the importance of this 
feature unless they have done sufficient character string manipulation or data processing using a 
character oriented language.  If one has never had this feature, one can't appreciate how great it 
is!  It's what allows one to do group or subgroup moves from one data structure into another, 
e.g., moving part of a message or record, defined as all character data, into a template defining 
each field.  It provides for redefinition of data areas so that they can be looked at using different 
templates or filters without moving the data. 
 
 One cannot do these things in any language that permits word boundary alignment to go 
on behind the scenes.  Until VSE, described in Section 2, no language has provided these data 
structure facilities nearly as well as COBOL.  And these are critical when dealing with complex 
data structures. 
 
 
Caveat - The Very Large Subprogram Problem 
 
 We must also understand the weak points of COBOL.  One of these is breaking large 
programs into subprograms.  This is a result of COBOL’s heritage of sequential batch oriented 
jobs.  This is a difficulty for COBOL.  Although COBOL provides a subprogram capability, it is 
not easily used.  This has led to extremely large COBOL programs that are difficult to change 
and maintain. 
 

  The reason that COBOL programs are not easily broken into subprograms is subtle.  
COBOL’s sharing of data structures between subprograms by pointer is clearly superior to 
passing individual data elements.  However, the mechanism for accessing data structures poses a 
problem since each structure must be declared in "working storage" before it can be used by 
another subprogram, where it then must be declared in a "linkage section."  These two classes of 
declaration impose a constraint that makes it difficult to structure, and especially to restructure, 
an architecture.  It is amplified by the requirement that, in a calling chain, if any routine down 
the chain wants access to the structure, it must be declared in all routines along the way.  One 
cannot switch or discard the “MAIN” routine without a big upheaval. 
 

 As indicated above, COBOL contains a one-in one-out control structure as advocated by 
Mills.  However, the implementation via the PERFORM paragraph statement does not preclude 
the waterfall from one COBOL paragraph to the next, hindering the ability to achieve the desired 
level of logical clarity.  Another implementation “feature” allows programmers to PERFORM 
sequences of paragraphs, further maligning potential clarity.  These sequences become especially 
difficult to follow when they are exited by GOTO statements that can jump control anywhere, 
including the middle of another sequence somewhere else in a large subprogram.  This problem 
seems to be exacerbated by COBOL’s unusually large subprograms. 
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The Tower Of Babel - Programming Languages 
 
 Although we have only discussed FORTRAN and COBOL, many other early languages 
had their impact on the software development process.  Although some of these languages have 
had substantial followings during certain time periods, none have matched the long-term success 
of FORTRAN and COBOL.  ALGOL was developed in the early 1960s, partly as an algorithm 
specification language, one that could be used to specify the details of computer architectures.  It 
was the language used for papers in the Association of Computing Machinery (ACM) Journal.  It 
was the principal language of the Burroughs 5500, one of the earliest time-sharing machines. 
 
 SIMULA was another early language, used for simulation.  Although hardly used in the 
U.S., it is referenced frequently.  PL/1 was IBM's answer to provide one language to take the 
place of COBOL and FORTRAN, a noble goal.  However, it was never close to COBOL from a 
readability standpoint, and had so many options that programs were very difficult to understand 
and debug.  APL is an excellent language for solving vector - matrix equations, but is 
scientifically oriented.  PASCAL and BASIC have been well utilized, but have never reached the 
acceptance level of COBOL or FORTRAN.  We will simply mention that each of the 
U.S. Department of Defense services invented its own language: TACPOL (the Army), CMS2 
(the Navy), and JOVIAL (the Air Force).  Each language was "justified" based upon the unique 
requirements of its particular military environment.  That is, until Ada came along and the U.S. 
Department of Defense mandated the use of Ada to replace them all.  But, it did not get as far as 
PL/1. 
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Chapter 4 – A More Recent History 
 

“Continued and rapid growth in the power of hardware has not only enabled new 
applications and capabilities, but has permitted sloppy, unprofessional programming to 
become the virtual standard of business and industry.  Hardware has allowed the 
software profession to avoid growing up, to remain in an irresponsible adolescence in 
which unstable products with hundreds of thousands of bugs are shipped and sold en 
masse.”    -- Larry Constantine [30] 
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THE WAVES OF A SOFTWARE REVOLUTION 
 

 Revolutions impose sweeping changes upon the frame of reference people use to value a 
system.  They can impart significant improvements, wreak havoc, or anything in between.  
Major revolutions are usually preceded by smaller waves, ones with a smaller force.  For 
software, the major wave has not yet come - but it is on the horizon.  In articles written by 
prominent people in the software field, e.g., [1], [58], [61], [73], there is a sense that people are 
getting ready to accept a major paradigm shift.  Hardly anyone at a managerial level is disputing 
the need for it.  To help gain an understanding of what the needs are, we will take a look at more 
recent history to consider the prior waves - the previous attempts at a software revolution.  Our 
main purpose in this chapter is to prevent this history from repeating. 
 
 
THE STRUCTURED PROGRAMMING WAVE (circa 1970 - 1980) 
 

 The first wave of a software revolution came in the 1970s.  It was a noble effort, a period 
of enlightenment.  Serious thought was put into principles for cutting the growth in project 
failures and costs of software.  The literature expanded rapidly, with contributions derived from 
case histories.  The “Mathematical Foundations of Structured Programming” by Harlan Mills, 
[66], was considered a major contribution.  It describes the technical properties of one-in/one-out 
control structures, and their corresponding understandability.  This was one of the first papers 
that tried to set the everyday programming problems in a framework for good scientific analysis.  
Academic inputs came from many contributors, e.g., Djikstra, on GOTOless programming.  
Djikstra also provided a more mathematical direction for programming improvement. 
 
 But there were clearly great disparities in the productivity of software organizations at 
the time.  The high correlation in disparities became most apparent when software organizations 
were grouped into government versus their commercial counterparts, with the government 
lagging far behind in most areas.  Exploding budgets and time schedules were absorbed by 
taxpayer dollars without knowledgeable oversight.  Much of the literature pointed out the 
problems of poor management and provided guidelines, procedures, and standards to insure 
control of the lifecycle, e.g. [23].  Other software projects simply grew because nothing was 
coming out, and the end justified the means.  Much of this was due to an even greater disparity: 
that of understanding the problems of developing anything complex, not just software. 
 
 Much of the problem stemmed from the lack of good operating systems.  These complex 
systems were just evolving.  IBM was hit by this phenomenon, particularly on the OS/360 
project, and much history was analyzed and published.  This included the excellent combination 
of technical and management principles offered by Sherr, in Program Test Methods, [90], who 
defined the basic regression test method as it applied to software.  Another describes the direct 
experience of Fred Brooks, the principal architect of OS/360, published in his classic Mythical 
Man Month, [12], a best seller.  Another major contribution was Baker's Chief Programmer 
Teams, [5], one of the original publications on top-down design and organization of the 
programming staff. 
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 A large number of publications expanded upon these ideas, or brought forth excellent 
new ones.  From the literature, it appeared as though the world of software was going to change 
forever in these new directions.  But most of it has been forgotten.  Most computer science 
graduates don't know about Harlan Mills.  The literature from the 1970s is hardly referenced 
(unless it refers to C and UNIX).  The ideas were excellent and people accepted them.  But, 
when they turned around and went back to work, they had little to use to implement the 
principles.  This is because no software environment existed to support the most important 
concepts. 
 
 The lack of an existing environment cannot be considered the sole reason for lack of 
success of this movement.  It was also due in part by the IBM PC, where most of the original 
software had to be written in BASIC.  Some software houses today still rely on BASIC 
programmers.  A more long term influence was the relatively huge funding ($Billions) for UNIX 
and C by AT&T, and the U.S. and other governments.  And people go where the money is.  We 
now cover the period of falling productivity - the dark ages of the software field. 
 
 
THE RISE OF UNIX AND C (circa 1975 - 1985) 
 

The "Paper Tiger" Revolution of the '70s gets beat by UNIX & C in the '80s 
 
 UNIX platforms started to populate information technology.  How did this happen?  
What happened to IBM's mainframe operating systems, and DEC's VMS?  And what happened 
to the software revolution of the '70s.  To answer these questions, consider the following 
influential events in this history. 
 

− The U.S. Government, particularly the Department of Defense (DoD), assumed that its 
problems were faced by the rest of the world.  These problems were caused by (1) 
programming in assembly language, and (2) not using standard operating systems.  Most 
government developers were hardware-oriented.  They lacked real software experience.  
This was evident with “embedded systems” where the applications and operating systems 
were wrapped together in a single development.   Large complex commercial software 
successes were built using reliable operating systems and high-level languages.  These 
were virtually ignored by the DoD hardware vendors who preferred to “roll their own” on 
time & material contracts.  The end result was the launch of the Ada language effort with 
high expectations. 

 

− As a policy, the Government resisted platforms with proprietary (privately developed) 
operating systems, e.g., IBM’s MVS, and VM.  Many of the reasons have to do with the 
Government’s desire to own special licenses that private businesses perceive hard to 
control.  Somehow, UNIX was considered an OPEN SYSTEM and became the operating 
system of choice.  Large quantities of VAX computers with UNIX were delivered to the 
Government and its contractors, but productivity plummeted.  The problem was blamed 
on the operating system.  (What was not recognized was the use of C and C++ as the 
programming languages for this environment.)  DEC saved the day with VMS, a new 
(proprietary) operating system, along with good FORTRAN and COBOL compilers.  It 
worked well and started to become the de facto real standard for that period 
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− Computer-Aided Software Engineering (CASE) tools became fashionable in both 
government and commercial organizations, being marketed by a number of software 
houses.  These tools included graphics and automatic requirements documentation.  But 
the software problem remained unsolved.  This is because CASE is left by the wayside 
once the coding starts and changes start to mount. 

 

− On the government side, programmers building embedded systems for big contractors 
gravitated from assembler into C and C++.  When the software problem persisted, DoD 
tried to dictate the use of its own new language, Ada.  Special contracts were offered to 
document case histories of how Ada saved time and money.  But despite its elegance, 
Ada did not solve the problems.  Ada programmers were among the most expensive in 
the world.  The economic realities of getting systems delivered were hard to combat, and 
DoD’s major system program managers got waivers to use software languages other than 
Ada.  This battle was won by the C++ / OOP crowd. 

 

− UNIX continued to be promoted by AT&T and academia followed.  The Government 
continued to characterize proprietary software (developed and licensed commercially) as 
not in its best interests.  After VMS and other proprietary operating systems rose to great 
heights, they hit a water-fall drop in sales - as if they were black-listed.  UNIX and C had 
proprietary stamps, but somehow were OK. 

 

− Hardware vendors are motivated to sell platforms without having to invest in an 
operating system, and UNIX allowed users to run multiple tasks in virtual memory mode. 

 

− Whereas INTEL chips all came with an assembler, designers of powerful workstation 
chips found a way to hide their instruction set architecture - behind the C-based language 
compilers, as C became the new intermediary language. 

 
 The above events were driven by a desire to move toward more powerful platforms at a 
lower price.  The difficulty, as always, is dealing with the software interface.  Learning and using 
C-based languages and UNIX required a large investment.  Organizations complained about the 
unfriendliness of the UNIX-C environment and the corresponding rise in software costs.  These 
complaints did not stop this movement.  The low cost of powerful hardware platforms housing 
UNIX became attractive. 
 
 As Windows platforms started selling in large quantities, UNIX developers, e.g., SCO, 
SUN, SGI, and HP were able to achieve a reasonable level of compatibility with Windows 
application software.  Under SCO’s Open Desktop, one could have a Windows session going 
and flip back to a UNIX session.  C, which came along with UNIX, slowly became as ubiquitous 
as COBOL.  Because C was developed in the very early 70’s, many of the revolutionary ideas 
from the following years virtually disappeared, being replaced by a new wave of thinking  -  
Object Oriented Programming (OOP). 
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THE RISE OF C, C++ AND OOP (circa 1985 - 2000) 
 

C is quirky, flawed, and an enormous success. 
   -  Dennis Ritchie, one of the original C authors - from van der Linden, [98]. 

 
 
 Most people in the software field believe that the underpinnings of current software 
development environments, namely the C and C++ languages, were developed under a well 
planned R&D program at Bell Labs.  As pointed out in various references, see Anselmo, [2], this 
is a total misperception.  AT&T did spend billions of dollars competing in the computer field 
and promoting UNIX, and C and C++ were the languages of UNIX.  But the real driving forces 
behind C were to build a small compiler to fit in a very small amount of memory, and a spartan 
syntax that made the compiler easy to build, [2], [56], and [78]. 
 
 C++ is a modified version of C to provide an Object-Oriented language.  Object-Oriented 
Programming (OOP) claims to support reusability, but that definition of reuse is a technicality.  
OOP reuse actually inhibits real productivity by making real reuse difficult, see [1] and [83].  
The OOP approach has also proven to be hard to scale as new requirements evolve.  As a result, 
large systems built in C++ go out of control quickly unless the management approach is very 
intensive, with large numbers of programmers responsible for relatively small amounts of code, 
see [44].  This approach leads to much lower productivity.  However, the amount of investment 
in this approach - both in careers and dollars - presents huge inertia. 
 
 Object-Oriented Programming (OOP) is defined by a set of properties that are supposedly 
independent of a particular programming language, see [95].  These properties constitute a set of 
requirements that a language is supposed to meet to be considered Object-Oriented.  Today, 
OOP is most closely associated with the C++ language. 
 

 When reading the C-based language (C, C++, and Java) literature, one finds sets of 
postulates and ultra-simple examples of OOP in C++.  If one looks for scientific ties to 
programmer productivity and economic measures, one is left disappointed.  Although the word 
good is used as some kind of measure of a language, one has to ask: "What measures make OOP 
good, and particularly, good for what?"  More interesting reading is that of the different OOP 
camps, and the objections they raise with each other’s approach.  Different camps appear to have 
their own ideas of what’s good. 
 

 There are allusions that C++ OOP properties provide improvements in computer 
programs.  But there is little experimental evidence, or suggestions of experiments, to support a 
scientific comparison.  Our experience on actual projects correlates to the productivity data in 
Chapter 1.  Based on large projects, our assessment is that it costs more, not less, to build 
equivalent quality software using C++ OOP.  In the support phase, it is hard for one programmer 
to understand what another did.† 
 

 
                                              
† A common joke is that C++ is a write-only language.  One programmer writes it and no one 
else can read it. 
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 Finally, many experienced people on the sidelines have said that this movement has been 
a great step backwards for the U.S. software industry.  The feature article of a 1994 issue of 
Upside Magazine, [97], interviewed five leading technologists to get their view on the world of 
technology in the year 2000.  The questions covered broad areas of communications and 
automation.  One of the questions was  “What advancement will be the biggest disappointment?”  
Surprisingly, Gordon Bell, architect of DEC’s VAX family, and John Warnock, CEO of Adobe 
Systems had the same answer - Obect-Oriented Programming!  Warnock said  “I think the whole 
object thing is a red herring.” 
 

 Having made an investment in becoming proficient in a subject, one does not want to 
think of one’s investment of time as being wasted.  It is hard to consider scrapping a skill that 
has taken years to learn, one that was supposed to provide significant economic benefits.  After 
all of that effort, one does not want to hear that there is a better direction, especially if the 
alternative might involve another learning process.  This creates a significant inertial factor 
among proficient C++ programmers. 
 
 
Another Trail From There to Here 
 

 How did it happen that the C-based language technology has moved so far into the 
forefront?  We'll start to answer this question by referring again to Peter van der Linden's book, 
Deep C Secrets, [98].  On page 297 he describes the desirable features of an OO language. 
 
     “... Abstraction is useful in software because it allows the  programmer to: 
 

• hide irrelevant detail, and concentrate on essentials. 
 

• present a "black box" interface to the outside world.  The interface specifies the valid operations 
on the object, but does not indicate how the object will implement them internally. 

 

• break a complicated system down into independent components.  This in turn localizes 
knowledge, and prevents undisciplined interaction between components. 

 

• reuse and share code.” 
 
 These bullets appear to be very attractive, ones that should relate to economic benefits.  
We agree with them in principle, but let's look at each of them more carefully. 
 

• Who decides what's irrelevant detail (and therefore hidden)?  An engineer should be able 
to uncover the (hidden) algorithms, decide what is wanted, and if it's correct.  Material 
not wanted should be covered up again.  Else features are inherited that are undesirable.  

 

• A black box approach is OK after it is built, and tested.  But if one has ever tried to test 
(or reuse) a black box that is the least bit complicated, one wants to open it up to 
understand it, to reduce the space of possible outcomes (tests) by many dimensions.  Else, 
one is prone to finding out why things are not working after they are in production.  To 
quote a "quote of the father of C++ ”, from Deep C Secrets, [98]:  

 

      C makes it easy to shoot yourself in the foot.  C++ makes it harder, but when you do, 
it blows away your whole leg.    - Bjarne Stroustrup 
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• Who determines the architecture of "independent" objects?  How is it measured?  How 
does one see the whole picture?  Independence can be accomplished without hiding.  

 

• Reuse is desirable, provided one can see inside the box and determine what is needed.  
Sharing black boxes is like groping in the dark.  Everything should be open to inspection 
to see if it warrants sharing.  Else we become overloaded - with unnecessary baggage.  

 
 There are subtle points of confusion here.  Specifically, one must be able to differentiate 
between hiding irrelevant details, protection from change, and reuse.  These are three different 
objectives that need not conflict.  As we shall see, reuse depends directly upon independence and 
understandability, neither of which inhibits hiding irrelevant detail or protection from change. 
 

 Apart from the OO concept, there are many reasons why C-based languages are difficult 
to understand.  We refer again to van der Linden's book, [98], on the use of C and C++ in a 
production environment at SUN, where he questions the placement of the burden of translation.  
Should it be on the programmer, or on the language translator?  On page 64, he states: 
 

"C's declaration syntax is trivial for a compiler (or a compiler-writer) to process, but hard for the 
average programmer.  Language designers are only human, and mistakes will be made.  For 
example, the Ada language reference manual gives an ambiguous grammar for Ada in an appendix 
at the back.  Ambiguity is a very undesirable property of a programming language grammar, as it 
significantly complicates the job of a compiler writer.  But the syntax of C declarations is a truly 
horrible mess that permeates the use of the entire language.  It's no exaggeration to say that C is 
significantly and needlessly complicated because of the awkward manner of combining types." 

 
 Neither sound economics nor good science can be cited as the framework for this 
movement.  When engineers think of comparisons, they think of benchmarks that produce clear-
cut economic measures.  Example: Machine X runs my job three times faster than machine Y, 
and this saves 20 hours a week.  But the software field appears to be void of sound economic 
measures or real science (repeatable tests and benchmarks).  So what were the underlying 
driving forces at work to make a C-based language the programmers’ choice? 
 

 OOP is appealing, intellectually.  The fact that OOP productivity claims are not 
supported by experiment does not seem to matter.  Many software approaches have been fostered 
by organizations without hard economic forces driving their research.  This results in club-house 
or hobby-shop technology that cannot stand up to the test of a real competitive environment.  
The commercial market in the U.S. was still dominated by COBOL and FORTRAN in 1995.  
Referencing the October 1995 article in Inform, [51], studies by IDC, Gartner Group, and 
Dataquest show that COBOL alone still accounted for 80% of all business applications.  We do 
not have more recent data, but the landscape has been changing rapidly since 1985.  More 
importantly, the number of articles questioning software productivity is now growing rapidly. 
 

 If the picture were simple, it would have already been sorted out.  The shroud of 
complexity around C-based OO languages has left management subordinate to the claims of the 
programmers.  But cracks in the dam are appearing.  Large projects are becoming less common.  
Software problems have cost top executives their jobs, or even forced a sale of the company.  In 
the next few sections we attempt to shed more light on why the software problem has become 
worse - not better. 
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THE GROWING TECHNOLOGY GAP 
 
 As we described in Chapter 3, during the 1960's the financial industry had to deal with 
experienced programmers who insisted that accounting applications could only be written 
efficiently in assembly language.  The real concern were the high school students who were 
cutting the cost to build software using COBOL.  Data processing managers had to work hard to 
dislodge their assets from the hands of the assembly language programmers.  It was clearly a job 
security fight. 
 

 The modern version of this problem was highlighted by Paul Strassmann, former 
Assistant Secretary of Defense for C3I, at a 1992 Ada Symposium at George Mason University.  
There he described the necessary transition of the software industry in his speech "From a Craft 
to an Industry."  He presented the results of a study on the resistance to change in the mode of 
production of software by what he termed the "loner programmers," the people that every 
computer installation has come to depend on.  He said 
 

"You can easily identify them.  ...  They are immersed in their craft, but find it difficult to 
explain or document it.  They usually work late into the night, trying to fix a problem 
caused by low quality and frequently repaired incomprehensible software.  ... They place 
little reliance on assistance from others and most likely disregard orderly documentation 
and business practices...   The computer code they write is unique, elegant, and usually 
incomprehensible to others - which explains why they are highly valued as indispensable 
staff." 

 
 As stated above, end users do not really care how software is built.  They want systems 
that help them perform their tasks.  Only software people make a living building software.  Users 
make their living selecting and using systems that improve their own productivity.  They don't 
care whether their application is totally in hardware or software.  If software is used, they don't 
care about the language in which it is written.  Just like any buyers with freedom to buy what 
they choose, users want high quality systems that are easy to use at the lowest possible price. 
 

 The problem faced by system developers today is one of building user friendly systems 
that are difficult to implement due to the complexity of options and wide range of functionality 
required.  Most of these systems are implemented in software.  However, programmers are not 
trained to design systems, and are not equipped to flush out user needs.  They are trained to write 
computer programs.   And so software productivity is still, today, the most significant stumbling 
block in building complex automated systems. 
 

 As Paul Strassmann said, most automated systems are still built as if programming were 
an art or craft.  Programmers carve out their pieces of code and hope they can be inherited by the 
next generation.  Programmers do their own designs, build the software, test it, and even answer 
customer questions.  In most shops, there is little, if any, cross-checking or management 
intervention.  In many shops, good programmers are called authors.  Their desire to see a higher 
level of value placed on their craft presents a dilemma to the average manager of a staff of 
programmers when it comes time for salary reviews. 
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WHY IS THE TECHNOLOGY GAP WIDENING - INSTEAD OF SHRINKING? 
 

 One does not have to look hard to find articles describing dramatic reductions in the cost 
of computer power.  Quoting an article from UPSIDE magazine, [71], "The end-user price per 
MIP of computer power has gone from $250,000 in 1980 to $25,000 in 1985 to $2,500 in 1990, 
and to $50 in 1995.  Today it is more like 50¢.  But as computer and semiconductor 
manufacturing productivity continues to move ahead by leaps and bounds, and the software 
productivity index continues to go lower, the hardware-software technology gap gets wider and 
wider. 
 

 In an article in 1989, Business Week [16] reported that "Software is the major stumbling 
block.  For years programmers have been unable to crank out new packages fast enough for 
mainframe customers to get the most from their machines.  Now, with multiple mainframes, 
dozens of minicomputers, and hundreds of PCs, customers are 'over-mipped.'  They have 
tremendous computing capacity as measured in MIPS - the power to process one million 
instructions per second."  "But we don't have the software to fill the MIPS" said Robert C. 
Hughes, vice-president for industry marketing at Digital Equipment Corp in that same article. 
 

 The article proceeds with "The key is to get programs that are MIPS suckers."  "But 
there's a catch: It has been possible to automate the design of increasingly powerful hardware.  
Creating software, however, remains a laborious and slow undertaking.  And the biggest MIPS 
suckers are the hardest to produce." 
 

 
The Case Against CASE 
 

 In another Business Week article two years later, [17], methods for improving software 
productivity were discussed, including computer-aided software engineering (CASE) and OOP.  
"For years, the industry bet on CASE tools to automate software development.  But a recent 
survey by CASE Research Corp. shows that fewer than 35% of CASE customers say such tools 
have improved programmer productivity or quality.  'There are a lot of people who haven't made 
it work yet,' concedes Mike Waters, general manager of Texas Instruments Inc.'s CASE 
division."  In that same article, OOP was also described as a possible contender for improving 
software productivity.  However, the article ended the discussion by stating that "most software 
experts warn against relying too heavily on such 'silver bullet' technologies." 
 
 
Resistance To Innovation 
 

 So where is software technology headed?  It appears to be moving backward -- toward 
the days of cryptic languages.  This is apparently the result of a lack of measurement in 
programming languages.  People tout Java and C++ as the languages of the future.  In fact, C is 
almost as old as COBOL, being born as B from the Basic Combined Programming Language 
(BCPL) in the late 1960's.  So age is not the difference. 
 

 The history of C, see [2] and [3], indicates that the people who invented it wanted a 
compiler that was easy to write and could fit in a very small computer.  (B was designed to fit 
into the PDP-7's 8K word Memory.)   It was not designed for ease of understanding.  C++ was 
born out of a similar notation but enhanced with the theory of Object-Oriented Programming 
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 In the first sentence of the preface of their book, The C PROGRAMMING 
LANGUAGE, [56], Kernighan and Ritchie state that "C is a general-purpose programming 
language which features economy of expression, ...  C is not a 'very high level' language, nor a 
'big' one, ..."  In the second paragraph of the zeroth chapter (CHAPTER 0: INTRODUCTION), it 
states that "C is a relatively 'low level' language." 
 
 Probably more important are the abstract definitions of OOP that take old words that 
everyone thought they understood, and use them in a different way.  It takes time to fit together 
all of the new definitions.  For example, what is a   protected abstract virtual base pure virtual 
private destructor  (from van der Linden, [98])?  But now you know something that clearly sets 
you apart.  What it has to do with software productivity, in terms of saving time and money for 
your employer, becomes immaterial if it guarantees your job for the next few years. 
 
 The security factor is deeply rooted in basic traits of human nature.  One of the strongest 
forces affecting the acceptance of new technology is the perception of one's job security.  This 
creates a very strong inertial factor that resists change. 
 
 It is this gap between perceived job security and real job security, resulting from higher 
productivity, that has put the OOP-C technology where it is.  But if management starts making 
accurate economic comparisons in a fair market environment, the reversal will begin.  And it has 
started.  Since 1994, the market for mainframes has come back to life.  Marketeers credit this to 
the “UNIX After Market” - after buyers realize that the cost to port their software to UNIX and 
C-based languages is greater than the hardware savings gained from UNIX platforms.  And it’s 
not just the cost of the port, or of building new applications.  It is heavily influenced by the cost 
of supporting the software over the long term. 
 
 
Separation of Skills - The Requirement of an Industrial Approach 
 
 We submit that separation of skills is the biggest differentiator between a craft and an 
industry.  The industrial revolution not only automated many jobs, it took crafts and turned them 
into industries.  This was most apparent in factories, where different job skills were clearly 
classified.  One did not have to be a craftsman to participate in the production of goods.  One 
could look to a career path that moved up the line as one increased architectural or management 
skills.  But such an environment does not exist in software.  And this is what is keeping software 
from moving from a craft to an industry. 
 

 There is a lack of production-oriented technology in software to support separation of the 
skills.  In other words, an environment must exist that supports the separation of skill sets.  With 
everyone using the same set of tools there are no differences.  In every other engineering 
discipline, there is a clear separation of designer from technician, architect from builder, etc.  So 
why not in software?  Because there have been no tools to provide this separation. 
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The Gap Between Perceived Job Security And Real Job Security 
 
 In a Software Special Report, [17], Business Week posed the question "Can the U.S. Stay 
Ahead in Software?"  This article described the growing number of software engineers and 
programmers in other countries whose price per hour is less than 1/3 of their equivalent in this 
country.  Thus, the cost of software development in foreign companies could be much less than 
their U.S. counterparts, even if they were not nearly as efficient at it. 
 

In that same article, Lim Joo-Hong, deputy director of research at Singapore's NCB 
brought out one of the major factors - "Software only needs people.  There is little need for a lot 
of other resources."  In that same article, Edward Yourdon, publisher of the monthly newsletter 
American Programmer in New York warned that cheap labor abroad could begin to make low-
level programming jobs in the U.S. obsolete.  He was quoted as saying "The only thing that has 
prevented it from becoming a crisis so far is that the software industry is growing so fast that we 
haven't seen many jobs taken away."  The article further warned "Without such entry-level jobs, 
the U.S. won't be able to employ large numbers of computer science graduates, further 
discouraging careers in the field." 
 
 Yet, in the U.S., when productivity is an issue, we divide into camps.  One camp says 
"What should we do to shed fat and cut costs?"  Another camp says "What should we do to 
produce more with our current resources?"   And a third camp starts to form a union to insure 
that salaries will not be lowered, younger workers cannot be hired at competitive prices, and 
anyone with seniority or longevity can't be laid off. 
 
 The approach to be taken certainly depends upon the market situation.  If the market is 
stagnant or drying up, we better slim down and get more productive at the same time.  If the 
market is good and possibly growing, we must become more productive, but investments to get 
there can help the bottom line by increasing market share.  In neither case does the union 
mentality hold hope for the long run.  Historically, it constrains management to make decisions 
that are not economically sensible.  This causes a gap between perceived job security and real 
job security.  Real job security only improves when an organization becomes more competitive, 
i.e., when that organization becomes more productive relative to its competition. 
 
 
THE NEED FOR - AND INERTIA AGAINST - A NEW TECHNOLOGY 
 

 The Structure of Scientific Revolutions by Thomas Kuhn, [57] is a classic work that 
describes the nature of scientific revolutions and corresponding paradigm shifts.  History is 
replete with major breakthroughs that have been stymied by politics for decades before they 
were accepted.  Change of any reasonable amount must be justified by a sufficient “quantum 
leap” of improvement before it can be accepted.  Another work by Clayton Christensen, [29], 
The Innovator’s Dilemma, tells about the fall of great companies when significant innovation 
comes about, typically by small companies.  It is first resisted by the large companies - and their 
clients, both having large vested interests in maintaining the status quo.  This is termed a 
“Disruptive Technology.”  It must be worth the upheaval from an entrenched approach and the 
corresponding investment in retraining. 
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 Change can be promoted swiftly by the glaring failure of existing approaches.  In the 
software field, failures are becoming more apparent.  The disparity in productivity in the 
computer field between hardware and software is an excellent example that is forcing the need 
for change.  Like the ripples before the major wave, change is preceded by trials that provide 
feedback into an approach that fills the real need.  And that is what we perceive to be the 
situation in the software field today.  The early waves have occurred because of the obvious 
growing need for change.  But the real wave has yet to hit the shore.  The old mold is not yet 
broken. 
 
 
The Case for a New Paradigm 
 
 For about 30 years, the Moore’s curve held that the number of transistors on a chip would 
double every 18 months, and therefore, so would computer speeds.  Then in 1997, Dr. James 
Meindl of Georgia Tech predicted it was going to flatten.  Anyone buying computers can 
validate his prediction.  In fact, Intel’s Itanium chip, with its 64 bit address space, is capable of 
handling a huge leap in memory, but its internal clock speeds are actually slower.  As memory 
appears to be headed beyond our dreams, processor speeds are stalling. 
 
 But this problem can be overcome.  Computers are being built today with thousands of 
processors, and using a single operating system to maintain speed, see [26].  They contain 
hundreds of terabytes of memory.  Also, the ability to handle the cache coherency problem1 in 
these computers appears to be under good hardware control.  So things still look rosy for 
expansion in the computer field. 
 
 But look again.  While hardware engineers produce great feats, tearing down barrier after 
barrier, looming problems in software have been hiding behind them.  Quoting Marcus Ranum, 
[77], 
 

 “...I see that Microsoft, Intel, and AMD have jointly announced a new partnership to help 
prevent buffer overflows using hardware controls.  In other words, the software quality problem 
has gotten so bad that the hardware guys are trying to solve it, too.  Never mind that lots of 
processor and memory-management units are capable of marking pages as nonexecutable; it just 
seems backward to me that we’re trying to solve what is fundamentally a software problem using 
hardware.  It’s not even a generic software problem; it’s a runtime environment issue that’s 
specific to a particular programming language.” 

 
 But Ranum’s article is just one example.  There is a large group of people experienced in 
both sides of the computer field - hardware and software - saying the same thing.  More 
importantly, the statistics on productivity show that the software industry has been going 
downhill every year.  But that is not the worst of it.  To take advantage of a large number of 
parallel processors requires a new approach to operating systems.  And here, it seems that we 
can’t even get it right for a single processor. 
 
 
                    
1  Ensuring that data stored in one processor’s local memory is not “out of sync” with that of another processor. 
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 Recent articles about Microsoft’s problems with its new Vista operating system bear this 
out.  In the Sept. 2005 Wall Street Journal, Guth, [46], describes Microsoft’s delays in its effort 
to come out with Vista, a new version of the Windows operating system.  It quotes Microsoft 
executives saying that there was no architecture! 
 
 This article was followed up by Cusumano in the ACM, [32], where he talks about the 
gridlock occurring on the Vista project, stating: 
 

 “We now know that the chaotic ‘spaghetti’ architecture of Windows ... was one of the major 
reasons for this gridlock.  Making even small changes in one part of the product led to 
unpredictable and destabilizing consequences in other parts since most of the components were 
tied together in complex and unpredictable ways.” 

 
 It now appears that we are already into an era where the computer field is constrained by 
software problems that present barriers to using new hardware technology.  To counter this 
problem, we must do a reversal on our approach to developing and supporting software.  And 
this approach must be based upon a new paradigm that takes full advantage of all that hardware. 
 
 What does it take to break the mold?  It requires a thorough cleaning of the conceptual 
slate of computer programming paradigms that we follow today.  It requires a hard look at the 
history of evolution, of how we've moved from writing in ones and zeros to where we are now, 
analyzing the initial waves of a revolution.  It requires a careful distillation of the changes that 
have occurred, the improvements in productivity, and most important, the underlying causes for 
these improvements. 
 
 In commercial software, one need not write programs or code for many applications 
anymore.  Systems have been developed that build user interface panels, and generate code 
automatically from input charts.  Typical financial reports can be generated using similar 
automated systems.  One need not be a programmer to use these systems. 
 
 In highly technical fields, e.g., communications or computer engineering, system 
engineers typically work to understand user requirements and produce automated system designs 
based upon powerful hardware facilities.  These engineers would just as soon have the 
programming part of the project eliminated.  One solution: automate the software development 
and support process.  But how can we do that?  As indicated above, we already have in many 
areas.  Many of these areas involve Computer-Aided Design (CAD) of very special engineering 
functions.  In this book, we are seeking a similar path for software.  It separates design from 
implementation by separating architecture from language.  Separate skills are then required to 
perform these different types of efforts, and the language is easy for a subject area expert to 
understand.  And this brings us face-to-face with the real problem. 
 
   As described in Microcosm by George Gilder, [40], human inertia is the major deterrent 
to innovation.  Some seasoned programmers have characterized the new technology presented 
here as “unprofessional.”  When asked why they consider it unprofessional, they typically reply, 
anyone can do it!  
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 In the chapters that follow, we describe a new paradigm for building software systems.  It 
allows developers to build models of a system in a simulated environment using graphics and 
high level languages.  Using this approach they can convert their models directly into actual 
system modules and then watch the real thing.  It follows the paradigm used for CAD of 
hardware systems.  It presents a new way to build large complex software systems, allowing one 
to build live test drivers in a simulated environment to exercise the actual software modules. 
 
 New students of software immediately relate to the ease of use of this new approach.  
They particularly like the ability to quickly build sophisticated graphical representations of 
information - something they are otherwise not able to do in today’s classrooms. 
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Chapter 5.    Objectives Of A Software Environment 
 
 
 

WHAT ARE WE TRYING TO ACHIEVE? 
 

 We know of no successful software application that has not evolved with changes once 
put into the hands of its users.  If new software works well, then as soon as the users start using 
it, new requirements emerge.  If the developer does not accommodate the desired changes, 
someone else will be waiting in the wings.  To survive in this competitive environment, software 
product developers must have their next upgrade in the hopper, in parallel with the one just 
going out, even though it may be months to another release.  Allusions to security and long 
lasting do not equate to standing still in a world of economic freedom. In today's competitive 
environment, the quest for survival implies constant improvement. 
 

 Lowering the time and cost to develop a product does not necessarily imply that it will 
cost more to support.  It is the overall life cycle economics that one must be concerned with.  
Getting an initial product into the hands of users quickly is a well tested strategy by many 
successful software companies.   Being able to get a product out fast may also imply that we 
have the right tools, and the people that know how to use them.  This can actually cut the cost of 
both development and support.  In fact, software history is filled with the reverse case: many 
very costly developments have ended up with software that could not be supported. 
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 It is our thesis that if a software environment does not favor ease of design and rapid 
prototyping, it will not support products that survive in the real market.  Implying that these 
features are incompatible with long-term, high quality software development appears to us as 
unjustified as the small memory model.  Software is built by people - architects and 
implementers.  If they are provided with the proper environment, including knowledge of 
customer economics, and knowledge of the tools and assets at their disposal, they will make the 
best economic decisions. 
 

 We start by considering software properties that correlate to minimizing the time and cost 
to build and support complex systems.  The definition of these properties has evolved from many 
years of empirical evidence that we have accumulated building complex systems and 
simulations.  The most desirable properties of the modules comprising a software system are: 
 

• Reusability 
 

• Scalability 
 

• Understandability 
 

• Independence 
 
 We seek an environment that ensures these properties are realized in the resulting 
software in a way that produces the desired economic benefits.  This implies an engineering 
approach to the design of a high productivity software development and support environment. 
 

 The concept of reusability has been important to the justification of various OOP 
paradigms.  This is a very important concept to us, in that reusability generally saves time while 
improving quality.  However, our definition of reusability is surprisingly different from that used 
for OOP.  We must understand this difference so we can differentiate our paradigms from those 
of OOP. 
 
 
THE MANY DEFINITIONS OF REUSABILITY 
 
 In the OOP paradigm there should be no need to have programmer-A, who wants to reuse 
programmer-B's class (module), look within the module to discover how programmer-B has 
implemented the functions in that class.  For the purposes of our discussion, a class can be 
thought of as a software module.  
 
 
Inheritance As An Approach To Reuse 
 

 If programmer-A wants to use programmer-B's class, he incorporates it as a subset of the 
class he is building.  If he wants to change the meaning of a function in the "reused" class, then 
he can define the implementation of the named function within the current class and it will 
automatically take on the new meaning.  However, he will not have access to the functional 
implementation of the original class.  This inhibits changes by anyone other than the original 
author - a protection mechanism. 
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 We quote Kenneth Rubin, [83], in Encapsulating Change: 
 

"By limiting the knowledge of how a particular function is performed to one place, we 
promote reusability and shield the system from the effects of change.  When change does 
occur, its effects can often be limited to the inside of a single message.  As long as the 
object still behaves outwardly the way it always did, the rest of the system will be 
unaffected.  Brad Cox put it well in his book, Object Oriented Programming, An 
Evolutionary Approach: 'Objects build firewalls around change.' " 

 
Using this approach, software is built having one black box inherit another, and so on.  With just 
a few layers of inheritance, the unused baggage that must be carried can become excessive.  To 
alleviate this problem, one may use special linking loader facilities to insure that only those 
functions actually used in the program will be linked in. 
 

 The paper by Rosen, [81], provides excellent examples of the problems with inheritance, 
challenging basic OOP concepts.  He cites the lengthy interchange among programmers on OO 
bulletin boards regarding the reusability of classes.  Clearly, inheritance has to be convenient, 
i.e., it has to save time and money over the life cycle of a piece of software if it is to be a 
desirable property.  Rosen also points out the relative nature of measures.  Almost any high level 
language is much better than writing in ones and zeros.  Therefore, anyone could say that all 
high level languages are good, or at least much better. 
 
 Thus we must qualify the words good or much better relative to a reference frame to 
ensure they are meaningful.  On this basis, Rosen draws the conclusion that "The popularity that 
OOLs (object-oriented languages) have achieved necessarily means their use carries a number of 
benefits.  Many of these benefits, however, are most noticeable only when compared with older 
programming languages such as Pascal or C." 
 

 Rosen’s paper shows how different people within the OOP community look at reuse 
differently.  He dissects the problem of inheritance as a means for reuse that allows a 
programmer to bend the inherited properties within his own class to meet his design criteria.  We 
fully agree with his conclusions on how this leads to a string of tightly connected dependencies 
that are difficult to maintain. 
 
 
A More Careful Look At Reuse 
 

 We encourage the reader to stand back and observe how the waters are easily made 
murky by arguments that are not tied to real economic measures, based upon real software 
experiments and their outcomes.  This has led to different definitions of reuse that are on 
different direction vectors relative to the economics of software life cycles.  Specifically, 
measures of software economics are not invariant to the hardware environment - the computing 
machine itself.  The availability of huge amounts of memory at very low costs has changed the 
way programmers justify their time.  We predict that parallel processing power will provide even 
greater dislocations of economic reasoning, once a software environment becomes available that 
is as friendly as that of a single processor. 
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 Let's take a practical example of reuse of a complex software module, e.g., one that 
manages large databases for direct access.  One typically devises a method for rapidly retrieving 
keys in main memory that can then be used to retrieve records directly from disk.  One prefers 
not to start from scratch to write a linked list, or other lookup method to manage the key index.  
Typically, one cannot reuse the same module in the sense described in Rosen's paper. 
 

 Most often, 5% to 25% of the design must be changed.  Given a good design, it typically 
takes much less time to change and test an existing module than it took to build and test that part 
of the original module in the first place.  Using the modular approach that we prescribe, one 
simply copies the old module, and starts making the changes.  Even if both modules happen to be 
used in the same task, concerns about duplicate code are typically insignificant when compared 
to other factors that swamp out the economic effects. 
 
 For example, duplicate code merely means more memory is being used.  So what?  One 
must compare the price of memory to the time it takes to change, test, and support a design so it 
can use old code.  Many cases that we are familiar with, involving a reasonably large module, 
would be sidetracked into becoming a relatively large project, just to figure out how to meet the 
requirement without changing the existing module.  In fact, the solution could end up convoluted 
and hard to understand by anyone other than the original author.  This would lead to significant 
cost increases in the support years. 
 

 Moreover, it is typically only the instructions that end up in the duplication issue.  The 
data buffers are usually independent.  But, the instruction set is usually small compared to the 
database.  One merely has to compare instruction swap space to data page space utilization in 
most programs to see this. 
 
 
The Large Memory Model 
 

 If one is concerned about speed, then duplication wins hands down.  Trading memory for 
speed is what today's large memory model machines are all about.  In retrospect, the modular 
approach permits one to go down inside a module, pull out the relevant submodules, and create a 
new module, an architectural option.   It allows the architect to consider more aspects of the 
design, create more easily reused submodules, and maintain a good architecture, one that will 
support future changes.  The architect is the best one to make this decision, on a case-by-case 
basis.  This normally results in an all-around enhancement when completed. 
 
 We must emphasize that the hardware world has moved to the large memory model today 
- leaving the small memory model behind.  There was a time when memory designers talked of 
the limitations they faced in terms of size, speed, and cost.  But today we have it all!  It’s big, 
fast, and cheap, particularly when compared to software development costs.  Writing software to 
fit into small areas of memory is a poor use of resources.  Trying to manage memory better than 
today's virtual memory managers is also a poor trade.  In fact, unless you turn off the system 
memory manager, it will take your manager, slice it up, swap it and page it back and forth 
between the hierarchical hardware memory layers, as it does its own thing. 
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Inheritance Inhibits Ease of Reuse 
 

 Proponents of OOP lead us to believe that “black box” reuse via inheritance is a 
discipline to which programmers should adhere.  Based upon our experience, this type of 
discipline does not correlate to improved software quality or productivity.  The problem is this: 
 

• inheritance inhibits both understandability and independence, the two major factors 
affecting real reusability. 

 

Rosen's concern with inheritance supports our view.  Anything connected to an old module 
represents a dependence that is potentially messy.  Dependencies must be well understood, else 
the new module will be hard to extract and test as well as to maintain. 
 

 As an example, assume that we wish to improve a module.  With inheritance, and the 
consequent hidden code, we may have little knowledge of the implication of a change.  To gain 
that knowledge, we may need to see everything connected to that module.  This does not inhibit 
protection mechanisms that ensure unwanted change will not occur. 
 

 We have no objections to hiding code that we do not wish to see, since it may cloud the 
issues of concern.  But if we wish to understand what is going on inside a module, we may need 
to see it all. 
 

 Inheritance may inhibit independence.  If an old module is inherited, the new module 
may have dependencies on the inherited module that are invisible to the new module.  If we 
inherit the new module somewhere else, the problem is compounded, as these hidden 
dependencies cascade. 
 
 
WHAT ARE THE REAL OBJECTIVES? 
 

 We believe one of the major objectives is a open environment, where visibility and 
protection are both very high.  We fully understand the importance of tightly controlling changes 
in a production environment.  This involves making decisions based upon business goals as to 
what should be changed, deciding on priorities, and managing access to those modules that have 
been authorized for change.  This must be followed by highly disciplined regression testing, 
including controlled changes to, and growth of, the test driver packages. 
 

 To implement the open approach, software modules must be protected from unauthorized 
access.  But once the access is authorized, those given the responsibility for change must be able 
to drill down to any level of detail required to understand the logic.  This includes having access 
to the complete details of relevant modules that they are not authorized to change.  Experience 
shows that visibility leads to better solutions, including a potential management decision to 
change something not previously authorized.  It is common to decide that the real culprit is a 
different module that, if changed, makes the problem easier to solve, and solves similar future 
problems. 
 

 As another case, one may decide to copy (and rename) a module not authorized for 
change.  Then that module can be changed to solve the original - as well as other - problems for 
different modules.  This does not affect the independence or protection from unwanted change of 
the original module.  Controlling change is  a protection issue - not a visibility issue!  
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 Another objective is the ability to isolate problems quickly.  One should not have to plow 
through layers of modules or code to find out they are irrelevant.  This implies the ability to 
quickly perceive where the problems are and what must be added or changed.  This is an 
architectural issue. Experienced hardware designers have learned to inject layers of isolation 
between modules to ensure their independence. 
 

 The property of independence is directly applicable to software.  This becomes obvious 
when one can “see” the architecture.  But one must first realize that architecture can not be seen 
from the code.  This implies that the architecture must  be visualized or drawn, an engineering 
approach.  This also implies that we must have an unambiguous - one-to-one - mapping from the 
architecture to the implementation (code), just as we do with drawings in other engineering 
disciplines. 
 
 
The Importance Of Understandability And Independence 
 

 In a production environment, one would not reuse a module without verifying its 
operation.  This can be done in two ways.  One can take a black box approach (OOP) and 
validate the input-output relationships.  This implies running all tests necessary to learn what 
will happen with all possible inputs.  But, as illustrated above, inheritance causes the level of 
complexity to go up exponentially with the ancestors.  Thus the dimensions of the test space can 
become enormous quickly as the concatenated sets of black box responses grows, making testing 
very difficult. 
 

 Alternatively, one can limit verification tests by having a detailed understanding of the 
internal design of a module.  This leads to the first most important property from our economic 
standpoint - understandability - of the details of a module. 
 

 In the world of computer simulation, where validity is a hard constraint, one could not 
sell a model on a "black box" basis.  Engineers must be able to easily understand what is inside 
the model so they can validate it from a specification standpoint.  They want to review 
engineering drawings, and read data structures and rule structures, as if they were written 
specifications.  They want the ability to get in and make changes easily, to suit their own needs. 
 

 Our objective is to provide the same open view in software modules.  This in no way 
implies lack of protection of the original module.  Nor does copying a module imply the creation 
of an unnecessary redundancy within a given system.  Most of the original module may be used 
as a utility, maybe by many other modules where appropriate.  We want our development teams 
to be concerned about the trade-offs of getting the initial product built - using minimum time and 
resources - versus the efficiency of the end product in terms of running times and memory 
utilization.  Most important, we want our teams to know that if good initial products are built, 
they will be reused over and over - provided they can be easily understood, validated, modified, 
and supported by other than the original teams that built them. 
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 The fact that a module may depend on many other modules in a tightly coupled manner, 
leads to the next most important property - independence.  When a module is independent, it has 
minimal coupling to other modules.  This implies it shares only those attributes required for its 
specific function.  At this point, we must point out the practical problems versus the theoretical 
problems, and take an engineering approach.  If everything is working properly, independence 
can be ignored.  It does not affect the operation.  But make a change, or encounter a problem 
from a user, and independence leaps to the forefront. 
 

 As indicated above, independence is an architectural design property that cannot be 
appreciated unless one can see the architecture.  An architecture that provides a high degree of 
independence of modules provides for fault isolation, an important property of hardware design.  
It also supports understandability, since the scope of concern is limited. 
 
 
A REVIEW OF SUCCESSFUL ENGINEERING PRACTICES 
 

 When skyscrapers, bridges, and aircraft are built, the probability of failure must be 
reduced to extremely small percentages.  Architects and designers of these systems must produce 
reliable design plans and accurate time estimates to avoid what become highly visible mistakes 
or failures.  This is generally accomplished by reusing previously proven designs.  To lay the 
ground work for a new approach to software, we will first review some long-standing 
engineering practices that have evolved to protect against project failures.  See, for example, 
Jesse Poore’s article, [73]. 
 
 
Engineering Drawings 
 

 In electrical, mechanical, aeronautical or architectural engineering environments, the 
requirement for design reusability is so obvious that it goes unmentioned.  In these 
environments, a design, and its corresponding specification documents, are controlled by 
engineering drawings.  When people buy a design, the most critical piece they buy is the set of 
engineering drawings.  The drawings graphically depict the architecture.  The specifications 
provide the details. 
 

 Prior to its automation, engineering drawing was a required course in most engineering 
curriculums.  It is a discipline for carefully representing complex architectures pictorially.  It is 
implemented as a formal method of documentation, complete with standards for controlling 
multiple sets of drawings, interconnections between drawings, revisions, etc.  Drawings provide 
for references to more detailed drawings in a controlled hierarchy, as well as sets of carefully 
written specifications.  The intent of the drawings and specifications is to allow someone other 
than the original designer to build to the drawings and specifications. 
 

 The most critical difference between engineering drawings and graphical approaches to 
software is that engineering drawings are a precise depiction of the connectivity of the physical 
entities being described, with no ambiguities, relative to the desired specification level.  If one 
reviews engineering drawings of circuits, chips, boards, machines, etc., every icon and 
interconnect line represents a physical element. 
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 If one reviews graphical depictions of software, e.g., block diagrams, state diagrams, 
bubble charts, structure charts, Booch diagrams, etc. everyone contains layers of abstraction with 
ambiguities within the desired specification level, i.e. there is no direct mapping to the elements 
of code. 
 
 This suggests that we need an engineering drawing approach to software that eliminates 
these ambiguities and maps the elements of a drawing right to the code.  The approach that 
achieves this objective is derived from the Separation Principle, developed in 1982 by Cave, 
[23].  The Separation Principle separates data from instructions, a basic paradigm switch from 
programming languages, and particularly from OOP.  It provides the framework for drawing 
software architectures, automating the design process, and changing the paradigm of 
programming as we know it.  It provides for visual design reviews of the engineering drawings 
that get right to the heart of problems before they get out of control.  Engineering design rules 
can be checked by a quick visual scan, or even automatically.  We know of no other approach 
that does this.  It is described in detail in the chapters that follow. 
 
 
Separation Of Architecture From Detailed Implementation 
 

 In hard engineering disciplines, architecture is separated from construction or fabrication.  
Engineers design the architecture and then oversee the construction or fabrication process.  They 
don't bend the metal, solder the joints, or drive the nails.  Engineers may not possess these skills, 
skills that often require craftsmen that have been trained over a number of years.  Masons, 
carpenters, plumbers, electricians, sheet rockers, painters, etc. do not meet and decide to build a 
building.  They are given a detailed set of architectural drawings and specifications to follow.  
The architect oversees the construction of his design to make sure that his drawings and 
specifications are being properly interpreted and followed. 
 

 There is no such separation of skills in the programming world today, particularly with 
OOP.  Object Oriented Programmers get together and decide on the objects to be built, and who 
should build them.  Then they proceed to build them.  (A common joke in the industry is that 
interfaces are designed by the first programmer that gets there.)  It has been said by many people 
who lived through the software revolution of the '70s that OOP killed top-down design in one 
shot.  As a result, it has killed the concept of system architecture as being a separate discipline 
from writing code in a programming language, a problem emphasized by Strassmann, [94]. 
 

 The approach that we advocate provides the natural separation of skills, between 
architecture and detailed implementation, as in other engineering environments.  Architects 
produce the drawings and top level specifications, people skilled in constructing detailed data 
structures and algorithms complete the final product in a somewhat natural language.  No one 
writes computer code using a typical programming language, e.g., C++ or Java.  C and Open-GL 
code is generated automatically.  By raising the level of understandability and visibility, the 
importance of architecture and its effects on reusability become apparent. 
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Designing Reusable Modules 
 

 To design reusable modules, we must decompose the functional parts of a system and 
organize them into a convenient framework that provides visibility of architecture and clarity of 
detail so that people other than the original designer can easily understand it.  In hardware, this is 
done by creating a design that breaks the system down into a well structured set of independent 
modules, i.e., they can be tested and supported independently from the rest of the system. 
 
 The most important  properties of good reusable software modules are the following: 
 

UNDERSTANDABILITY 
 

• Visibility  -  of the separate functional aspects of each module, the 
interdependencies of each, and thus the structure of the system; 

 

• Clarity  -  of detail, as well as structure, so that they are quickly understood, 
revised, and enhanced; 

 

INDEPENDENCE 
 

• Isolation -  between the parts to minimize their interdependencies; 
 

• Protection  -  of modules from being inadvertently changed in a way that 
would cause other modules not to operate correctly (regress); 

 
These properties also determine the scalability of a system, i.e., its ability to expand to provide 
much wider functionality. 
 
 To achieve these properties, one is faced with the problem of achieving visibility and 
clarity while providing isolation and protection.  From the OOP perspective, these desires may 
appear to conflict with each other.  The resulting OOP solution appears to ignore visibility and 
clarity.  Such a solution fails when one builds very large systems. 
 

 The key facilities required to support the modularity properties are:   
 

• Separation of architecture from detailed implementation. 
 

• Graphical depiction of the architecture 
 

• Languages that support the above two bullets 
 

These are introduced below. 
 
 
COMPUTER-AIDED DESIGN AT THE SYSTEM LEVEL 
 

 Automation of programming has already been accomplished successfully in the field of 
Computer-Aided Design (CAD).  In the 1960's, engineers who required complex simulations to 
support difficult electronic designs were highly dependent upon programmers to implement the 
models and simulations.  Today, engineers build very large complex models and run simulations 
using CAD systems without anyone writing computer programs. 
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 Using the approach described here, engineers describe the software architecture and 
algorithms for complex systems in their own terms, using graphics and natural language.   This is 
a CAD approach to building software systems, a vision described by Jesse Poore, [73].  An 
illustration of this approach is shown in Figure 5-1.  It is taken from a product called VisiSoft 
that we describe later. 
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Figure 5-1.  Computer-Aided Design (CAD) at the system level. 
 
 
 For drawings to provide a precise definition of the desired engineering design solution, 
they must be free of abstractions or ambiguities at the level of specification required.  An 
example is the graphical depiction of the logical or electrical design of a system.  One sees 
various types of gates and flip-flops interconnected with specific wire connections.  There are no 
abstractions, and therefore no ambiguities, between the design and implementation level.  A flip-
flop may be implemented in many ways at the electrical level, and one can argue that the symbol 
of a flip-flop represents an abstraction from the detailed electrical design standpoint.  However, 
at either the electrical level or logical design level, there are no ambiguities. 
 

 In OOP, the design is implemented at the programming language level, with the classes 
or objects being defined in the language.  There is no architectural view of the structure, no 
detailed drawings, only descriptions of functions or messages that are associated with classes of 
intentionally hidden code in a language, e.g., C++. 
 

 The same freedom from ambiguity should exist at the architectural design level in 
software.  It is our assessment that current diagrammatic approaches to depicting software, 
including those of the CASE and UML systems, have a layer of abstraction between the top level 
design and the detailed implementation (code).  This is because of the ambiguity of what the 
interconnections depict. 
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 To provide a CAD approach, the interconnection of well specified blocks of code must be 
defined precisely by the drawing, without ambiguities between the architecture and the code.  
Our intent is to show the reader that we now have the same level of CAD facilities available to 
support designers of general software systems as those used for engineering design in other 
disciplines.  This is CAD at the system level, not just the chip or board level as it currently exists. 
 
 
Architecture Versus Detailed Implementation 
 

 Engineering CAD systems serve a particular design or implementation purpose using an 
integrated set of tools.  This is apparent in computer system design where one has different CAD 
tools to support logical design, electrical design, chip mask design and printed circuit board 
design.  These design tools have been integrated to eliminate design ambiguities as one moves 
from the logical layer to the electrical layer to the chip and the board.  They are used by experts 
at the different levels, although the experts at the electrical level generally understand the design 
problems at all of the levels. 
 

 Software organizations tend to lack this hierarchy of expertise.  There are applications 
specific experts, and “systems” experts (OS, communications, etc.).  But there is no hierarchy 
from the specifications to the implementation of an application.  The approach offered here 
introduces a precise separation of the design of a system's architectural structure from the 
detailed implementation of its elementary modules.  This provides a focal point between 
architecture and implementation.  There is no doubt about who is responsible for what.  The 
structural architecture requires an expert who knows how to design large complex systems.  The 
detailed implementer has expertise in implementing modules - more of a coding function. 
 
 This separation provides for management control of the total design through an 
architecture environment, and the corresponding engineering drawings that are produced.  
Design reviews are at the drawing level.  It does not take knowledge of a programming language 
to understand whether a design is good or bad.  An architect can generally look at the drawings 
and determine if the design structure is good, without getting into details of the implementation 
of a specific module.  We note that, as in engineering, architects generally know both.  But 
electricians and plumbers, although certified in their skills, are not architects. 
 
 
Support For The Software Life-Cycle 
 

 Figure 5-2 depicts the typical steps in the life-cycle of a software product.  A successful 
product gets used for many years.  It evolves to meet new user needs during its lifetime.  The 
figure shows the iterative steps to building and supporting a system.  If the design takes this life-
cycle of constant change into account, then the architecture must evolve to support the changes. 
As in hardware, this implies breaking the overall system into individual modules within a system 
that are maximally independent.  The shaded area shows the focus on this type of design.  One 
must continuously reconsider the overall system architecture as well as the individual module 
architectures that implement the evolving design. 
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Figure 5-2.  Typical steps in the incremental development of an evolving system. 
 
 
 To insure reusability of modules and the ease with which a system can be understood, 
one must produce an architecture that supports ease of implementation of the attribute and rule 
structures of the modules.  This is no different from constructing a set of complex buildings in a 
real estate project.  One would not consider calling in the carpenters, electricians, plumbers, etc. 
without a set of architectural drawings that provides these people with all the details needed to 
ensure that everything they implement will go together to form a high quality integrated product. 
 

 It is essential that the overall architecture of a system be well designed.  For example, 
large systems may be split into multiple tasks, each being highly independent pieces that 
simplify development and support.  Separate tasks may run on separate processors, 
communicating via multiple networks.  Deciding how to split the system into separate tasks is 
clearly an architectural design question.  Breaking out the top-level modules of a task into 
submodules is also a major architectural issue.  This requires that critical interfaces are specified 
at the module architecture level. 
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 One must specify, if not design, some of the detailed layers to the level of the data 
structures at their interfaces, and specify what rule conditions will be needed, before finalizing 
the architectural design.  This implies an iterative approach to the design as shown by the arrows 
in Figure 5-2.  Having an architecture that accommodates change is necessary to accurately 
estimate and control a new release. 
 

 As detailed implementation proceeds, and more information is understood about real 
system details, one may determine that architectural improvements are needed as certain 
modules evolve.  As a system starts to produce output results, and one finally faces what is 
important, it may be necessary to significantly enhance, or even add, modules in the architecture. 
 

 A system must be designed so that these problems are accounted for at the beginning, not 
when someone is expecting final results.  We believe that the most significant factor affecting 
the cost of structural modification is the manner in which the architecture is designed.  It must be 
designed so that the inevitable forces of change are easily dealt with, accommodated, and 
controlled.  This is covered in Chapter 8, “Software Architecture”. 
 

 Our approach is tailored to support the ease of understanding and evaluation of system, 
task, and module architectures through the use of engineering drawings.  This insures the 
development of architectures that permit major changes in task and module structures with 
relative ease.  To take advantage of this facility, one must apply the appropriate discipline to the 
architecture phase of a system.  The detailed architecture must be completed first, and a set of 
drawings reviewed and approved.  The drawings must be inspected to determine if the design 
provides for module independence and ease of restructuring. 
 

 Those who have developed multiple successful software products know that the constant 
requirement for change is a major factor in the life cycle of complex software systems.  For 
them, the lesson is obvious.  The software survivors will be those with the ability to control 
increasing complexity, and this requires the ability to adapt to continual change. 
 
 We agree with the basic premise of DeMarco and Lister in Peopleware, [36].  The 
cultural and sociological environment in which creative people must work is important.  Their 
attitudes must be directed positively toward solving problems that require intensive thought and 
concentration.  Providing these people with the proper tools and management environment is 
critical to maintaining that attitude.  And, as Deming implies, happiness (survival) stems from 
constant improvement - on all fronts. 
 
 Designers and implementers must understand that their value depends upon economics as 
defined by the buyer of the software they produce.  This must be perceived from a life cycle 
standpoint.  Everyone must be well informed about customer desires, satisfactions, and 
complaints.  The attitude of the designers and implementers toward survival is important.  If they 
can relate the survival of the software they are building to their own personal value and survival, 
then they are in the best position to make the economic decisions on how to do both the 
architecture and the implementation. 
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IMPLEMENTING REUSABILITY 
 
 By our measures, reusability of a module is determined by the following factors. 
 

• Range of Functionality 
 

• Scalability 
 

• Understandability 
 

• Independence 
 
 The wider the range of functionality, the more likely that a module can be reused in a 
new application.  This is obvious from questions like "Does your module contain ...  ?  If not, 
what will it take to incorporate it for my application?" 
 

 Scalability simply implies that the range of functionality is easily expanded.  One must 
consider this from the standpoint of adding new functions as well as expanding an existing 
function. 
 

 A high degree of understandability simply implies that no special knowledge is required 
to understand the module description.  Anyone with a good knowledge of the particular 
application being developed should be able to understand these descriptions.  In other words, one 
should not have to learn a new language to determine whether a module is valid and desired.  
One should only need to know what the module is supposed to do functionally. 
 

 Independence is determined by the ease with which one can pull out an old module and 
replace it by a new one, or test it independently in a separate test jig.  This, in turn, is determined 
by the amount of connectivity that the module has with other modules in the system, and can be 
determined by the number of interconnections between modules as shown on the engineering 
drawings.  This is hardly different from the measure of independence of a hardware module.   
 
 
Productivity 
 

 From the above, we conclude that productivity depends upon understandability and 
independence.  We have drawn an illustration of these two factors, postulating their relation to 
productivity in Figure 5-3 below. 
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Figure 5-3.  Relationships among productivity, independence, and understandability. 
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 Clearly, there are a number of additional factors that correlate to productivity, and also to 
independence and understandability.  The purpose of the illustration is to show simply that 
productivity relates to the components of independence and understandability.  We admit that 
assigning quantitative values will depend on many things, and may be difficult to measure.  But 
we must begin the measurement process. 
 

 Looking at the above figure, one can perceive understandability as being measured in 
man-hours for someone, other than the original author, to understand and change a given module 
in the support mode.  One can perceive independence as being measured in man-hours to 
independently test the changes to that module.  Productivity is measured in man-hours to 
complete a change to a module, i.e., to modify and test it.  The time to change the module will 
depend upon its independence as well as its understandability, and this is where orthogonality 
must be considered. We advocate experiments that would further quantify these properties, and 
believe such research efforts would result in very important contributions to a real science of 
software engineering. 
 

 As we will see in later chapters, using the VisiSoft environment, we can get a 
quantitative measure of independence in terms of a connectivity matrix, i.e., a measure of what 
processes (instructions) share what resources (data).  We can also take economic measures of the 
time it takes to independently test modules with different levels of connectivity, in isolated test 
jigs.  Understandability could be measured along the lines of Fitzsimmons and Love, [38], and 
Ledgard et al, [59].  All we are trying to accomplish here is to articulate the hypothesis that 
productivity increases directly with increased independence and understandability, and to 
suggest approaches to the scientific experiments required to establish its validity. 
 

 
THE NEED FOR AN ARCHITECTURE ENVIRONMENT 
 

 OOP does not have a true architecture environment.  Everything is done inside the 
programming language.  Although Rational Rose and Borland offer an environment, they are 
built around C++ where architectural design functions are performed inside the language.  This 
assertion will be made clear in the next few chapters. 
 

 
Achieving Scalability Via Hierarchies 
 

 As indicated in Chapter 2, scalability is a measure of software size that can be achieved 
under full control.  It also determines the ease with which a software product can continue to 
grow - under control.  Scalability is a major driving force in promoting good architecture.  The 
reasons stem from basic principles of controlling complex systems and organizations, 
particularly those that are growing and changing. 
 

 The military provides an excellent example of the problem of an organization 
maintaining control of its assets under extreme change - even near chaos.  It is well known that 
such systems are maintained and changed using hierarchies of control.  In the military, this is 
known as the “chain of command.”  It is highly organized for quick decisions and rapid 
responses.  It is not a bureaucracy (they can be flat organizations).  Hierarchies are also key to 
controlling the design and manufacture of complex engineering systems.  This is most obvious in 
the aerospace industry for the construction of large jet liners. 
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 Using hierarchies to achieve scalability is also obvious in software, once the paradigms 
are in place to observe them.  Unfortunately, in the current software field, hierarchies appear to 
be an anathema.  In fact, they are a critical characteristic of complex data structures, complex 
rule structures, and complex architectures that are scalable.  This will be apparent in later 
chapters. 
 
 
Graphical Depiction Of The Architecture 
 

   Our approach draws on experience with hardware modularity and the use of engineering 
drawings to provide visibility of the design hierarchy.  This includes a measure of module 
independence that ties directly to the time and cost to test, support, and reuse a module.  This 
requires that the architecture be precisely defined by the drawings, with no ambiguities.  It 
requires a clear focal point as to what is architecture and what is implementation. 
 

 To accomplish this requires that we have graphical visibility another layer down, to the 
interconnection of data and instructions.  This can only be accomplished if we can review a one-
to-one mapping of each, implying data and instructions must be distinct, separate elements on a 
visual diagram. 
 
 
Separation Of Data From Instructions 
 

 Figure 5-4 contains the layout for one of IBM’s PowerPC RISC chips.  It is 
representative of today's modern machine designs.  There are separate Instruction Cache and 
Data Cache, Instruction Tags and Data Tags, Instruction Memory Management and Data 
Memory Management, etc.  The same instruction sets can act on different data sets.  So, when a 
compiler generates assembly language, and the assembler generates machine code, data is 
separated from instructions for management inside the machine on a very general and 
dynamically natural basis. 
 

 Understanding the internal processes of a computer helps us to take advantage of the 
technology.  For example, data gets operated upon by instructions.  Instructions are fetched from 
memory and typically cause the values of the data portions of memory to change.  We may add 
one memory area to another memory area, putting the result back into one or another memory 
area.  It may get copied from one area, possibly transformed using registers and the 
arithmetic/logical operation units, and the result put into the same or another memory area.  Data 
does not flow from one spot to another.  It gets transformed as a function of time.   If X is a 
generalized “data vector,” then one can write X(T+1) = A*X(T) where A is a generalized 
transformation on the data vector of interest.  If one considers external inputs as U(T), then one 
has X(T+1) = A*X(T) + B*U(T), a well-known general dynamic operational form. 
 

 Taking this concept one step further, consider that a data vector is a subset of the total 
data set (memory area) available to a task.  If X is the data vector available to a particular 
process (set of instructions) within the task, then X(T) is the state of that data vector before it 
executes, and X(T+1) is the state of that data vector after it executes.  The operator A represents 
the transformation on that data vector as process A executes between time T and T+1. 
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Reprinted with permission from /AIXtra, IBM’s Magazine for AIX Professionals. 
 

 
 
 

Figure 5-4.  The IBM PowerPC 604 RISC chip. 
 
 
 
 We now define generalized data vectors as Resources that may contain strings of 
characters or words as well as numbers.  Processes transform resources from state to state.  We 
call this a generalized state space. 
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A CAD APPROACH TO SOFTWARE 
 

 Figure 5-5 illustrates a CAD concept applied to software.  This figure illustrates module 
hierarchies, with some modules covered - others showing details.  Modules are uncovered with a 
mouse click.  At the detailed level, small ovals represent hierarchical data structures (resources) 
and the small rectangles represent hierarchical rule structures (processes).  To have access to the 
resources, processes must be connected by a line.  Note that some resources are shared, having 
connections to more than one process.  Others are dedicated to a particular process.  Colors 
indicate type of module.  The module shown in the figure is a library module, called from other 
modules. 
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Figure 5-5.  Illustration of primitive data elements connected to primitive instruction elements. 
 

 
 This approach requires a complete paradigm shift from current computer programming 
methods.  It provides a one-to-one mapping from the architecture to the primitive language 
elements with no ambiguities regarding how they are connected.  In Chapter 6, we will show that 
this paradigm is derived directly from that used for representing general dynamic systems in 
control system engineering.  We shall also describe the profound implications that this approach 
has on the separation of architecture from language, and the ability to insure that only the 
architects can change the architecture; implementers (coders) cannot. 
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  This approach was driven by the need to develop large scale simulations of 
communication and control systems, simulations that must run very fast - on parallel processors 
under a single operating system.  This led to a breakthrough - now called the “separation 
principle” - that separates data from instructions.  Conceived in 1982 by Cave, [55], this 
approach allows one to track software module independence, and automatically allocate 
processors to processes at run-time on a large parallel processor.  Module independence is 
determined by the number of external connections between a particular module and other 
modules in the system.  This can be determined by visual inspection of the drawing. 
 

 The separation principle provides the basis for engineering drawings of software, with a 
one-to-one mapping from the drawings to the code, a true form of software architecture.  As in 
other fields, architecture is much more graphical than algebraic or textual.  Whether designing 
machines, ships, or buildings, architects produce drawings.  These drawings are not 
“approximate” or suggestive, but precise engineering specifications used directly in production.  
Until now, drawings of software were abstractions to aid in design, but not of much use in the 
actual production or support mode.  Just as important are the separate languages that define the 
data and instructions.  They are read easily by non-programmers, a requirement for subject area 
experts validating complex models. 
 

 This CAD environment has evolved over hundreds of successful software and simulation 
projects, and is now a fully integrated product for developing software.  Prior to this CAD 
approach, software architecture did not exist, an observation that is immediately apparent upon 
seeing it.  After using it, one quickly draws the analogy between current programming 
approaches, and architects in other fields trying to produce designs without drawings.  It is 
readily apparent that one cannot determine the independence of software modules without the 
ability so see a picture of the architecture.  The recent articles about Microsoft’s problems with 
its new Vista operating system bear this out, [32], [46]. 
 
 
Architecture Versus Flow Charts 
 

 In Chapter 3 we noted the introduction of flow charts during the era when programmers 
wrote in machine code or assembly language.  This was because the statements on the flow chart 
were more readable.  In particular, instructions that transferred control took time to understand.  
Furthermore, a single flow chart element typically represented multiple instructions.  A single 
box may have had an equation in it, and a test and transfer diamond could split in three 
directions.  However, as FORTRAN and COBOL appeared, flow charts became cumbersome 
compared to the code because the statements were more easily read and understood. A good 
language covered as much on a line as did an element on the chart, and took a lot less paper. 
 

 The disadvantages of flow charting became more pronounced with languages having 
more readable names and good control structures, eliminating the use of the GOTO.  This did not 
stop people from wanting flow charts, and programs appeared that created flow charts from 
COBOL code.  The classic joke was that flow charts were created automatically and attached to 
documentation - but no one ever looked at them.  Productivity was clearly improved using a 
good language instead of diagrams of what the language was saying.  Flow charts diagram the 
language inside a process, not the architecture as described here. 
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Generalized Data Vectors And Transformations 
 

 Our use of the term drawing in conjunction with architecture has nothing to do with flow 
charting (or similarly state diagrams).  Flow charting represents the flow of control in a routine 
or program.  Most software people who have worked on large complex data systems for a long 
period of time will quickly point out that it is the data that drives complexity.  The manner in 
which one breaks up the database, comprised of all of the elements used to make decisions as 
well as used in operations, is key to the architecture.  Flow of control follows. 
 

 As described above, using state space equations in engineering (or the equivalent), 
systems are represented as transformations that take place at a point in time.  If the 
transformations are properly designed, then the changes unfold in time as desired.  The systems 
are not represented in terms of a flow diagram.  The are represented in terms of a state vector and 
transformations on that state vector.  The architectural approach defined here is basically the 
same, except that we have extended the concept of a state vector to a generalized state vector (a 
resource) where symbols and words are not restricted to numbers, and transformations 
(processes) are not restricted to mathematical operations.  These are implemented using data 
structures and rule structures respectively. 
 
 
The Drawing - Language Breakpoint 
 

 There is clearly a transition point between language and drawings.  Where should that 
point lie?  We offer the following generalizations.  Drawings will be used where they improve 
productivity over language.  Language will be used when it improves productivity over 
drawings.  We note that productivity as used in this book is defined in Chapter 2, being 
measured using loaded costs and life cycle time measures in a competitive product environment. 
 

 In the building industry example, architects provide sets of written specifications with 
their drawings.  The drawings are the top level control system.  They reference the specifications 
for more details.  So just as productivity suffers using all language, it would also suffer using all 
drawings. 
 

 We have described the productivity advantages of flow charts when writing in machine 
code or assembler, and the loss of those advantages when higher level languages were 
introduced.  This was particularly true with the advent of COBOL, with its understandable 
names and dramatically improved control structures.  This is indicative of a breakpoint between 
language and drawing. 
 

 A flow chart could apply to the language inside a process as defined above.  But, as 
indicated, flow charts stopped being used when good languages were developed.  With more 
understandable names, good control structures, and no GOTOs, flow of control is best 
represented using language statements, as opposed to diagrams. 
 

 But flow charts are a totally different concept than the drawings described here.  The 
architectural breakup of a system’s total database - and the transformations on subsets of that 
database - are best represented using drawings that cover a hierarchy of modules within the 
architecture.  As we shall see, this also supports a top-down design approach. 
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A LANGUAGE ENVIRONMENT TO SUPPORT THE NEW PARADIGM 
 
 We must now consider a language environment that supports the other new paradigm - 
separation of architecture from implementation.  As mentioned above, this can only be 
accomplished by the separation of data from instructions.  This is accomplished with another 
significant paradigm shift.  Instead of a single language, there are three: one to describe data 
structures (data), one to describe rule structures (instructions), and one to specify controls and 
interfaces for tasks that represent the combination of modules in a “executable program”.  This 
allows designers to focus on the features of each language to ensure clarity of detail, and 
eliminate the need to learn esoteric programming or control languages.  As derived in 
Fitzsimmons and Love, [38], and suggested in Ledgard et al, [59], this implies that they must 
read like a natural language.  The use of a separate general language for control, instead of 
special control languages (e.g., scripts, JCL, etc.), provides for independence from the hardware 
platform and operating system, allowing one to easily move software from platform to platform, 
e.g., from Windows to Linux. 
 
 By natural language we imply a language that is easily understood by anyone who can 
read a book and understands the subject area.  One should not need to learn an esoteric language.  
To do this, ambiguities must be qualifiable by the context of the statement, alleviating the reader 
from having to parse special “mechanical language” qualification structures.  Of course, using a 
less restrictive language shifts the burden of qualification in the translation process from the 
human to the computer.  This implies language translators that are extremely complex.  If 
designed and used properly, a good language provides redundancy, a significant property of the 
English language.  Specifically, it raises the probability of quickly transferring the meaning to 
the reader, increasing productivity. 
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Chapter 6.  Evolution Of A New Technology 
 
 
 
THE EARLY DAYS 
 
 The technical backgrounds of the VisiSoft developers were the creation of Computer-
Aided Design (CAD) products for electronic circuit design in the 1960s.  In the early 1960s, 
engineers typically went to the computer center to have programmers build computer simulations 
to test their designs.  In many cases, engineers completed the design and tested their circuits in 
the laboratory before the simulations were completed.  This was due to the level of complexity of 
the modeling, software design, implementation, and test effort required to build a sufficiently 
accurate simulation. 
 
 The process of developing circuit simulation software was apparently esoteric for the 
programmers and took much too long.  The results were also unreliable.  As a result, engineers 
started to design their own CAD packages.  They determined that they could automate the 
process, ensure more design reliability, and simplify the user interface at the same time.  To 
them, computer programming was simply a means to an end.  Their approach was to eliminate as 
much of it as possible so they could quickly create simulations to solve their design problems.  
Their goal was a significant improvement in productivity in a world of growing complexity. 
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 Today, designers using CAD packages no longer interface with programmers.  They 
interface directly with CAD systems.  Engineering drawings of their circuits are built using 
simple graphical inputs to the CAD system.  The drawing is translated automatically into 
simulation software and also serves as the principle documentation of the design.  What once 
took many months of work is now done in hours. 
 

 In 1968, the creators of VisiSoft developed the first worst case circuit design / 
optimization software package, the Constrained Optimal Design (COD) system, [22].  Instead of 
analyzing a postulated design, the total design problem was defined in this CAD system.  The 
computer posed the designs, thousands of times a second, and picked out the best solution. 
 

 In the 1970s, these creators also developed one of the first graphical interfaces to their 
CAD package for electronic circuit design.  It allowed engineers to pull up drawings of standard 
circuits, modify a few components graphically, store a new circuit drawing, and call on the 
optimization process to design it.  Almost everything was done interactively through an easy-to-
use graphical interface. 
 

 In the late 1970s these same creators developed a CAD system for modeling business 
markets and predicting demand for products.  Through the early 1980s, this package - the 
General Stochastic Modeling (GSM) system - was sold to large industrial organizations to 
support complex market modeling. 
 
 
EVOLUTION OF A SOFTWARE DEVELOPMENT TECHNOLOGY 
 
the General Simulation System 
 

 In the early 1980s, the same creators moved to solving engineering design problems for 
advanced wireless communication systems.  When describing the complex decision processes 
used in communication and control systems, it was very difficult to use a mathematical 
framework.  Modelers wanted to be able to insert IF ... THEN ... ELSE ... conditional statements 
anywhere in a model - easily.  This led to the creation of a new CAD product for discrete event 
simulation in 1982.  Instead of building a simulation language, they created the General 
Simulation System (GSS) that provides the user with a total environment. 
 

 Another requirement for this system was to allow engineers to describe their models in a 
hierarchy, similar to the design of other engineering systems (computers, power distribution 
systems, aeronautical systems, etc.).  It was determined that complex decision rules and 
algorithms had to be expressed in a readable natural language that engineers designing these 
systems could easily understand.  The intent was to avoid the use of esoteric programming 
constructs.  This would ensure understandability of the models, so that an engineer without a 
programming background could validate the models. 
 

 More important than language was the lack of speed and scalability of discrete event 
simulation packages at the time.  These deficiencies were the principal force in developing GSS.  
Users complained that existing systems could not support more than 30 to 50 complex entities in 
a simulation without running into executable size limits.  More importantly, as entities were 
added, simulation running times went up exponentially.  Because of these size and speed 
limitations, engineers went back to writing complex simulations in FORTRAN. 
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 Even with FORTRAN, running times were on the order of 5 to 7 days to run a 2 hour 
scenario for a large communication system of 300 or more entities.  As a result, running time 
became a major design constraint for GSS.  It was determined that many simulations would have 
to be run on a parallel processor.  It was decided that GSS must run very fast and be highly 
scalable, whether or not simulations were run on a parallel processor. 
 
 
Independence - The Parallel Processor Requirement 
 
 The parallel processor requirement implies being able to allocate processors to processes 
(groups of instructions) that can run in parallel.  Being able to determine which processes can run 
in parallel requires knowledge of the independence of the processes.  Independence is 
determined by the data shared between processes.  If two processes share data, they cannot run 
concurrently, i.e., they are not independent.  Independence is an important property in most 
scientific disciplines, and it is equally important in software. 
 
 
Separation Of Data From Instructions 
 
 In 1982 it was determined by Cave, [23], that to create a map of shared data (also called a 
process connectivity matrix), data and instructions must reside in separate elements.  This 
phenomenon has since been called the separation principle, [55].  In the remainder of this book, 
we implicitly make the case that this principle provides the keystone to software engineering.  As 
a result of this determination, GSS was designed so that: 
 

• Data is stored in Resources that contain hierarchical data structures. 
 

• Instructions are grouped into hierarchical rule structures called Processes. 
 
 Examples of a GSS resource and process are shown in Figures 6-1 and 6-2.  Note that the 
resource (data structure) language contains attribute types that support the readability of the 
process (rule structure) language. 
 
 The separation of data from instructions came to provide enormous benefits that are not 
immediately apparent.  First is the ability to concentrate on creating separate languages that are 
more natural - one for describing hierarchical data structures, and one for describing hierarchical 
rule structures.  The construction of these correspondingly more complex translators is 
accommodated easily because they are implemented separately. 
 
 Hierarchical data structures are directly translatable into data records for files, or message 
structures for communications.  This is because - What You See Is What You Get - in memory.  
There is no “padding for word boundaries,” another unnecessary language constraint removed by 
today’s computers.  Memory is organized in exact accordance with the data structure created by 
the designer, and documented in the data description language.  This allows one to move huge 
character strings into a highly structured set of fields that act as a template over the memory, 
saving much time as well as simplifying the code. 
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05/10/91            G S S  RESOURCE REPORT      USER-ID: PSI 
RESOURCE NAME: SUBSCRIBER ATTRIBUTES 
USING PROCESSES:  PLACE CALL  
 
 

TOTAL SUBSCRIBERS                   INTEGER INITIAL VALUE 0  
SUBSCRIBER COUNT                    INTEGER                  
                                                             
SUBSCRIBER_PARAMETERS   QUANTITY(200)                        
   1  OFFICE                        INDEX                    
   1  CALLERS_PLAN                  STATUS  PLACE_NEW_CALL   
                                            RETRY_CALL       
   1  SUBSCRIBER TYPE               STATUS  DATA             
                                            VOICE            
   1  SUBSCRIBER STATUS             STATUS  BUSY             
                                            FREE             
                                                             
CURRENT_CALL_PARAMETERS                                      
   1  SOURCE                        INDEX                    
   1  DESTINATION                   INDEX                    
   1  SUBSCRIBER                    INDEX   INITIAL_VALUE 0  
   1  OFFICE_NUMBER                 INDEX                    
   1  CALL TIME                     REAL                     
   1  CALL_DURATION                 REAL                     
   1  SIGNAL_TO_SUBSCRIBER          STATUS  BUSY             
                                            CONNECTED        
   1  PHONE NUMBER                  STATUS  UNKNOWN          
                                            FOUND            
   1  CONNECTION_ACTION             STATUS   DISCONNECT      
                                              CONNECT        
CALL_ATTRIBUTES                                              
   1  CALL_INTERGEN_TIME            REAL    INITIAL_VALUE 12 ***MINUTES 
   1  AVERAGE_CALL_DURATION         REAL    INITIAL_VALUE  4 ***MINUTES 
   1  VARIANCE                      REAL    INITIAL VALUE  1 ***MINUTES 
   1  RETRY_INTERGEN_TIME           REAL    INITIAL VALUE  4 ***MINUTES 
 

 
Figure 6-1.  GSS Resource - SUBSCRIBER_ATTRIBUTES. 

 
 
 The instructions consist of natural language statements that are grouped into “rules”.  The 
rules follow the concept of one-in-one-out control structures, precisely as defined by Harlen 
Mills, [66], but never available until now (with the exception of COBOL that had deficiencies in 
this regard).  This makes it easy to build more complex rules that are readily understood by 
anyone who knows the application,  Detailed algorithms are understood easily, independent of 
the original author.  Both resources and processes can be fairly large while maintaining tight 
control over the software.  This provides for huge increases in speed as well as scalability. 
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05/06/91         G S S  PROCESS RULES         USER ID:     PSI  
PROCESS NAME:  PLACE CALL                  TIME UNITS: MINUTES  
RESOURCES:     SUBSCRIBER ATTRIBUTES       INDICES:SOURCE       
               SUBSCRIBER PBX INTERFACE            DESTINATION  
                                                                
                                                               

PLACE CALL                                                     
    IF SUBSCRIBER STATUS(SOURCE) IS FREE                       
        EXECUTE ATTEMPT CALL                                   
    ELSE EXECUTE RETRY LATER.                                  
                                                               
ATTEMPT CALL                                                   
    IF CALLERS PLAN(SOURCE) IS PLACE NEW CALL                  
        SET PHONE NUMBER TO UNKNOWN                            
        EXECUTE LOOK UP NUMBER UNTIL PHONE NUMBER IS FOUND.    
    EXECUTE MAKE CALL                                          
                                                               
LOOK UP NUMBER                                                 
    DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1             
    IF OFFICE(DESTINATION) NOT EQUAL TO OFFICE(SOURCE)         
        SET PHONE NUMBER TO FOUND.                             
                                                               
MAKE CALL                                                      
    CALL CONNECT_SUBSCRIBER USING SOURCE 
    SET SUBSCRIBER STATUS(SOURCE) TO BUSY                      
    SET SUBSCRIBER SIGNAL TO PLACE CALL                        
    SCHEDULE RECEIVE SUBSCRIBER INPUT NOW                      
        USING SOURCE, DESTINATION                              
                                                               
RETRY LATER                                                    
    SCHEDULE PLACE CALL IN EXPON(RETRY INTERGEN TIME)          
        USING SOURCE, DESTINATION                              
 

 
Figure 6-2.  GSS Process - PLACE_CALL. 

 
 

 After using this new approach, it became apparent that the major benefit resulting from 
the separation of data from instructions was the ability to provide engineering drawings of the 
software, with a one-to-one mapping from the drawing to the code.  This is illustrated in 
Figure 6-3.  Resources, such as SUBSCRIBER_ATTRIBUTES in Figure 6-1, are shown as 
ovals.  Processes, such as PLACE_CALL in Figure 6-2, are shown as rectangles.  Lines must be 
drawn to connect a process to a resource, implying that, without a connect line, the instructions 
in that process have no connection to the data.  An elementary model or module, e.g., 
SUBSCRIBER in this case, is a blue outlined box containing interconnected resources and 
processes.  Hierarchical modules, such as OFFICE contain elementary or other hierarchical 
modules. 
 

 Getting to a fully interactive graphical system to support all of the features and functions 
that can be brought to bear took years to evolve.  We will skip that history here, focusing on the 
top level features.  For example, double clicking on resource or process icons brings up an editor, 
allowing one to change the code as illustrated in Figure 6-4.  There is no other way to build or 
access the code except through the drawings.  Architects create the drawings.  Implementers 
(coders) may or may not have access to change the architecture.  Using GSS, large scale 
simulations are now developed using a fully integrated engineering drawing facility. 
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Figure 6-3.  Engineering drawings of software. 
 

 
 

 
 

Figure 6-4.  Editing resources and processes directly from the drawing. 
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Independence From The Operating System As Well As The Hardware Platform 
 

 The nature of the environment in which GSS was developed was driven by clients who 
were buying large scale simulations for analysis and design of complex communications and 
control systems.  In the early 1980s, this required use of DEC VAX machines running under the 
VMS operating system.  To understand what was happening while simulations were running 
required an advanced graphical facility - the Run-Time Graphics (RTG) system - for 
visualization.  RTG ran on the Silicon Graphics (SGI) workstation under IRIX - SGI’s version of 
UNIX.  It was built using the first version of Open-GL.  Users could interact graphically with the 
simulation using RTG on the SGI machine which was networked to the VAX where the GSS 
simulations were running.  Interactive graphics became very important to the clients, and they 
bought both platforms to get what they wanted. 
 

 About the mid-1980s, IBM came out with the RS-6000, which contained SGI’s chips on 
fast graphics boards, and ran Open-GL on AIX, IBM’s version of UNIX.  At the same time, 
clients were moving away from VMS to UNIX.  More importantly, GSS and RTG were selected 
“Best-Of-Breed” by IBM who paid to have these systems ported to the RS-6000.  This port to the 
UNIX environment also put the total package on the SGI work-stations. 
 

 As the port to UNIX was being completed, Intel was dramatically increasing the power of 
its PC chips.  At the same time, vendors were making fast graphics boards, and commercial 
versions of UNIX were becoming more adaptable to the PCs.  GSS and RTG were soon running 
on SCO-UNIX on PCs with special graphics boards and corresponding graphics accelerator 
software.  Then came SOLARIS on Sun workstations and finally Windows NT, 2000, and XP on 
PCs.  The platform prices were dropping rapidly. 
 
 
The Third Language 
 

 What came out of this experience was the need to be independent of both the platform 
and the operating system (OS).  This led to a software requirement to isolate the operating 
system dependencies, including platform differences.  This requirement was already being 
satisfied by the CAD approach being used to support multiple simulation runs, optimization, and 
graphics.  These CAD features were supported by a third language that eliminated the need to 
write control scripts or JCL.  It translated user-friendly database descriptions, graphical 
requirements, and multiple run requirements - including initialization - into special routines that 
were compiled and linked at run time as well as the control scripts for a particular platform and 
OS. 
 

 This third language - the Control Specification language - is illustrated in Figure 6-5.  It 
provided many features to support simulation and optimization, database handling, graphics, and 
interactive control.  It eliminated the need for “JCL” or “scripts”, providing a development 
environment that is independent of the OS or hardware platform.  Each task or simulation has its 
own control specification that is the same for every platform or operating system.  Once GSS and 
RTG are up on a platform, one can move large complex simulations with graphics to that 
platform without change (the only thing that changes is run-time speed).  This is a substantial 
factor in productivity improvement. 
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05/06/91         G S S  CONTROL SPECIFICATION    USER ID: PSI  
CONTROL SPECIFICATION NAME:  TELEPHONE_NETWORK 
                                                                

                                                               
CONTROL SECTION 
    TITLE, SIMULATE TELEPHONE SYSTEM GRAPHICALLY 
    SIMULATE 
 
LIBRARY SECTION 
    BACKGROUND 
 
GRAPHICS SECTION 
    ACTIVATE 
    WORLD_SPACE LOWER_LEFT = (0, 0), UPPER_RIGHT = (1280, 1024) 
    BACKGROUND_COLOR = DARK_BLUE 
    INITIAL_WINDOW LOWER_LEFT = (-100, -100), WIDTH = 1280 
    ICON  OFFICE_OUTLINE   = OFFICE,          SCALE(1.0, 1.0) 
    ICON  MAN              = MAN              SCALE(1.0, 1.0) 
    ICON  PHONE            = PHONE,           SCALE(1.0, 1.0) 
    ICON  TERMINAL         = TERMINAL,        SCALE(1.0, 1.0) 
    ICON  PBX              = PBX,             SCALE(1.0, 1.0) 
    ICON  SWITCH           = SWITCH,          SCALE(1.0, 1.0) 
      
    INST  COMPLETED_CALLS  = THERMOMETER_VERTICAL, 
                     LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE 
    INST  BUSY_CALLS       = THERMOMETER_VERTICAL, 
                     LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE 
                      
    LINE  PBX_TRUNK_LINE  = COLOR LIME_GREEN, THICKNESS 3 
    LINE  PHONE_LINE      = COLOR LIME_GREEN, THICKNESS 3 
     
    OVERLAY 1 = DRAW_OFFICES IN PHONE BACKGRND 
                AT 0,0, SCALE 1, 1, MENU OFFICES 
                COLOR BACK_RED 
 
    RTG_EVENT_HANDLER INTERACTIVE_SCENARIO 
 
DATABASE INPUTS 
    ASSIGN SFI NEW_DATA.SFI TO READ_SCENARIO_DATA 
 
MODEL SECTION 
    SCENARIO_CONTROL 
    INSTRUMENT 
 

 
Figure 6-5.  GSS Process - PLACE_CALL. 

 
 The areas addressed by the Control Specification language are enumerated below. 
 

• Automatic Database Handling  
 

• Interactive Run-Time Graphics 
 

• Interactive Real-Time Control  
 

• Library Controls 
 

• Multi-Simulation Runs 
 

• Optimization  
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 These facilities are built into the control specification using a language that is quite 
simple, being structured into sections for each of the control statements to be used.  A control 
specification can be six lines or two pages depending upon the number of files and graphical 
facilities specified for a simulation or task.  Most important, the control specification language, 
along with the resource and process languages ensure that all software built by a modeler or 
system developer is independent of the platform and OS.  All dependencies are taken care of by 
the language translators.  The control specification language is discussed in Chapter 13. 
 
 
Requirements For Interactive Graphics 
 

 As applications become very complex, it is difficult to know what is going on at run-time 
without a graphical picture.  Equally important is the ability to interact with an application 
graphically.  For example, to be able to change the course of the simulation, interactively while it 
is running, is extremely productive.  These needs sparked the concurrent development of the 
Run-Time Graphics (RTG) system. 
 

 RTG supports complex mapping functions, e.g., terrain, bodies of water, foliage, road 
networks, etc.  In addition, large numbers of icons representing moving platforms with radios 
and sensors can be displayed.  Examples of the use of RTG for visualization are illustrated in 
Figures 6-6a & b respectively.  In the early years, Silicon Graphics (SGI) workstations were used 
to support the complex graphical interfaces, tied to VAX computers running the simulations.  
Today, the GSS system and the RTG system still run as separate tasks, but typically on the same 
computer (PCs, Laptops).  But they don’t have to.  In fact, multiple GSS simulations or VSE 
tasks can be running on separate machines with multiple interactive RTG sessions on the same or 
different machines. 
 
 
An Easy To Use Graphics Language 
 

 RTG makes it relatively easy for engineers with little programming experience to provide 
visualizations of dynamic motion in 3D.  This is because the complex transformations required 
to determine the relative positions and orientation angles between icons representing moving 
platforms are done automatically by the system.  To use this facility, the modeler uses special 
RTG extensions to the resource, process, and control specification languages.  These extensions 
provide for the insertion, update, and removal of icons, lines, and instruments. 
 
 They also provide for handling interactive inputs using various panels and buttons.  These 
facilities will be described in a later chapter.  The graphics extensions and library facilities for 
background overlays and foreground plots and diagrams have evolved and grown since the early 
1980s.  Many new features, such as hierarchical icons, were developed in the mid-1990s to 
support engineering drawings of the architecture. 
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Figure 6-6a.  An illustration of RTG graphics. 
 

 

 
 

Figure 6-6b.  Zoom in, double click on an icon, and up pops a  panel. 
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Scalability - Building The World’s Largest Simulation Of A Communication System 
 

 As GSS evolved, problems encountered by others, e.g., scaling up complex simulations, 
disappeared.  Using GSS, the numbers of entities and the complexity of the different entity types, 
appeared to grow without limitation.  We attribute this to the properties of Independence in 
model architecture and Understandability in both the languages and the architecture.  We 
consider these two properties to be the most important contributors to productivity. 
 
 
The Software Productivity Paradox 
 

 As the client base grew, and larger simulations were developed, additional features and 
functions were desired - in fact required - to continue the growth of the simulation business.  The 
problem was, the underpinnings of this great simulation environment were built using standard 
software approaches.  As the GSS CAD product grew, putting VSI far ahead in the market, it 
became impossible to maintain the underlying software, that in which GSS and RTG were 
written.  Product expansion was delayed while many man-months were spent trying to fix 
existing bugs. 
 

VSI was faced with a software productivity paradox.  We had the world’s best 
environment for building complex simulations, but this great simulation environment was built 
using a classic software environment.  Behind the scenes, programmers were faced with the same 
software nightmares as everyone else. 
 
 
Solution To The Software Nightmare 
 

 In 1990, a decision was made to embark on the development of a second very similar 
product, the Visual Software Environment (VSE).  VSE was also to be used to build itself as 
well as GSS and RTG.  The justification for VSE was simple: rebuild GSS into a software 
environment that supported the growth of functionality wanted by its users with the same 
productivity levels afforded for modeling and simulation. 
 

 Because VSI’s existing GSS system already had everything needed to build general 
software, one could envision translating the existing code into GSS.  However, translating the 
code was not an option.  There was no architecture!  And, there was no way to view and assess 
an architecture for the existing code, even though pain had been taken to organize it into what 
was thought to be a good approach.  It quickly became apparent that, as more functionality was 
added, the original “architecture” could not hold up under the strain of increasing complexity.  
More importantly, the system became virtually impossible to change.  This is a common 
software problem that is not readily apparent without being able to visualize and create good 
architectures.  For the first time, an architecture had to be generated for GSS. 
 

 The first pieces of software to be rebuilt were the Resource Translator and the Process 
Translator.  As the architectures for these pieces of software evolved, it became apparent that a 
totally different approach to translation was needed.  This new approach involved building and 
sorting tables in a sequence of independent passes.  Many utility modules were created along 
with managers of the many different databases necessary to support the very complex translation 
process. 
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 The architecture created using the engineering drawings rendered both VSE and GSS 
easily upgradeable and supportable.  Today, after many upgrades, those architectures are still 
easy to understand and new features and functions are easy to insert.  Most importantly, the 
architecture itself is easy to change on an incremental basis, i.e., it is easy to take a piece of the 
architecture and improve it to take on more functionality in a specific area without affecting the 
rest of the architecture.  This is because of the independence of modules, apparent from the 
visualization of the architecture.  In fact, there is effectively one architecture, since the 
differences between VSE and GSS are almost trivial. 
 
 
Rebuilding RTG - The Solution To The Visual Development Environment 
 

 Having VSE made building software, and reusability of complex modules much easier.  
This was accomplished without the fully integrated CAD graphical interface shown previously in 
Figures 6-3 and 6-4.  Although third party CAD products were used to produce the engineering 
drawings prior to 2000, they were never fully integrated into the system.  Worse, three different 
vendor products were used.  This is because - one by one - each vendor had the same software 
problems as GSS, and (all three) went out of the business.  Up until the year 2001, the drawings 
were effectively done off line. 
 
 Starting in 1996, RTG was redesigned and rebuilt to support the advanced graphical 
features needed to implement a fully integrated, interactive CAD drawing environment.  To do 
this properly required the ability to support hierarchical modules that could be disconnected, 
moved and reconnected differently.  It required being able to pop the cover off of an icon, and 
zoom in to see another layer of hierarchy underneath.  This facility is illustrated in Figure 6-7. 
 
 To provide a usable hierarchical icon facility, one has to be able to uncover an icon and 
see the connection lines outside the icon as well as those going into the icon.  This requires 
special transformations to ensure matching the “wires”.  The prior version of RTG was designed 
around a pixel space, forcing the user to implement higher order transformations involving 
hierarchies of icons.  The new version of RTG built all of these transformations into the system, 
so the modeler or software developer did not have to build and test very complex software to 
develop sophisticated graphics. 
 
 In addition, the new RTG provided for pin connections and pin labels, so that lines could 
be drawn by users to interconnect icons, while the developer received all the information needed 
to process the behind-the scenes database of interconnections.  All of this made it relatively easy 
to build the CAD front end for visualization of the software architecture. 
 
 To be independent of the platform and operating system, the code generators produce 
plain vanilla C and the latest version of Open-GL.  All of the graphics are directly transportable 
among many platforms and operating systems, including all Windows, Linux and Unix platforms 
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Figure 6-7.  An illustration of hierarchical icons in RTG. 
 

 
 Two additional facilities are provided with RTG.  One is an Icon Library Manager (ILM).  
The ILM provides users with the ability to draw complex icons to be used by RTG.  These icons 
are stored in libraries that can be copied and shared among users and applications.  They are 
independent of the platform and operating system. 
 

 The second is the Panel Library Manager (PLM).  The PLM makes it easy to build 
panels - the equivalent of X-Windows Motif or Windows dialog boxes - as shown in 
Figure 6-6b.  However, VisiSoft panels are not dependent upon the platform or operating system.  
More importantly, the applications interface is easy to use compared to any of the competitive 
products. 
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The Tools To Build A Fully Integrated Visual Development Environment 
 
 In 2000, ten years after embarking on the development of VSE, and four years after the 
new design of RTG, the tools were in place to build a complete Visual development 
Environment.  Note: this was eighteen years after embarking on the initial development of GSS.  
The directors agreed to finance the development of a prototype to see what it would take, and 
how it would be received.  Because of all the prior experience, this effort came together very 
fast.  By early 2001, an in-house graphical interface for building software as well as simulations 
was in use. 
 
 Figure 6-3 shows the Visual Development Environment (VDE) “window” that is used to 
build software or simulations.  Knowing either GSS or VSE implies knowing the other except for 
a minor difference.  Models built in GSS can be directly transportable into software modules in 
VSE.  Using a GSS simulation for designing and testing software modules provides an ideal 
environment, requiring no changes to move back and forth to VSE. 
 
 Figure 6-4 provides an illustration of two edit sessions open simultaneously.  The one on 
the left is a resource and the one on the right is a process.  During a typical session, many edit 
sessions are open simultaneously, including that of a control specification. 
 
 Figure 6-8 illustrates a plot of an engineering drawing that is a small part of a very 
complex piece of software.  Note that all of the change control associated with hardware 
drawings exists on the software drawing.  This includes references to higher level drawings that 
use the modules in the lower level drawing, module changes and change control authorizations.  
In addition, by double clicking on a module - at any level - one opens an editor to the 
documentation for that module. 
 
 In addition to modules and tasks are containers.  Containers can contain multiple 
drawings to support export of complete systems from one platform for import to another.  When 
a drawing or container is exported, all of the documentation goes along with the architecture and 
source code for the resources, processes and control specifications.  These can be imported on a 
different platform with a different operating system (e.g., Windows XP to Linux or Unix), 
prepared, and running in a few minutes. 
 
 
BACK ON THE STREET AGAIN 
 
 By early 2003, equipped with a totally new product, one that is easily enhanced and 
refined, VSI was converting all of its simulations into the new environment.  In addition, many 
of the design and corresponding coding rules that could not be enforced without this visual 
environment were injected.  This further improved productivity.  No one could build code 
without first building an architecture.  Productivity soared! 
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Figure 6-8.  An example of an engineering drawing. 
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Chapter 7.  A Technical Overview Of VisiSoft® 
 
 
 
 As illustrated in the figure above, VisiSoft consists of three systems: 
 

• the Visual Software Environment (VSE) for developing and running software  
 

• the General Simulation System (GSS), for developing and running simulations 
 

• the Run-Time Graphics (RTG) system that provides a graphical interface for 
developing and supporting both software and simulation products 
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 These systems are supported by the following subsystems: 
 

• the Visual Development Environment (VDE) provides the graphical CAD 
architectural visualization facility for both VSE and GSS 

 

• the Run-Time System (RTS) that supports software tasks and simulations during 
run-time 

 

• the Icon Library Manager (ILM) for building and managing large libraries of 
icons to support RTG 

 

• the Panel Library Manager (PLM) for building and managing large libraries of 
panels to support RTG 

 
 Together, these components provide advanced graphical interfaces to develop, support, 
and interact with complex software and simulation systems.  All of these components have been 
developed and are supported using VisiSoft. 
 
 
Building Applications 
 
 When a developer builds a software product using VisiSoft, an abstracted architecture of 
that software product can be characterized as shown in Figure 7-1.  This illustrates critical 
facilities available to a developer building and supporting a software product.  These facilities 
are most valuable when the software being produced must run on different platforms.  It is these 
types of facilities (there are others) that make the differences in the hardware and OS platforms 
transparent to both the developer and the end user. 
 

 
 

Figure 7-1.  An abstracted software architecture. 
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 The resulting layers of insulation from hardware and OS platform differences are 
illustrated from a different perspective in Figure 7-2.  With these facilities, end users can work 
with multiple interactive graphical workstations, databases, and communications networks 
without changing the software.  From a productivity perspective, the developer is also insulated 
from platform differences. 
 

COMPUTER HARDWARE

OPERATING SYSTEM

APPLICATION
TASK-1

COMMUNICATIONS
TASK

APPLICATION
TASK-N

DATABASE

TERMINAL

DATABASE

DATABASE

VISISOFT RUN-TIME

INTERACTIVE
TERMINAL

COMMUNICATIONS
CHANNEL

PARADIGM 2   04/08/05

 
 

Figure 7-2.  Layers of insulation from hardware and OS differences. 
 
 
 
Multi-Tasking On Multiple Processors 
 
 Taking a slightly deeper look, products can be developed that use multiple platforms 
simultaneously.  The only constraint is that these platforms are connected using IP network 
interfaces, e.g., the Internet.  Interprocessor resources are used to automatically handle the 
communications channel protocols.  Developers simply put data into and take data out of these 
interprocessor resources while issuing channel read and write statements.   
 
 Applications on a single processor may contain multiple tasks that are running 
concurrently.  (These are equivalent to UNIX processes.)  Tasks can communicate by sharing 
memory directly.  This is the fastest way to communicate, and in VisiSoft it is easy.  One simply 
uses Intertask resources, moving data in and out directly.  Using the facilities described above, 
one can feel comfortable writing applications that use multiple tasks on multiple processors with 
a day or two of training. 
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 Facilities exist for running large scale discrete event simulations very efficiently on 
multiple processors.  These facilities include provisions for automatic cross-processor 
scheduling, time-synchronization, and interprocessor resource coherency management.  The 
scheduling and memory management software running behind the scenes alleviates the modeler 
from any concerns about otherwise formidable software problems.  Developers can focus on 
solving end user application problems. 
 

 
ARCHITECTURAL FACILITIES 
 

 In the next two Chapters we will be describing the VisiSoft architectural features and 
approaches to building architectures that support reusability and scalability.  An overview of 
these facilities is provided in Figure 7-3 below. 
 

SLSBOKLT\TELEXMPL  8/27/97
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DR
CH K
ENG
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REVISION S
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8 7 6 5 4 3 12
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C
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VSE RESOURCE:  TRADE_DATA
SAMPLE DATA
  1  DAILY_QUANTITY(5)                  
     2  DAY_CODE                   CHAR  1
          ALIAS HOLIDAY            VALUE 'H'
     2  OPENING_PRICE              REAL  
     2  CLOSING_PRICE              REAL
     2  LOW_PRICE                  REAL
     2  HIGH_PRICE                 REAL
     2  AVERAGE                    REAL
     2  VOLUME                     INTEGER
     2  OPEN_INTEREST              INTEGER
  1  WEEKLY
     2  DAY_OF OPEN                CHAR  1
     2  DAY_OF CLOSE               CHAR  2
     2  OPENING_PRICE              REAL
     2  CLOSING_PRICE              REAL
     2  LOW_PRICE                  REAL
     2  HIGH_PRICE                 REAL
     2  AVERAGE                    REAL
     2  VOLUME                     REAL

RESOURCE

VSE PROCESS: COMPUTE_TRADING_SUMMARY

PROCESS_TRADING_INPUTS
   MOVE DATABASE_RECORD SAMPLE_DATA TO
       TRADE_DATA SAMPLE_DATA
   MOVE 1.E9 TO WEEKLY_LOW-PRICE
   MOVE 0 TO UPPER_LIMIT
               WEEKLY_AVERAGE
               WEEKLY_VOLUME
               DAY_COUNT
   SET WEEKLY_TRADING TO NOT_STARTED
   EXECUTE PROCESS_DAILY_TRADING
       INCREMENTING DAY_NUM TO 5
   EXECUTE COMPUTE_SUMMARY_DATA

PROCESS_DAILY_TRADING
   IF DAY_OF _WEEK (DAY_NUM) IS NOT A WEEK_DAY
   OR DAY_CODE (DAY_NUM) IS A HOLIDAY
       EXECUTE NO_TRADES_TODAY
       EXIT THIS RULE.
   INCREMENT DAY_COUNT

PROCESS

VSE CONTROL SPEC:  TRADE_TASK

CONTROL SECTION
    TITLE, TRADE_TASK
    LEAD_PROCESS IS TRADING_TEST_DRIVER

END

TASK CONTROL
SPECIFICATION

TRADE_TASK

TEST_DRIVER WEEKLY_TRADING_SUMMARY

MODULE
WEEKLY_TRADING_SUMMARY
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TRADING_
SUMMARY

REPORT_
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REPORT_
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RECORD
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Figure 7-3.  TASK architecture illustration. 
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Tasks/Simulations 
 
 Using VisiSoft, applications are broken into tasks.  Tasks are defined by Task Control 
Specifications and the modules that comprise the task.  In the case of a simulation, the 
Simulation Control Specification defines the simulation task that is comprised of simulation 
models and software modules.  Tasks are represented by a red border on the drawings. 
 
 
Modules/Models 
 
 Referring to Figure 7-4, software modules (simulation models) are of two types, 
elementary and hierarchical.  Elementary modules contain resources and processes.  Hierarchical 
modules can contain both elementary modules and other hierarchical modules.  Modules are 
represented by a blue border on the drawings. 
 
 
Utilities 
 
   Utilities are software modules that are used by two or more processes contained in one 
or more separate software modules.  Utilities may appear in more than one drawing in the same 
user directory.  They must be connected to the modules that use them using a connector.  
Although the architecture and source code may appear and be changed in more than one drawing 
in a user directory, there is only one instance in that directory.  Utility changes in one drawing 
automatically appear in the other drawings in that directory.  Utilities are represented by a green 
border on the drawings as shown in Figure 7-4. 
 
 
Library Modules 
 
   Library modules are utilities that are shared by different user directories across different 
platforms.  The drawing of a library only appears in the user directory where the library is 
maintained, providing a high degree of protection from unwanted modification.  Library modules 
must share data with the modules that use them using aliased resources with connectors.  Aliased 
resources are templates for data shared by the calling process.  The using module must have 
shared as resources that provide the data used by the aliased resources in the library module. 
 
 Libraries may contain multiple library modules inside library archive files.  These 
modules are automatically added to the library archive file when the library module is prepared.  
Library modules for the same library may reside in different directories as long as the most 
recent version of the library archive file resides in the directory in which the library module is 
being prepared.  Libraries are represented by a dark gold border on the drawings. 
 
 



Software Survival              Page  7  -   6   
 

Fi
gu

re
 7

-4
.  

Ill
us

tra
tio

n 
of

 a
 so

ftw
ar

e 
en

gi
ne

er
iin

g 
dr

aw
in

g.

PR
OP

AG
AT

IO
N_

PR
ED

IC
TI

ON

U
D

U
D

FP
PS

  0
5/

24
/0

5

PR
O

PA
G

A
TIO

N
_P

RE
D

IC
TIO

N

P
AT

H
_L

O
S

S
_U

TI
LI

TI
E

S

 



Software Survival              Page  7  -   7   
 

Engineering Models 
 

 To ensure that user requirements are met, engineers build mock-ups or models.  These 
models can contain simulated controls and meters or displays, so that the user can "try out" the 
user interfaces in a simulated environment to insure that what is going to be built is what is 
wanted.  Computer simulation is used heavily in the engineering field, with detailed models 
being used to check out designs before one commits to costly fabrication and testing processes. 
 

 In the case of communication system design, e.g., design of switches, digital radios, 
routers, etc., complex algorithms are embedded in simulations of their environments so their 
designs can be tested and optimized before they are implemented in software.  But, there is no 
reason to rewrite these algorithms in a programming language.  They can be directly translated 
from models in the simulation to final software code, reference Maslo [64].  If there is a problem 
with the algorithm, the situation can be replicated in a simulated environment, fixed, and tested.  
The new code can then be regenerated automatically for the production environment. 
 
 
Engineering Drawings -- Of Software 
 
   An illustration of a wave propagation model (a relatively small drawing by VisiSoft 
standards) is provided in Figure 7-4.  This is a library module, depicted by the dark gold color of 
the boundary.  It also contains utility modules (green boundaries) as well as standard modules 
(blue boundaries), all visibly identified by their color. 
 

 After some experience with this system, one can look at a drawing and recognize the 
architectures used for different modules.  This is because there are many standard architectures 
used to support categories of functions.  As one evolves from the world of programming in a 
language into design of the software using engineering drawings, one quickly recognizes that: 
 

the design of the architecture is much more important than the code. 
 

This is true from both an understandability and independence standpoint.  These concepts, and 
the corresponding approach that has evolved for building software architectures, will be covered 
in later chapters and supported with examples. 
 
 
Engineering Specifications And Documentation 
 

 To support the continued enhancement and refinement of a system design, one wants to 
understand the underlying rationale as design decisions are made.  This is typically recorded in 
engineering notebooks or other external documents.  These documents normally contain different 
design considerations and comparisons, details of trial designs, laboratory test results, field test 
results, theoretical or comparative references, etc.  Complex user interfaces can be specified in 
detail by writing a user's manual so the end user can review and envision what the system will 
do.  User’s manuals can be developed with the aid of an interactive simulation, using models of 
what the user will have as an interface.  Screen shots can be taken from a running simulation of 
the proposed system. 
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LANGUAGE FEATURES 
 
 In subsequent chapters we will describe the language features of VisiSoft.  In general, 
one cannot write code without building an architecture.  It is uncommon to give less senior 
people the responsibility to create or even change architectures.  It typically takes a much higher 
degree of experience to create or change an architecture.  Once an architecture exists, code can 
be entered by double clicking on the element of interest to open the editor.  When the editor is 
shut down, the code is saved and the management system updates the state of the element.  
Colored bars inside resources and processes indicate whether the element is prepared (green), in 
error (red), or changed but prepared (black). 
 
 
Resource Language 
 
 The resource language is tailored to describing data as hierarchical structures, for 
example, those used to represent messages sent to or received from communications channels, 
records that are read from or written to databases, and internal memory shared between 
processes.  Large multi-dimensional tables can be built that contain complex data structures. 
 
 An important feature is “What You See Is What You Get” in memory.  This allows for 
large data blocks to be moved as a character string into memory blocks that are defined by 
detailed data structures.  There is no “word boundary alignment” performed.  Numbers may 
appear anywhere in a data structure.  This provides for fast movement of large complex data 
structures. 
 
 The resource language is designed to support a process language that makes it easy for 
humans to write easily understandable code.  This implies data types that make conditional 
statements easy to read.  It also inhibits testing and movement of data at run time that do not fit 
specific requirements.  These are checked at time of translation, significantly reducing the 
probability of bugs. 
 
 There is no global data.  All resources are accessed by pointer (automatically). 
 
 
Process Language 
 
 The process language is designed to maximize understandability.  This is particularly true 
for conditional statements.  Anyone familiar with the application being implemented, should be 
able to understand algorithms that are logically complex without the added burden of learning 
another language.  This property is particularly important in modeling and simulation where 
validation of models is a critical aspect of a project, and typically requires engineering personnel 
not experienced in programming to review the code. 
 
 Having a readable language makes it much easier to understand the logic and avoid 
logical errors that are generally difficult to find.  It provides the important benefit of allowing 
subject area experts write code directly. 
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Control Specification Language 
 

 The control specification language is designed to support a highly structured specification 
that contains lists of specified elements, e.g., icons, lines, instruments, databases, etc.  It provides 
for enumerating the properties of these elements, e.g., colors, numbers, etc.  It is a very simple 
language that eliminates the need for scripts or JCL to run a complex task. 
 
 
GRAPHICAL FEATURES 
 

 Built-in graphical facilities remove the burden of writing complex graphics code.  One 
need not learn a graphics language to build superior 2D and 3D graphics.  The Run-Time 
Graphics (RTG) system provides additional statements that go into resources, processes, and 
control specifications.  These statements control the various graphical elements available to a 
user.  These elements include panels, icons, lines, instruments, plots, legends, etc. 
 

 Because panels and icons are potentially complex graphical elements, they are created 
and maintained using the Panel Library Manager (PLM) and the Icon Library Manager (ILM).  
These managers provide drawing boards for the user to graphically create complex panels and 
icons with ease.  The libraries of elements can be shared easily between users on different 
platforms or operating systems using built-in export and import facilities.  A large number of 
graphics libraries already exist to provide support for most graphics applications. 
 
 
 RTG supports complex geo-physical mapping functions, e.g., terrain, bodies of water, 
foliage, road networks, etc.  In addition, large numbers of icons representing moving platforms 
with radios and sensors can be displayed.  Examples of the RTG window for 2D and 3D are 
illustrated in Figures 7-5a & b respectively.  In the early years, Silicon Graphics (SGI) 
workstations were used to support the complex graphical interfaces, tied to VAX computers 
running the simulations.  Today, the GSS system and the RTG system still run as separate tasks, 
but typically on the same computer (e.g., PCs and Laptops).  But they don’t have to.  In fact, 
multiple GSS simulations or VSE tasks can be running on separate machines with multiple 
interactive RTG sessions on the same or different machines. 
 

 Software for graphical depiction of motion, particularly in 3D, can be extremely 
complex.  Moving platforms, e.g., aircraft, require six degrees of freedom to define their position 
and orientation.  When communicating, the position and direction of antennas on platforms are 
required to determine an accurate estimate of the antenna gains between transmitter and receiver.  
Being able to see the relative orientations of multiple platforms provides a rapid means for 
verifying and validating complex models. 
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Figure 7-5a.  An illustration of the RTG graphics window in 2D. 
 
 

 
 

Figure 7-5b.  An illustration of the RTG graphics window in 3D. 
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Constrained Nonlinear Optimization 
 
 A significant feature of GSS is the built-in optimization facilities used to design complex 
algorithms or system parameters, and optimize model parameters to maximize prediction 
accuracy.  The optimization methods have been derived from those used for design of highly 
nonlinear systems.  It provides for nonlinear constraints, both inequality and equality, as well as 
nonlinear optimization criteria. 
 
 To use the optimization facility, one need not formulate the problem mathematically.  
One only has to provide numbers for the constraint values and the optimization criteria, as well 
as ranges on the unknown parameters.  Models can contain decision processes based upon non-
numeric states as well as mathematical models.  Solutions do not depend upon model 
formulation. 
 
 
Parallel processing 
 
 With the flattening of Moore’s curve, and no recuperation in sight, the only way to 
achieve faster run times is to resort to parallel processors running together to speed up a single 
task.  However, except for very special problems, parallel processing has been practically 
unusable ever since it was first considered.  VisiSoft has the facilities to make it just as easy to 
build models and modules to run efficiently on parallel processors as it is to build them for a 
single processor.  If the architecture is designed using good standards for producing independent 
model instances, the number of processors used should not change the architecture or code. 
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Chapter 8.  Software Architecture 
 
 
DEVELOPING ARCHITECTURES 
 

 Most readers will relate to the above drawing.  As in other fields, architecture is much 
more graphical than algebraic or textual.  Whether designing machines, ships, buildings, or 
computers, architects produce drawings.  These drawings are not “approximate” or just 
suggestive, but rather precise engineering specifications that are used directly in production. 
 

 To facilitate the graphical approach, CAD tools are used extensively.  The time to 
produce and reproduce drawings has been cut dramatically since the days of drawing each line 
by hand.  Reuse of drawing parts is common.  They are copied and modified easily. 
 

 But today these drawings can be converted to XML, a representation suitable for 
computer processing.  An experienced XML programmer can create an architecture and make 
changes without ever looking at the drawing.  Is the use of drawings a legacy approach? 
 

 In the business environment of architects, eliminating the use of drawings would be 
ridiculous.  One would not consider creating or even changing a drawing in a language like 
XML.  XML is a standard for storing and exchanging files; it is of no use in design. 
 

 Now let’s consider software.  Drawing tools are not used for designing software 
architectures.  Instead, Programmers pride themselves in their ability to understand esoteric 
languages, and to create and maintain software directly in these languages.  More importantly, 
until VisiSoft, there have not been any drawing tools available that precisely represent a software 
design.  Having used VisiSoft, the above architect example is not an absurd parallel. 
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ARCHITECTURE - A NEW SOFTWARE CONCEPT 
 

 As described in the prior chapters, VisiSoft is a Computer-Aided Design (CAD) tool that 
provides a precise visualization of the architecture of a software system.  The engineering 
approach provides a one-to-one mapping from the top level architecture to the code.  Using 
VisiSoft’s graphical CAD front-end, one can drill down from the top system level drawing to the 
details of the code, with no abstractions in between.  Interconnections are as meaningful at all 
levels of a drawing as they are in electronic circuit design, logical design, or machine design.  
The VisiSoft CAD environment is derived from the same concepts used by chip manufacturers 
for designing hardware. 
 

 Using VisiSoft, decomposition of the architecture and composition of the detailed design 
is accomplished using graphical symbols that directly represent the software.  With this 
approach, it quickly becomes apparent that architecture is the most important part of software 
design.  Having used this system, one could not imagine working without drawings.  One also 
observes that software architecture is meaningless without the totally new paradigms that 
VisiSoft provides.  In software design courses using VisiSoft, architecture is taught first - before 
language or coding facilities are described.  With this approach it becomes clear that architecture 
has the most effect on productivity, especially in the support phase of a product. 
 
 
USE OF ENGINEERING DRAWINGS 
 

 Although written documentation is important, in practice, engineering drawings are the 
essential tools to support the planning, review, and assessment process needed to control a 
project.  This is because of the requirement to develop and modify the structure of modules as 
the design unfolds. 
 

 Engineering drawings provide the means for creating and improving the structure of 
software.  This is because given the proper CAD tools, these drawings can be modified easily to 
implement structural improvements.  Also, the best structure for a complex set of modules 
cannot be known until most of the design has been completed and carefully reviewed with the 
software team.  Only after understanding all of the facilities that must be built into a module, and 
how those facilities interact, can the developers decide on the best architecture for a module.  
This implies that a module may be built initially using an inadequate structure before one can see 
how to improve that structure. 
 

 
Visualization Of The Properties Of Independence 
 
 Geometry and algebra each play important roles in engineering.  Theoretically, one could 
do away with the images provided by geometry.  In practice, those who can use geometry have a 
significant advantage for many problems.  Figure 8-2 illustrates a model developed without 
engineering drawings.  As is typical in conventional software, data is shared everywhere, with no 
visible check on independence.  Figure 8-3 is the same application developed using VisiSoft.  
Needless to say which one is easier to understand and change - thanks to the independence 
properties. 
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SOFTWARE ARCHITECTURE 
 

 An overview of the VisiSoft approach to software architecture is provided below.  Just as 
with any other architecture, one must account for all of the facets of the problem.  Software 
architectures must support the user environment as well as the development and support 
environment.  Although most of our focus is on development and support, the user environments 
will be discussed where appropriate. 
 

 We start by defining the components of a physical architecture.  Refer to Figure 8-4. 
 
 

COMPUTERS

DIRECTORY
HIERARCHIES

DRAWING
HIERARCHIES

PHYSICAL ARCHITECTURE

System & Architecture  7/14/06

 
 

Figure 8-4.  VisiSoft view of the physical architectural components. 
 
 
Run-Time Software Systems 
 

 Using VisiSoft, a run-time software system may span one or more computers, typically 
using communication links when more than one computer is used.  A system may span different 
platforms and operating systems. 
 

 On a given computer, multiple executable tasks may reside in one or more directories.  
When one task starts another task, the second task becomes part of an executable task hierarchy.  
When tasks are started by separate user actions, they are independent.  During execution, tasks 
that reside on the same computer may attach to multiple shared memory segments as part of a 
task hierarchy.   Independent tasks attach to global memory segments.  Because of the ease with 
which multiple tasks can share memory directly in VisiSoft, threads (p-threads) are used only in 
a parallel processor environment running under a single OS. 
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Development Environment Components 
 

 Multiple computers are typically used during a software development.  System 
components may be exported from one platform (e.g., Linux) and imported to another platform 
(e.g., Windows).  From a developers perspective, the development environment is the same on 
every platform.  Each platform contains the following facilities: 
 

• VisiSoft User (Developer) Directories - On a given computer, one can assign 
multiple VisiSoft User Directories to house one or all of the components of a 
system.  Different versions of the same component may reside in different user 
directories. 

 

• Drawings - One or more drawings may be contained in a user directory.  A drawing 
may contain a single task or module.  Each of these may contain one or more 
modules in a hierarchy.  To create or modify components, one must create a new 
drawing or modify an existing drawing.  Drawings may be deleted without deleting 
the components in that drawing.  Components may be deleted from a drawing or 
from the user directory, in which case they are deleted from all drawings. 

 

• Containers - Containers are used to export and import drawings, so multiple 
drawings may exist in a container.  Drawings cannot be modified in a container.  It is 
common practice to store all of the drawings in a user directory in one or more 
containers.  A directory can be backed up completely at any time simply by 
exporting one or two containers. 

 
 
ARCHITECTURAL COMPONENTS 
 

 The basic architectural components of a software system are shown in Figure 8-5.  They 
have been introduced in prior chapters.  These are resources, processes, modules, and tasks.  
Their architectural properties are described below. 
 
 
Tasks 
 

 Tasks are executable modules at run-time.  The VisiSoft logical system hierarchy 
illustrated in Figure 8-5 contains 4 tasks.  Architecturally, a task can start one or more tasks, and 
a task can invoke one or more modules by starting a process.  Modules within a task drawing 
may be elementary or hierarchical.  There is no limit on the hierarchy.  However, a task 
containing 8 levels of hierarchy is a huge piece of software (on the order of 1M lines of code).  
The modules in a task need not reside in the task drawing. 
 
 
Hierarchical Modules 
 

 Figure 8-6 contains an illustration of a relatively complex module hierarchy.  At the 
bottom of the hierarchy, Drawing Level 1, are elementary modules.  Hierarchical modules are 
illustrated in Drawing Levels 2 and 3.  It is not unusual for complex systems to take up to nine or 
ten levels of drawings.  At this level of complexity, one can expect to be over 1M lines of code. 
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Figure 8-5.  Overview of the VisiSoft logical system hierarchy. 
 

 
Elementary Modules 
 

 The module hierarchy in Figure 8-6 is apparent, down to the elementary modules that 
contain resources (ovals - representing data structures) and processes (rectangles - representing 
rule structures).  Connections are designed at the elementary level to maximize independence 
between hierarchical modules.  This allows true reuse of modules. 
 
 
System Decomposition And Module Composition 
 

 The decomposition of a system into a hierarchy of modules takes considerable experience 
in the particular application being developed as well as in software architecture.  We note that, 
from a VisiSoft standpoint, complex applications include language translators and operating 
systems.  The grouping of resources and processes into elementary modules is an important 
architectural design function.  All resources and processes must lie within an elementary module 
boundary.  This implies selection of the module that will contain the interface resource between 
two modules.  Those responsible for that module have implicit control over that interface. 
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Figure 8-6.  Illustration of a VisiSoft model hierarchy. 
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 Most importantly, architectures need not be poured into concrete.  On the contrary, using 
VisiSoft, they are easy to change.  This is because the processes, resources and connection lines 
are moved easily from one module to another.  So if one decides to move an interface resource 
from one module to another, it is a simple but very visible drawing change that confers control of 
the interface to the other module. 
 
 
Categories Of Modules 
 
 There are three categories of modules in VisiSoft.  These categories provide different 
levels of protection with regard to change.  Both elementary and hierarchical modules can reside 
within each category.  Modules of any category can only appear once in a drawing.  The rules for 
these categories are described below with examples in Figure 8-7. 
 

• Modules - have a blue border.  These are the basic building blocks in a task.  In 
VisiSoft, modules can be decomposed hierarchically, i.e., they can contain 
submodules and sub-submodules, etc.  Modules can only appear in a single 
drawing in a user directory, and are meant to be unique, i.e., not reused, across 
directories. 

 
• Utility Modules - have a green border.  These are modules that are reused by 

processes in the same directory, and can appear in more than one drawing.  They 
are typically used to manage separate databases or perform utility type functions.  
The green color flags them for change protection.  If they are changed to 
accommodate a given process, that change must be compatible with the other 
processes that use them. 

 
• Library Modules - have a gold border.  These are utility modules that can be 

shared from different directories and different computers.  They are stored as 
object modules in an object library file.  The source only appears in the directory 
where they are maintained.  Processes in a library module are called from an 
application using their process name, module name, and library name.  Since each 
of these names must be unique within the next level of hierarchy, there can be no 
duplicate names when linking to library modules in VisiSoft. 

 

The functions of a VisiSoft library module can be upgraded while at the same 
time preserving the original module in the library for prior users.  Users can call 
the new function using the same process name within the same library by using 
the new module name.  VisiSoft has a large set of libraries that support various 
applications, including 3D graphics, that are shared easily. 

 

VisiSoft libraries have been designed to be controlled separately under special 
protection mechanisms.  But given access to a library directory, the responsible 
person sees everything that is needed to allow for ease of changes and testing.  
Library directories typically contain regression test drivers and data sets to ensure 
changes meet all prior, as well as new requirements. 
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 The top level module in Figure 8-7 is a library module.  It contains modules and utility 
modules that are immediately identified by the color of their border.  Libraries may contain a 
virtually unlimited number of modules, and individual library modules can be huge hierarchies.  
The library module shown in Figure 8-7 performs electromagnetic wave loss propagation 
predictions between two antennas using detailed terrain, foliage, and building data.  An example 
of a medium size task architecture is shown in Figure 8-8.  Being a model of a communication 
system, this architecture has some special properties that will be described in Chapter 9. 
 
 

 
 

Figure 8-7.  Example of a library module with utility modules. 
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ARCHITECTUAL DESIGN FOR REUSABILITY 
 

 In a production environment, many opportunities arise to enhance a module in its original 
form, or reuse a module in another system.  Anyone who has completed a successful project for 
one client should be aware of the desire to reuse as much of the prior design with new or existing 
clients.  This typically requires changes or additions to the prior design to incorporate new 
requirements. 
 

 We want to highlight those factors that are major contributors to reusability when 
building a task of the size shown in Figure 8-8 or larger.  There is always room for improvement, 
but this is a good architecture.  Telling people that modules should be built to ensure a wide 
range of functionality, to be easily understood, and to be independent is one thing.  Getting a 
team of developers to carry this out is another.  If they have not enjoyed the fruits of having done 
it before, it will be difficult for them to relate to it!  So how does one do this?  There are design 
rules that, when followed, can ensure that module understandability and independence are 
maximized.  Practical experience has shown that certain elements are essential.  These are 
described below. 
 

 The competitive environment will eventually dictate that developers who are most 
productive across the total life cycle will be the survivors. Successful developers know that their 
products are in the support mode typically for more than 80% of their life cycle.  Thus good 
software architectures must be designed to allow developers to generate new reliable releases 
quickly. 
 

 If most of a software group’s time is spent updating an existing system in the support 
mode, then this is a critical area to analyze to increase productivity.  Support includes adding 
new facilities as well as modifying a growing set of existing facilities.  Not only do these 
facilities grow in number, but they also grow in complexity as more options are added.  This is 
like adding more rooms onto a building.  At some point, one must consider the development of a 
new architecture, else the structure of the old architecture becomes too weak or burdened to 
support the new facilities.  Sticking with an old architecture makes adding new facilities more 
difficult as a system grows.  So how does one develop a good architecture in the first place? 
 
 
APPROACH TO SOFTWARE ARCHITECTURE 
 

 Figure 8-9 below depicts the system life cycle with the detailed architectural design in a 
blue box.  We will define this design process and the results that it must produce.  Our long term 
objective is to define this process in sufficient detail to evolve automation that supports the steps 
required to complete the design of an architecture. 
 
 
A Framework For Describing The Architectural Design Process 
 

 To accomplish our objective of creating architectures, we must have a framework that 
affords a sufficiently detailed definition of the process.  As before, we will borrow from the 
mathematics of control theory, using our generalized state-space framework.  We will be 
decomposing the user’s functional requirements into a detailed software architecture using 
hierarchical modules, resources and processes from the VisiSoft version of this framework. 
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Figure 8-9.  Role of detailed architectural design within the system life cycle. 
 
 
 This will be approached as transformations on different substate spaces as well as 
transformations between substate spaces.  Our goal is to produce a hierarchical software 
architecture, down to the resource and process level, such that there are minimal architectural 
changes during the coding implementation phase. 
 
 
The State-Space Framework 
 

 The state space framework is a mathematical framework for solving the most general 
problems in dynamical systems, see [39], [84], or [104].  When providing frameworks for 
solving such problems, one must ensure completeness and consistency so solutions converge to 
the expected answer, unambiguously, depending upon their inputs.  When developing GSS, the 
state space framework was used as the basis for ensuring these properties.  This was because 
GSS is a discrete event simulation environment, where flow of control is dependent upon a very 
large set of event strings that in turn depend upon a huge state space.  Although sequences of 
events are deterministic, they are virtually unpredictable. 
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 The direct mapping of GSS resources into state subvectors and processes into state space 
transformations made this analogy trivial.  The only difference is that GSS state vectors contain 
non-numeric data in the form of character strings, and the transformations on these vectors 
permit other than mathematical operations.  However, since they are all resolved at the bit level 
inside a computer, one can show that these operations can all be reduced to the equivalent of 
mathematical operators on numbers.  Therefore, properties of transformations using the state 
space framework can be applied to those used in GSS. 
 
 The state space framework was used to derive fast and efficient approaches to solving 
circuit design problems in the 1960s, see [47] and [48].  These approaches were implemented in 
CAD software packages used by engineers for simulation and design optimization of complex 
electrical networks.  When designing this type of software to achieve speed in the multiple 
simulation optimization process, one is concerned with selection of the best set of state variables 
for solving the problem, and the grouping of these state variables to minimize the complexity of 
the transformation. 
 
 Selection of the “best” set of state variables equates to choosing the best coordinate 
system for doing transformations.  For example, if one is investigating the dynamics of motion 
on a sphere, problems are likely solved with much less algebra, and therefore faster, in spherical 
coordinates.  This can be measured using the sum of the products of operations and instruction 
speeds. 
 
 Given the best set of state variables, one may further reduce operation counts by 
effectively diagonalizing the large matrices that must be inverted to solve the problem.  This can 
be done by interchanging rows and columns of the matrix and corresponding vectors to produce 
submatrices that are maximally independent.  This is known as the optimal ordering problem.  
This also simplifies the transformations by reducing the weighted operation counts. 
 
 Mapping this into the software architecture problem, selection of the best set of state 
variables is equivalent to choosing the attributes used to represent the states of a system so as to 
maximize simplicity of the resulting transformation.  Optimal ordering is equivalent to grouping 
these states in a way the further simplifies the transformations.  To translate these rules into those 
for software architectures, a complex transformation may require multiple resources and 
processes.  Selection of the states that represent the software functions, and grouping them into 
different resources will serve to simplify the processes used to do the transformations.  
Simplification can be considered from two standpoints: (1) speed of operations, and (2) module 
understandability and independence.  The approach to circuit design achieved both. 
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Software Architecture Development Steps 
 
 We now want to translate these concepts into steps for designing software architectures.  
Figure 8-10 is an expansion of Figure 8-9.  The software architecture development process has 
been broken into 5 steps.  These steps are described below. 
 
 

PRODUCE  SYSTEM
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INTO INDIVIDUAL
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SOFTWARE ARCHITECTURE

PRODUCE DETAILED
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1

2
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Figure 8-10.  Breakout of the detailed architectural design process. 
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Step 1 - Produce Detailed Software Function Specifications 
 

 Determine the generic software functions that are required to perform the end user 
required functions.  Describe these as transformations of state.  This implies describing the 
functional states of the system, and the transformations on those states.  In this step we are 
describing the transformational requirements, and grouping them into an initial set of modules. 
 
 
Step 2 - Map Data Structures Into Individual Software Functions 
 

 Select coordinate systems and states for implementing the software transformations for 
each function.  Map these coordinate systems and states into data structures that support the 
functional transformations.  Assign these data structures to resources and the transformations to 
processes within modules for each function. 
 
 
Step 3 - Map Data Structures Across Software Functions 
 

 On a module-by-module basis, determine the coordinate transformations required 
between functions and map the states required to support these coordinate transformations into 
data structures within resources.  Map these transformations into processes.  The more complex 
coordinate transformations may be best put into separate modules. 
 
 
Step 4 - Re-Map Data Structures To Maximize Software Module Independence 
 

 On a hierarchical module basis, review the combination of coordinate systems and states 
(resources), and the transformations (processes) and determine the best breakout of coordinate 
systems and states into resources for implementing the transformations.  This requires 
minimizing the resources shared between modules to maximize module independence.  This 
implies shifting data structures from one resource to another, possibly removing some resources 
and creating new ones.  This also requires corresponding changes to the transformations assigned 
to processes.  This implies shifting rules from one process to another, possibly removing some 
processes and creating new ones. 
 
 
Step 5 - Produce Detailed Software Architecture 
 

 Complete the detailed software architecture by connecting all of the modules.  This 
implies connecting those processes in a module to the resources they share between modules.  
One may have to iterate between steps 4 and 5 as the architecture becomes more transparent. 
 
 The above set of steps represent a great simplification of a complex process.  In the next 
chapter we will provide more insight into approaches to this process.  In addition, we will 
describe utility modules and library modules and how they can be used to further simplify 
system architectures by removing reusable modules from the main architecture so they can be 
implemented and tested separately. 
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ARCHITECTUAL RESTRUCTURING 
 
 When users start to use a new system, they immediately see improvements that they 
would like incorporated into the system.  This typically evolves into a life cycle that generates 
new releases of a product on the order of once or more a year.  A good software developer can 
anticipate many of the potential improvements that customers will want in the future.  However, 
one cannot anticipate unknown desires that turn into requirements.  Thus one must be prepared to 
build architectures that can grow or even be totally revised to meet unknown future 
requirements. 
 
 Chapter 5 described a flexible software life cycle.  The arrows in Figures 8-9 and 8-10 
illustrate feedback loops that provide for anything to be changed at any time.  As soon as one 
phase is completed and the next phase is launched, one learns about additional features that must 
be incorporated to improve the system.  Flexibility implies that the architecture is designed for 
ease of change at any level.  The ability to do this depends upon the understandability and 
independence of both the architectural design and the components contained in that architecture. 
 
 
Mapping Architectural Restructuring Onto The Life-Cycle 
 
 Experience has shown that, for complex systems, designers should allow for three 
restructurings of the architecture during its initial development, and possibly more during 
support.  The reason for these restructurings is because the initial architecture is normally 
designed without the benefit of detailed knowledge of what the structure must support.  Only 
after going into the additional layers of coding implementation, based upon an initial structure, 
does one learn about all of the pieces of information to be used and how they must fit together.  
After one has done this, the first restructuring is likely to be significant.  Restructuring will allow 
the design team to move quickly and easily accommodate the remainder of the design and 
development effort. 
 
 The second restructuring is usually similar to the first, but not as significant.  The third is 
usually represented by a sequence of much smaller improvements to the structure over time.  The 
exception is when levels of module detail have changed significantly since the first restructuring. 
 
 Experience has also shown that, having restructured as indicated above, complex 
modules can be finished, verified, and validated with relative ease.  This is because the new 
structure allows the rest of the information to be added in a much more logical way - increasing 
understandability and independence.  This restructuring does not cost time on a project.  
Experience shows it clearly saves time, particularly when time is most precious - nearing a 
scheduled release date. 
 
 Figure 8-11 shows the effects on a project when restructuring is imposed, compared to 
the normal project when it is not.  When complex models are not restructured, it becomes much 
more difficult to add additional elements without disturbing large segments of the total module. 
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Figure 8-11.  The effects of restructuring on project completion times. 
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Chapter 9.  Architectural Design 
 
 
 
ARCHITECTURAL DESIGN RULES 
 
 Perhaps the greatest benefit of the VisiSoft approach is that the architecture of a complex 
system can be viewed graphically, and thus studied and improved.  Much like looking at the 
architecture of a house, aircraft, or electronic device, we can view the architecture of a system 
without being overwhelmed in the detailed design of a particular element.  This amounts to 
hiding the details, e.g., the numerous design parameters, until one wants to see them.  In 
software, this implies not getting into the code.  Conversely, if one wants to view the details, 
they are easily available. 
 

 Conversely, the hierarchical architecture hides unwanted details, e.g., numerous design 
parameters, until one wants to see them.  Most importantly, one does not have to read code to 
figure out architectural details.  Finally, if one wants to view the details of the code, it is directly 
available. 
 

 By following architectural rules, software modules can be designed to be independent 
and easily recognized by others.  This cuts the time and cost to build, test, validate, change, 
expand, and reuse these modules in other tasks or simulations.  A sampling of rules is provided 
below.  These rules are generally easy to follow and verify, simply by reviewing the engineering 
drawings. 
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Some Basic Rules 
 
 Ensuring independence and understandability at different levels of an architecture is an 
important part of ensuring reusability.  This requires understanding what is meant by 
independence at different levels.  The following are the principles behind this concept. 
 

• Independence and understandability of an elementary module allows it to be copied and 
reused, with modifications, in another part of the drawing or in another drawing. 

 

• Independence of a higher level module provides for ease of reuse in different drawings 
or in different directories for different projects. 

 
 The following are basic design rules that, when followed, can ensure that module 
understandability and independence are maximized.  For example, we want to ensure the 
following. 
 

• Resources shared between two processes contain only those attributes that are shared by 
those processes. 

 

• Attributes used by only one process are placed into a resource dedicated to that process. 
 
These rules maximize understandability and independence at the elementary module level.  They 
are time-saving practices that are easy to follow.  Even the following simple rules help. 
 

• Do not reuse working variables by more than one process. 
 

• Use separate working variables for different functions, each using meaningful names, 
even within a single process. 

 
These rules add significant improvements to the understandability and independence of 
elementary modules.  Additional rules are provided in the following sections. 
 
 
Limiting The Number Of Elements Within A Module 
 
 An elementary module may have only one or two elements, e.g., a resource and process, 
although this does not occur often.  However, when a process or module starts to expand in size 
as more detail is added, one must consider breaking it into separate processes or submodules for 
clarity of understanding.  Three to five elements allow a module to be easily understood.  Unless 
the structure is very symmetrical, and therefore still understandable, one should limit the number 
of elements of a module to ten. 
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Limiting Interfaces To Two Interconnect Lines 
 

 As shown in Figure 9-1, modules can be connected via many interfaces.  For example, 
module M2 is connected to modules M1, M3, and M5 via three two-line interfaces.  M3 is 
connected to module M2, M6, and M4 via three two-line interfaces.  However, at every interface 
there are no more than two lines interconnecting any modules.  Often, one line will connect to a 
resource for input data, and the other line to a resource for output data. 
 

M1 M2 M3 M4

M5 M6

MODULEINTERFACE  3/2/04  
 

Figure 9-1  Module Interconnection scheme. 
 

 
 Limiting the interconnections between modules to no more than two lines at any interface 
is the most important way to achieve module independence.  It allows one to easily make a copy 
of the module and connect it to other modules in other drawings. 
 
 
BASIC ARCHITECTURES 
 
Simple Architecture 1  -  Elementary Design  
 

 Figure 9-2 illustrates the most basic architecture of a task.  In this case, the task, C_S_1, 
contains a single module, M_1.  The module, M_1, contains one resource R_1 and one process 
P_1.  To indicate the use of interactive DISPLAY and ACCEPT statements, a computer terminal 
is attached to the process.  The computer terminal icon is for documentation purposes only. 
 

M_1

P_1

R_1

C_S_1

ARCHITECTURES_1  04/22/04  
 

Figure 9-2.  The most basic architecture of a task. 



Software Survival             Page 9 -   4   

Simple Architecture 2  - Two Modules  
 
 Figure 9-3 illustrates a task with a simple two module architecture.  From the nature of 
the architecture, M_1 is the main control module, and M_2 is a subordinate module.  The 
implication is that P_11 calls P_21. 
 

C_S_1

ARCHITECTURES_1  04/22/04

M_1

P_11

R_12

R_11

M_2

P_21

R_21

 
 

Figure 9-3.  A basic two module architecture of a simulation or task. 
 
 
 Note that both processes have a dedicated resource (P_11 has R_11 and P_21 has R_21).  
This is based upon the principle that a process generally has a need for attributes that are not 
shared with any other process.  The rule to be followed is that, unless attributes (data) must be 
shared for functional purposes, do not share them.  Use a dedicated resource to house those 
attributes, even for a single attribute.  When memory was expensive, programmers learned to 
share work variables.  This is prone to misunderstandings and bugs.  Today, memory is cheap.  
Time is very expensive. 
 
 When one process calls or schedules another process, these processes generally share 
data.  If resource (R_12) contains only the data shared between these processes, this maximizes 
independence and understandability.  If a module boundary is crossed, the resource should be 
placed inside the controlling module. 
 
 When an experienced architect looks at this drawing, the above principles are expected to 
be followed. 
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Use Of Terminals 
 

In conventional engineering drawings, terminals are used to connect lines between 
drawings, or to simplify a single drawing.  Rather than have a long line connecting elements 
across a drawing, one that may interfere with many other lines, a label is created at each element 
to denote the connecting line.  Figure 9-4 illustrates this convention. 
 

R1

T2

P1

T4

T1 T3

INPUT

OUTPUT

T6

T8

T5 T7

INPUT

OUTPUT

ARCHITECTURES_2  07/12/06  
 

Figure 9-4.  Use of labeled terminals. 
 
 
 Looking at Figure 9-5, we note the following conventions.  Information and control 
inputs generally come in on the left and top (T1,T2, T5, and T6) and outputs generally go out on 
the right and bottom (T3, T4, T7 and T8) for both processes and resources.  Here, if P1 is called, 
the resources it shares with the caller are considered inputs to P1, and those resources would be 
attached at T1 or T2.  If P1 calls another process, then resources it shares with the called process 
are considered outputs of P1, and those resources would generally be attached at T3 and T4. 
 
 Looking at R1, T5 and T6 are typically tied to processes that call others tied to T7 and 
T8, where the calling process is providing inputs to R1 to share with the called processes.  This 
does not prohibit data from being shared in both directions, where one need only consider the 
direction of control. 
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Architecture 3 
 
 Figure 9-5 illustrates the architecture of a higher level module M_A that may be used by 
another module at an even higher level.  Module M_A contains four submodules, M_1, M_2, 
M_3, and M_4.  Rather than packing all of these resources and processes into one module, it 
makes sense to break up the functions so that they can be isolated and therefore treated 
independently.  This is the job of the architect.  Specifically, modules M_2, M_3, and M_4 can 
be dealt with on a reasonably independent basis from the rest of the module. 
 
 The connector to A indicates that a resource in the higher level module contains data that 
is used and modified by M_A.  
 

ARCHITECTURES_1  02/19/06
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Figure 9-5.  Architecture of a higher level module. 
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ADDING SHARED ALIAS RESOURCES TO GAIN INDEPENDENCE 
 
 Sometimes it appears difficult to limit the interconnections between modules to just two 
interconnect lines.  This problem typically occurs when a resource in one module is to be shared 
with more than two processes in another module.  Figure 9-6 provides an example of this case, 
where MODULE_1 calls four processes in MODULE_2, while sharing a single resource with 
those processes. 
 

ISOLATE 09/09/06

SUBSCRIBER_
VOICE_
INPUT

SUBSCRIBER_
DATA_

OUTPUT

SUBSCRIBER_
DATA_
INPUT

SUBSCRIBER_
VOICE_
OUTPUT

MODULE_2
ATM_

VOICE_
RECVR_

ATM_
DATA_

RECVR_

ATM_
VOICE_
XMTR_

ATM_
DATA_
XMTR_

ATM_
OUTPUT_

INTERFACE

MODULE_1

SUBSCRIBER_
ATM_
XMITR

A DCB  
 

Figure 9-6.  Example of not limiting the interconnections between modules. 
 
 
 This problem can be solved by adding a SHARED ALIAS resource in MODULE_2, as 
shown in Figure 9-8.  The SHARED ALIAS resource (denoted by the red outline) is ATM_ 
SUBSCRIBER_INTERFACE and is connected to the four processes in MODULE_2.  When the 
process in MODULE_1 calls any of the processes in MODULE_2, it uses the memory of 
resource SUBSCRIBER_ATM_INTERFACE, now a SHARED AS resource, as shown in 
Figure 9-7. 
 
 The SHARED ALIAS resource does not use separate memory, but points to the memory 
in the SHARED AS resource SUBSCRIBER_ATM_INTERFACE.  The “pointer” is implicit in 
the architecture and not of concern in the language.  The data structure within the SHARED 
ALIAS resource acts as a template that is overlaid on top of the memory defined by the 
SHARED AS resource.   
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Figure 9-7.  Example of how a SHARED ALIAS resource reduces the interconnections. 
 
 
 At first, this architecture may appear to carry unwarranted overhead.  However, it is the 
facility needed to ensure independence between modules, and requires no additional memory.  It 
occurs in many design situations.  It is particularly useful when designing Utility and Library 
Modules as defined below. 
 
 
SHARING RESOURCES WITH INDEPENDENT UTILITIES 
 

 Frequently, as indicated above, more than one module must perform the same or very 
similar functions.  Rather than repeat the code, the desired function may be put into a single 
module.  More generally, when two or more processes in different modules call the same process 
sharing similar data structures, it is best to create an independent utility.  This is done by putting 
the shared data into a SHARED AS resource associated with each calling process, and creating a 
Utility module with a SHARED ALIAS resource. 
 

 This requirement is illustrated in Figure 9-8.  MODULE_1 and MODULE_2 each want 
UTILITY_6 to perform a function using their own resources, SHARED_AS_M1 and 
SHARED_AS_M1 respectively.  Instead of sharing both resources directly, UTILITY_6 shares 
them using SHARED_ALIAS_U6. 
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ISOLATE 10/25/10
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Figure 9-8.  Example of using aliased resources to create independent utilities. 
 
 
 Thus when MODULE_1 calls upon UTILITY_6 to perform the function, 
SHARED_AS_M1 is used.  When MODULE_2 calls upon UTILITY_6, SHARED_AS_M2 is 
used.  If UTILITY_6 is memory-less, no logic is required to distinguish between the two callers 
and their needs.  Also, no direct connect lines may be drawn to a Utility module.  Utilities must 
be connected to other modules via connectors. 
 
 Figure 9-8 illustrates an additional facility in VSE and GSS.  This is the ability to chain 
utility or library modules.   Resources SHARED_AS_U7 and SHARED_AS_U8 can act as 
SHARED AS resources when attached to other Utility or Library modules. 
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BUILDING PROTECTED DATABASE UTILITIES 
 

 Figure 9-9 illustrates an architecture for a Utility (green border) that takes in an input file 
and provides access to a database that may be available to multiple modules.  This architecture 
provides for reading FILE_I.   Since the file is an input file, it is shown on the left side of the 
module.  Process PI controls access to the database, initializing the database that is stored in 
RIDB. 
 
 

MI

A

RI

PIPFIRFI RIDB

RCI

FILE_I

ARCHITECTURES_2  01/25/06  
 

Figure 9-9.  Architecture for an input file handler utility. 
 
 Process PI is called from above to retrieve data from the database.  The first time it is 
called, PI calls PFI to read the file and load the database.  PFI reads records from the file, loading 
the database into RIDB.  When all of the records are read, PFI sets the END_OF_FILE status 
and any other return codes and returns control to PI.  PI then performs retrievals requested from 
above.  If the request coming into PI from above is to update the database, PI performs this 
update to RIDB.  When the task is completed, PI may be called from above to write the updated 
database to the FILE_I (if desired) and close it. 
 

 RFI contains data structures representing the records read from the file.  RCI is used to 
hold control attributes used by PF1.  RI is a template that holds control and database information 
stored in the module above. 
 

Figure 9-10 illustrates an architecture for a database handler utility that can store an 
output file.  This architecture provides for writing FILE_O when PO is called from above to do 
so.   Since the file is an output file, it is shown on the right side of the module. 
 

MO

A

RO

PO RFORODB PFO

RCO

FILE_O

ARCHITECTURES_2  01/25/06  
 

Figure 9-10.  Architecture for an output file handler utility. 
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BUILDING INPUT-OUTPUT FILE HANDLERS 
 
 Figure 9-11 illustrates an architecture for reading and writing Standard File Interface 
(SFI) files.  The SFI standard was created by GSS users in the 1980s.  SFI files are text files 
whose data records follow similar formats.  They also contain predefined header records to 
describe the format of the fields in the data record.  Software is automatically generated to read 
and write SFI files based upon the header information.  This allows the file to be connected 
directly to a process that reads or writes the file automatically when called.  Fields in the data 
record that are specified by the header records must have a match with those in resources that are 
connected to the calling process.  These fields are automatically updated when reading an SFI 
file.  Users can create SFI formats that are easily read from - or read into - spread sheets, 
statistical packages, etc., that use simple delimiters between fields. 
 

MIO

A

RIO

PIOPFI RFI

FILE_I

ARCHITECTURES_1  04/29/04

PFORFO

FILE_O

 
 

Figure 9-11.  Architecture for a file handler utility. 
 
 
 The architecture in Figure 9-11 provides for reading FILE_I into a SHARED AS resource 
in the calling process using RIO as the SHARED ALIAS template and then writing that database 
to FILE_O.  Process PIO controls the module, initializing the database that’s stored in the 
SHARED AS resource that’s connected to RIO and the calling process.  PIO can create a copy of 
the file when required by calling the process PFO to write the database to FILE_O.  The calling 
module then performs database retrievals and updates directly to RIO. 
 
 In general, process PIO is called from above to retrieve the database from FILE_I or store 
it in FILE_O.  The first time it is called, PIO calls PFI to read the entire FILE_I.  PIO calls PFI 
once for each record and loads the information from RFI into the database in RIO.  PFI reads 
records off the file into RFI.  When all of the records are read, PFI sets the END_OF_FILE status 
and any other return codes required for PIO to send back to the calling module.  The calling 
module then performs retrievals directly from its own SHARED AS resource. 
 
 When the task is completed, PIO is called from above to write the updated database to 
file FILE_O and close it.  To write FILE_O, PIO moves data records from RIO to RFO and calls 
PFO to write the file for each record. 
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STANDARD LIST UTILITY ARCHITECTURES 
 
 Figure 9-12 illustrates examples of standard architectures for list utilities that are quite 
common in database work.  These particular architectures are used to manage different types of 
lists or databases that support different pieces of complex software. 
 
 The CAD system described here contains a GENERAL library of modules that can be 
used to perform various standard software functions.  These are described in the General Library 
document, reference [79].  Examples of popular library modules are those for managing static 
and dynamic (linked) lists, e.g., those shown in Figure 9-12.  Management of linked lists can be 
somewhat complex for large applications where they may be required in many different parts of 
an application.  In this case, one can build utility modules to use the list management library 
modules.  Once one has a utility built, one can easily modify the module, process, and resource 
names, and put the new utility module into a different piece of software.  One can then proceed 
to tailor the code where necessary to achieve the new functionality.  Most of the code changes 
are required to match record layouts in the lists (databases).  The rules are usually unchanged, 
except for some of the data names.  The logic is generally bug-free on the first implementation. 
 
 Probably the most important concept to be derived from this is that there are standard 
architectures that are recognizable directly from their drawings.  Once one gets to work with 
these different architectures, it is clear how they can be permuted to do different functions very 
easily.  This is because the common functionality has a corresponding common picture 
(architecture or sub-architecture). 
 
 Without visualization of these architectures, this would be intractable.  Imagine that your 
eyes were only limited to reading text, and could not recognize pictures.  Or if the pictures were 
gross abstractions of the functionality (e.g. a box without any processes or resources inside) so 
that the picture does not tell very much about what is inside.  That is a major difference between 
this CAD approach and other software approaches, except for those based upon flow-charts.  But 
as the logic gets complex, flow charts expand in size, typically covering many sheets of paper, 
becoming hard to follow.  A good language can easily reveal complex algorithms on one or two 
pages that may take five or ten pages of flow charts. 
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Figure 9-12.  A few examples of list management utility architectures common in VSE. 
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BUILDING PANEL ARCHITECTURES 
 
 Using this CAD system, interactive panels are built using the Panel Library Manager 
(PLM).  One must first create a panel resource.  Then one can select this resource and bring up 
the PLM drawing board to create a new panel or modify an existing panel, e.g. RESOURCE_ 
PANEL shown in Figure 9-13.  When the panel is completed and saved, the panel resource is 
populated automatically with data structures produced by the panel drawing board.  This panel 
resource is then available to processes that are connected to it architecturally.  At run time, these 
processes can put information into, and get information from panel fields within the data 
structure. 
 

 

 
 

Figure 9-13.  Creating a Panel Resource Type. 
 
 
 
BUILDING PANEL HANDLERS 
 

 One of the many features of the CAD system is the ability to create panels such as that 
shown in Figure 9-13 using a graphical environment.  At run-time, users may enter data, choose 
selections and review outputs using a large number of built-in features.  The panel shown in 
Figure 9-13 happens to be used to create a resource that provides the interface between all of the 
panel fields and the task that is being created to use a (different) panel.  These resources are 
special panel resources that appear in the architecture with their names in red.  Our interest here 
is the architecture for multiple panels, not the panels themselves. 
 
 Figure 9-14 illustrates an example of an architecture for handling multiple panels.  This 
architecture is much better because the process PANEL_CONTROL becomes very complex if 
the panels themselves have any degree of complexity. 
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Figure 9-14.  Poor architecture for handling multiple panels. 
 
 
 When taking in input data from multiple panels, managing which panel is open and on 
top should be separated from accepting and editing data from the individual panels.  Figure 9-15 
provides an example of an improved architecture for accomplishing this. 
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Figure 9-15.  Improved architecture for handling multiple panels. 
 
 
 Figure 9-16 provides the best example of an architecture for handling more complex 
panels.  It is recommended that the architecture used for P_3 be considered for all panels.  The 
resources used in this architecture each serve a different purpose. 
 



Software Survival             Page 9 -   16   

ARCHITECTURES_2  11/26/04

P_2

PANEL_2

P_3

PANEL_3

P_1

PANEL_1

PANEL_
RES_1

PANEL_
RES_3

PANEL_
RES_2

PANEL_HANDLER

PANEL_
CONTROL

TOP_
CONTROLS

PANEL_
INTERFC_1

PANEL_
INTERFC_3

PANEL_
INTERFC_2

PANEL_
INT_1

PANEL_
INT_3

PANEL_
INT_2

PANEL_
CONTROL_3

PI3

PI3

PI2PI1

PI2PI1

 
 

Figure 9-16.  Best architectures for complex panels. 
 
 

 PANEL_INT_3 serves as the interface to the calling process and allows the panel to be 
tested using a test driver independent of the system or simulation in which it resides.  
PANEL_CONTROL_3 provides for internal work or control attributes used to control the logic 
fielding the panel inputs and responses.  PANEL_RES_3 is the panel resource itself. 
 
 
ARCHITECTURES FOR TESTING LIBRARY MODULES 
 

 Architectures for testing library modules can be simplified by following the procedures 
offered below when building the modules.  Figure 9-17 illustrates a module POINT_AND_ 
VECTOR_TESTS that is contained in the GENERAL library.  This library module contains 
three utility modules that are used for determining the relative positions of points, lines, and 
vectors in space.  Because these utilities contain complex heuristic algorithms, they require tests 
using substantial databases to ensure all possible situations are covered.  When testing complex 
library modules in a production environment, one may run many tests before certifying a module 
for production release. 
 

    A test driver for the utilities in this library module is shown in Figure 9-18.  Because 
library modules are prepared as object files (in this case it is the GENERAL.a library), having 
copies of the utility modules available inside the test driver task eliminates having to go back and 
forth from the test driver to the library to make the changes.  As utilities, they can be put into 
more than one drawing in a the library directory.  Changing a utility on any of the drawings 
changes it everywhere.  So when the utilities are finally corrected in the test driver in 
Figure 9-18, one goes into the library drawing and prepares the library module for a final test. 
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Figure 9-17.  Library modules under test. 
 
 
 

 
 

Figure 9-18.  Test driver for library modules. 
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  Having generated a new corrected version of the library, an example of a call statement 
inside the test driver is shown below. 
 
    CALL INSIDE_OUTSIDE_TEST IN POINT_AND_VECTOR_TESTS IN GENERAL 
         USING IN_OUT_INTERFACE 
 
To invoke the test procedure described above, one merely has to put comments into this call 
statement to call the utility modules inside the test driver as shown below. 
 
    CALL INSIDE_OUTSIDE_TEST *** IN POINT_AND_VECTOR_TESTS IN GENERAL 
         *** USING IN_OUT_INTERFACE 
 
After testing is complete, and the library module is prepared, then the comments are removed 
and the actual library module is called as a final test. 
 
 
 
PUTTING RESOURCES ON THE TRANSMITTER SIDE 
 

 When designing systems where information is moved between modules, the resource 
containing the data to be transmitted across the boundary (e.g., RS1) is best placed inside the 
sender module with the process that receives it (e.g., PR2) inside the receiver module.  This 
approach is illustrated in Figure 9-19 below. 
 

M1

PS1 RS1

RS2 PS2

M2

PR2 RR2

RR1 PR1

MODULE INTERFACE  11/08/10  
 

Figure 9-19  Module Interconnection scheme. 
 
 
 The reasons for this approach are many-fold.  First, when designing communications 
systems, information is transmitted between two boxes as shown.  For asynchronous 
transmission, the transmitter puts the information to be transmitted into a buffer in the 
transmitter, and sends a control signal to the receiver to sense the information and copy it into the 
receiver.  This is accomplished by having the transmitter schedule the receiver module to copy 
the data after it is put into the transmitter resource shared with the receiver. 
 

 For synchronous communications, the transmitter schedules itself to put the information 
into the buffer at specified clock times, and the receiver schedules itself to sample the 
transmitter's buffer in between those clock times. 
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ARCHITECTURAL SPACING 
 

 There are many disciplines in which engineering drawings are used to represent a design.  
House architectures, machine drawings, and chip layouts are examples of drawings that are to 
scale.  We are only concerned with drawings that are not to scale, e.g., electronic circuit designs 
and logical designs.  In both cases, engineers typically follow standards for production drawings.  
This is because large systems cannot be represented with a single drawing.  It is not unusual to 
have ten or more drawings to cover the components of a production system.  Thus, the drawings 
must match to be read easily, and engineers are known for their adherence to these standards.  
This has nothing to do with style.  It has to do with clear representations of the design. 
 

 Good architects joke about the different approaches to spacing between modules and 
elements within a module.  In fact they have been given names, e.g., Texas - wide open spaces, 
and China - crunched up.  Is one way better than another?  Are there benefits of spreading things 
out versus crunching them up?  The answer is definitely yes.  Good spacing practices assist 
understandability and ease of architectural change. 
 

 When working with very large complex drawings, one can distinguish between good and 
bad practices.  For example, a technician creating the drawing on a graphics screen may want to 
crunch everything up to fit as much on the screen as possible.  This minimizes the number of 
drawings.  But engineers reading these drawings may have difficulties discerning where one 
module ends and another begins, especially if they are not familiar with the design. 
 

 In fact there have been studies relating productivity to pixel counts or size of the drawing 
one can fit on a screen.  The more pixels one has, the more one can see on the screen with the 
same degree of clarity.  Productivity has been shown to increase with pixel count. 
 

 In addition, having visited aircraft manufacturing plants, one sees huge drawings 
wrapped around the walls, with moving step ladders to view the drawings.  Large complex 
designs can never be put onto a single screen.  So crunching things up is not the answer.  What is 
important is the ability to easily pan and zoom on a large drawing, and to easily break a large 
design into multiple drawings.  A large design will naturally have independent parts, else it is a 
poor design. 
 
 
Changing An Architecture 
 

 Even more important is the time expended when one wants to make an architectural 
change.  If the drawing is crunched, it becomes a large task to make some room, just to be able to 
move module boundaries - to create some additional space inside for one or more new elements. 
 

 To save time changing a module whose architecture is crunched, one starts looking for 
ways to not change the architecture.  This problem is typically solved by adding code to existing 
resources and processes.  These elements start to take on additional functions that make them 
difficult to understand.  When additional functions are best put in separate resources and 
processes, or even separate modules, one is faced with changing the architecture.  Having space 
to start with is extremely helpful, and will likely make the difference between creating an 
improved versus degraded architecture. 
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Chapter 10.  Language Concepts 
 
 
 This chapter and the following three chapters address the language issues in VisiSoft.  In 
this chapter we look at concepts behind the languages, with special attention to two key issues: 
 

• Support for the architecture 
 

• Understandability of the code 
 
We must also consider: 
 

• Speed of execution. 
 

• Independence of sections of code (within a process) 
 
 Speed affects productivity in the run time environment.  It is especially important in more 
advanced applications, for example large scale simulations, graphics, and particularly complex 
algorithms.  The independence criterion allows us to read one section of code without regard to 
another section of code. 
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Language Support For The Architecture 
 

 Software has always been built by programmers.  These are the people who generally sit 
at computer terminals and write the programs (code) that make computers do what they do.  But 
this is like thinking of house-builders - people who get together and build a house.  In fact, long 
ago, this is the way houses were actually built.  There were no architects, masons, carpenters, 
plumbers, electricians, sheet-rockers, etc. 
 

 Why do we have these separate professions and fields of skill today?  It is much more 
productive.  The old adage “Jack of all trades, master of none” applies.  In fact, it also applies to 
software.  As we have seen in the prior chapters, architecture plays a vital role in structuring and 
supporting large scale systems.  The skill set required for designing architectures is far greater 
than that for writing code.  An architect designing a house must specify how the different 
components must fit together.  This requires a knowledge of the tools and materials that can be 
used by those who will implement the architecture.  Likewise, the software architect must know 
the approaches that programmers can take to write the code, selecting those as appropriate for the 
design.  An example is where to use a utility module or a library module. 
 
 To support the architectural approach used in VisiSoft requires three separate languages.  
Data cannot be declared in the process language, instructions cannot be declared in the resource 
language, and neither can be declared in the control specification language.  This is another 
major paradigm shift.  Having three separate languages has allowed the language designers to 
focus on the role of each.  The result is that the languages are a major factor contributing to 
higher productivity in general, as well as the architectural properties of the system. 
 
 
Understandability Of The Code 
 
 It is our belief that one should not require a programming background or a degree in 
Computer Science to be able to read and understand complex algorithm descriptions.  We know 
this is possible from our experience with VisiSoft.  One may not know the syntax required to 
write a program, but one only needs the appropriate subject area expertise to read and understand 
what the algorithms are supposed to accomplish. 
 
 Conventional programming languages encourage minimum keystrokes and terse 
(economy of) expressions.  One may have to read a line of code multiple times to figure out what 
it means.  This is the opposite of reading prose, where good authors take pain to ensure the 
reader can quickly capture the ideas.  If one cannot read fast, one may lose the “train of thought.”  
This does not help an author trying to sell books. 
 
 Furthermore, when we read prose, upper and lower case are used to provide more 
information.  This information comes from redundancy, a remarkable trait of the English 
language, a language that has survived and is used more than any other.  It has become the 
language of international trade.  One of the reasons is its understandability.  Much of this is due 
to its redundancy.  Grammatically, articles, such as “the”, “a”, etc. help to ensure that the reader 
understands what the writer meant.  They could be dropped and one could still derive the 
meaning.  So why use them?  - To make the sentence more understandable. 
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 Although understandability was considered very important to programming back in the 
1960s, today it represents a vast change, one that can open up the software environment to a 
much wider degree of professionals.  The VisiSoft departure - to emphasize readability and 
understandability - has great benefits for the person reviewing the algorithms.  VisiSoft has put 
understandability as far more important than the brevity of source code. 
 
 Our approach to various language issues is based upon arguments from the earliest days 
of programming onward, having learned and used many different programming languages.  The 
resulting conclusions are often significantly different from C based languages, including C++ and 
Java, the only languages taught in most universities today.  Moreover, it is our contention that 
one should not require a course in a language to be able to read and understand an algorithm, as 
is often required with languages like C++ and JAVA.  This allows subject area experts to 
validate a model, or verify that what is built is what is needed.  Most important, the VisiSoft 
approach has been evolving in a production environment since 1982, with many changes and 
refinements, specifically to accomplish the speed and productivity goals. 
 
 
Speed Of Execution 
 
 Speed affects productivity in the run time environment.  It is especially important in more 
advanced applications, for example large-scale simulations, graphics, and particularly complex 
algorithms.  So what effect does language have on speed of execution?  It can be significant.  A 
typical response by an experienced programmer seeing VisiSoft code for the first time is that the 
language must be very inefficient - implying that it must run slow.  After clocking large 
algorithms, one is surprised at the speed improvements.  Two contributing factors are (1) the 
ability to easily describe large hierarchical data structures, and (2) the ability to move large 
strings of bytes into a data structure that contains a large number of different field layouts - 
without concern for word-boundary alignment.  These facilities support handling large records 
from files or complex message structures very rapidly. 
 
 
Independence 
 
 The conscious separation of data from instructions in VisiSoft has provided significant 
benefits.  First and foremost, it allows one to capitalize on the concept of independence.  The 
independence criterion allows us to read one section of code without regard to another section of 
code. 
 
 Properties of independence have guided software development in the past.  Early on, 
engineers who were designing large CAD systems in FORTRAN tried to achieve module 
independence in software for the same reasons they did in hardware - to minimize the effects  
that design changes in one part of the system would have on the other parts.  This was 
accomplished by minimizing the number of modules (subroutines) that shared the same labeled 
common blocks (data).  The approach is illustrated in Figure 10-1.  The independence properties 
could be determined visually by looking at the matrix of modules that used labeled common.  
The more sparse the matrix, the greater the independence. 
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 This was not a new concept for engineers.  They had learned it in Linear System Theory.  
The more sparse the matrix that represents the system (of equations), the more independent the 
variables, and the more simple the transformations. 
 
 Also on these projects, unlabeled common was never used.  Its use was considered a bad 
practice since it tended to be global, and destroyed independence.  Good practices were those 
that minimized the creation of bugs, especially in the support phase when new features and 
functions were being added by new programmers. 
 
 Less experienced programmers put everything into unlabeled common.  One change 
affected all modules.  They also used argument lists.  These proved to cause problems in the 
support phase, since all calling routines had to specify every argument in the proper order.  By 
using labeled common, one only need refer to the name of the common block. 
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Figure 10-1.  A module independence matrix for FORTRAN. 
 
 Some of these engineers ended up writing business programs in COBOL, and carried 
over the same separation and independence principles using very similar matrices.  However, it 
was much easier because of the inherent separation of data structure statements from procedure 
statements in a program or subroutine in COBOL.  In both COBOL and later versions of 
FORTRAN, one could use INCLUDE statements in the subroutines by naming the INCLUDE 
files containing the detailed data structures. 
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THE THREE VisiSoft LANGUAGES 
 

 As mentioned earlier, the VisiSoft environment has three separate languages: 
 

• Separation of data from instructions is accomplished by describing all data in a resource 
language and describing all instructions in a process language. 

 

• Independence from the platform and operating system is accomplished by defining 
system aspects using a control specification language. 

 
Resources, processes, and control specifications are prepared (translated) separately. 
 
 
Benefits Of Separate Resource, Process, and Control Languages 
 

 Although this may appear unusual, the benefits of having separate languages quickly 
become apparent.  Conventional programming languages generally combine the specification of 
data with the procedural language statements.  As a result, data definition takes a back seat to the 
procedure logic that tends to overwhelm thoughts of data organization.  Programmers rarely get 
to appreciate the fact that logical procedures can be greatly simplified by using well-organized 
data structures. 
 

 Having a separate language and visual container for defining data elevates the importance 
of building structures that are well thought out in advance, not something that is invented “on the 
fly” - as needed.  Structuring becomes second nature when one has a language that makes it easy 
to define and easy to use.  This is the antithesis of other languages.  One must use VisiSoft to 
understand these benefits, because they are otherwise nonexistent, and therefore hard to fathom. 
 

 Processes also benefit from having the data elements they use defined in a visibly 
connected resource.  It is not unusual to have three or four windows open to see the resources as 
well as the process being created or changed.  More importantly, good data structures simplify 
the procedural statements that use them, and are a major factor in understandability of complex 
conditional situations. 
 

 The control specification language eliminates the need for OS level scripts to assign files 
and run a program.  Everything runs under the VisiSoft environment or as a separate executable 
(that can invoke other executables) on any operating system.  This provides platform and OS 
level independence. 
 
 
The Benefits Of Separating Data From Instructions 
 

 In VisiSoft, modules can be readily designed to be independent.  By limiting access to 
specified data structures, a module will achieve true independence.  Data structures are defined 
in resources.  Instructions are grouped into sets of rules defined as processes.  The 
interconnection of processes and resources is done while creating the engineering drawing of a 
module’s architecture, where lines connecting processes to resources determine what processes 
have access to which resources.  Modules can be connected to each other by connecting a 
process in one module to a resource in another.  Independence of modules can be inspected, 
visually, simply by looking at the number of lines connecting them. 
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 This also allows one to decompose a database into separate data structures.  Resources 
and processes can be grouped into elementary modules.  Elementary modules can be grouped 
into hierarchical modules.  This is illustrated in the prior chapters.  Resources, processes and 
control specifications can be edited directly from the engineering drawing. 
 
 As indicated above, the separation of data from instructions allows two separate 
translators: one for data structures, and one for rule structures.  This separation provides a natural 
language for describing the rules.  Language design is not aimed at economy of expression 
(minimum keystrokes to enter lines of code), or ease of writing the “compiler”.  Instead, 
language design is aimed squarely at ease of understanding by other than the original author - the 
property of understandability. 
 

 To make the rules readable requires that the data structures and corresponding typing be 
defined to support ease of understanding the rules.  This is most important when trying to 
understand conditional statements.  For example, consider the following statements: 
 

IF A(1) == "," 
Versus, 

IF FIRST_CHARACTER IS A COMMA 
 
If one does not know the C language, one may be hard pressed to understand the first statement, 
while the second statement is obvious to anyone who knows English. 
 

 As will be apparent from this and the next three chapters, the three languages are a 
significant departure from the terse languages designed to make compilers small and simple to 
write.  Having three separate translators eases the burden of individual translator design, but that 
is not the driving force.  The driving force is understandability. 
 
 
SOME REFLECTIONS ON CONVENTIONAL LANGUAGES 
 

 The programming world went through a period of enlightenment in the late 1960s and 
1970s.  During that period, many papers were written on the benefits of top down design, 
structured programming, one in-one out control structures, and data organized into hierarchical 
structures by name - specifying the type after each name.  These were important revelations. 
Unfortunately, there were no general-purpose languages that supported the concepts professed to 
improve software development. 
 

 COBOL had already implemented many of the desired features with its paragraph 
orientation and its record structures facility.  But the implementation of these features left much 
to be desired.  Scientists could not effectively use COBOL and academics shunned it since it did 
not support scientific applications.  COBOL also took programming to a vocational level, cutting 
salaries by a factor of two, causing a dislocation in programmer employment.  PL1 implemented 
some of the features of COBOL, but was really a scientific language. 
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 An even greater impact was created with the huge expenditures by AT&T to get into the 
computer business.  Billions of dollars were spent promoting UNIX, and C went along for the 
ride.  With Bell Laboratories dominating the IEEE and other software journals, the end result has 
been the huge promotion of C. Although COBOL and FORTRAN are still used in the inner 
circles of commercial and scientific programming, everything else is written in C and its 
derivatives - C++ and Java.  Most academic environments require no other languages. 
 

 The authors have listened to many complaints from older programmers, with experience 
in many languages, regarding Computer Science graduates having no knowledge of languages 
other than C and its derivatives.  These graduates lack the knowledge of languages that were 
much better designed and much more productive.  There are sufficient articles now being 
published on the lack of a real engineering discipline in software.  We believe there is a 
renaissance on the immediate horizon.  We hope we can contribute to it with this book. 
 

 
The Quagmire Of Scope In Conventional Languages 
 

 In conventional languages, data and instructions are grouped together into blocks, 
functions, or classes,  variables can be declared within nested constructs.  With two blocks we 
can have a scenario as follows: 
 

 

Int A,B,C 
     . . .  

 
 String C,D,E 
    . . .  
 
 

 
 Here it is easy to see that the variable C in the inner block is a string, not an integer.  This 
brings up the twin issues of visibility and scope.  In simple terms, when we see a name in a 
program, we want to find the declaration that defines its properties. The region of text over 
which a declaration applies is its “scope”.   
 

 Scope is a pervasive issue in programming languages.  It is interesting intellectually, and 
convincing in certain ways.  Our first problem with scope comes with the complexity of the 
scope rules themselves.  The above scenario greatly oversimplifies the practical effects of scope 
rules in the context of all language features. 
 

 A parameter of a function has a scope that is local to the function, thus hiding outer 
occurrences of the same name.  Functions may also introduce local variables.  Both of these 
cases are similar to the simple block structure above. 
 

 C++ and Java both allow inheritance.  In this way, a “base” class can have a “derived” 
class.  The derived class retains properties (functions and variables) from the base class.  Classes 
can have public, protected, or private elements, and this itself adds a different kind of scope rule. 
 

 A derived class begins with an access specifier, which controls the visibility of the base 
class variables within the derived class.  The derived class can have a public, protected, or 
private access specifier.  The individual elements within the derived class can be either public, 
protected, or private.  This gives rise to different combinations. 
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 For example, if the access specifier is public, a public member of the base class is visible 
in the derived class, but a private member of the base class is not.  There is definitely a logic 
here, although keeping track of these rules in practice can be difficult, and reach to a high mental 
overload for the program reader. 
 
 C++ also allows one to name a sequence of declarations; this sequence is called a 
"namespace" and can be referenced elsewhere in the program.  Continuing on deeper into scope 
issues would bring us to an almost endless tour-de-force in complexity.  This makes for great 
academic exercises, but is clearly at odds with productivity. 
 
 
The Scope Productivity Problem  
 
 The productivity problem is this. One is revising a piece of code, and encounters a name.  
What does the name refer to? 
 
 In theory, this is easy.  We look up the hierarchy of structures and namespaces for the 
declaration of the name.  Note that the name may be externally defined, either through import or 
a visible namespace.  Sounds easy, but not so.   
 
 Practically, the problem runs more like this.   The name itself will have some semantic 
content.  Let us say the name is "SP_DeblockWord".  We need to find out some detail about 
this name to understand the meaning of the program text.  Where is the information we need, i.e., 
where is the declaration? 
 
 Our "program" is, say, 120,000 lines, our module is, say, 2,000 lines.  Questions: 
 

• Is it a method or function, or a variable? 
 

• Is it an integer? Or is it a pointer to an integer?  Or an array or structure? 
 

• Does sp stand for saved pointer 
 

• Is Deblock to be read as a verb, "to de-block" or as an adjective, short for “deblocking”? 
 
To continue interpreting the code we are revising, we need this information.  It is not obvious 
where the declarations is, and the region of text where it might be is quite large.  The practical 
result?  The declaration of SP_DeblockWord is lost somewhere in our program. 
 
 There may be a hundred names or more.  We may need to look up many of them in order 
to proceed at all.  A huge impediment to going forward. 
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THE VisiSoft SOLUTION TO SCOPE AND VISIBILITY 
 
 Using VisiSoft, the solution to the scope issue is based upon the requirement that: 
 
     A name used in a process must be defined in a resource directly connected to the process. 
 
That's it!  The resource contains the declaration of the name.  Pictorially, we have 
 
 

PROCESS RESOURCE

RULE_1
      .
      .
      .

RULE_N
      .
      .
    SP_DEBLOCKWORD

      .
      .
SP_DEBLOCKWORD  CHAR 20

 
 
 
 The readability and understandability of this one simple rule affords the clarity of detail 
needed to support easy maintenance, implying improved productivity.  There are two significant 
factors in achieving this.  The first is that 
 

• The connection of a process to a resource is directly visible in the architecture. 
 

The second is that 
 

• All possible places to look for a name are directly visible from the architecture itself. 
 

 There is no need to worry about scope, local vs global, or different rules for visibility.  In 
fact, data is never global in VisiSoft.  Processes can only share data as specified at the 
architecture level.  Independence of a design is directly determined by the way processes share 
resources.  In VisiSoft, we see who shares what data on the engineering drawings.  It is not 
hidden within the language level.  If we want to hide complex modules so as to not be distracted, 
we can cover them up.  But if we want to drill down to understand them in detail - we can do so, 
easily! 
 

 When programmers first look at VisiSoft, they typically have the misperception that data 
is always global.  This also causes them to conclude that data cannot be passed by "pointer."  
Actually, the converse is true.  Data that is shared between processes at the architectural level is 
always accessed via pointer.  Passing by value is extremely inefficient.  If a designer in VisiSoft 
desires to make a copy of data to protect the original, he simply moves a copy of it to another 
structure. 
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A NATURAL NOTATION FOR PROGRAMMING 
 

 To appreciate the elegance of the notational approach in VisiSoft, we first briefly review 
conventional approaches to notation. 
 
 
Current Notation 
 

 Since the advent of ALGOL in the academic world and C in the UNIX world, specialized 
notation has been a part of almost every programming language, especially those featuring 
lexical scope and object-oriented features.  This terse approach to notation carries over to almost 
all programming languages.  Thus C++, Java, C#, Perl, etc. have a terse style.  For example: 
 

C++ 
do { 
 position = to_lower( page ).find( href, position ); 
 if ( position != string::npos ) { 
  int link_beg = page.find( "\"", position ); 
  int link_end = page.find( "\"", link_beg + 1 ); 
  string link; 
  int    index = 0; 
  link.resize( link_end - link_beg - 1 ); 
  for ( int i = link_beg + 1; i < link_end; i++ ) 
   link[index++] = page[i]; 
 . . . 
 

 

Java 
public void actionPerformed(ActionEvent e) { 
 if (e.getSource() == BtnShowResult) { 
  // checking for erroneous input, begin 
  String InputString  = TxtFldPhNo.getText(); 
  char   InputArray[] = InputString.toCharArray(); 
 
  if ( InputArray.length != PHNO_MAX_SIZE ) { 
   JOptionPane.showMessageDialog(null, 
    "Length not equal to " 
    + PHNO_MAX_SIZE,"Invalid length",  
    JOptionPane.PLAIN_MESSAGE); 
  return; 
  . . .  
 

 

PHP  
echo "<table border='1' cellpadding='2' cellspacing='0' 
width='400'  
 align='center' id='MyApplication1'><tr>";  

 
For a programmer reading pages and pages of C++ or JAVA code, one’s mind must always be 
parsing the text in order to get to the deeper semantic issues that underlie the particular 
application. 
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 Anyone who has read the history of C, e.g., [56], [63], knows that the two major factors 
affecting the design were (1) the compiler had to be easy to write, with a terse (easy to parse) 
syntax being justified by economy of expression, and (2) the compiler had to fit into the very 
small memory of a PDP-11 computer.  This was because the project was not really supported by 
the management at Bell Labs at that time.  What the authors accomplished in the face of daunting 
constraints on their computer environment is worthy of being acclaimed as a great feat.  
However, it is our view that the resulting notations are also daunting to use, minimizing 
characters used (not necessarily time to type), and fit only for those desiring artificial job 
security.  This style of programming hardly fits what would be considered intuitive to the 
average engineer. 
 
 
The New Notation 
 

 VisiSoft adheres to this basic concept: 
 

• The notation reflects familiar natural language constructs and minimizes specialized 
notations. 

 

As a result, the mental overhead of parsing the VisiSoft syntax is greatly reduced.  This is 
because the language is context oriented.  This puts the burden on the translator, which takes 
effectively nine passes to generate code.  But large pieces of software are translated with the 
blink of an eye.  The labor has been put into the translator in order to make it easy for the 
software developer. 
 
 Moreover, in VisiSoft, many issues are resolved so that the awkward behavior of 
traditional languages is no longer an issue.  The result is a significant improvement in 
understandability of the resulting code. 
 
 We start with the most simple VisiSoft assignment statements: 
 

INCREMENT DAY COUNT BY 7        (or DAY COUNT = DAY COUNT + 7) 
 

DECREMENT TOTAL LOSS BY GROUND_LOSS 
 

ADD 100.3 TO TOTAL LOSS(LINK_POINTER) 
 

SET AIRCRAFT STATE TO ON_THE_GROUND 
 

PERCENT BUSY = (TOTAL BUSY CALLS * 100)/TOTAL CALLS 
 
Although not earthshaking, the style of arithmetic reflects ordinary usage, i.e., anyone can read 
and understand it - without knowing a programming language.  In fact, VisiSoft arithmetic is 
virtually identical to FORTRAN, including embedded complex arithmetic.  This puts 
programmers concerned with their professional status and corresponding job security ill at ease. 
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 For control structures, an issue discussed in a separate chapter, we also get a clean 
simplicity of style: 
 

IF CALL_TYPE IS LOCAL 
 INCREMENT TOTAL LOCAL CALLS. 
 
IF OUTGOING LINE IS NOT BUSY 
 EXECUTE CONNECT CALL. 
 
EXECUTE NEXT CALL 5 TIMES 
 
EXECUTE READ MESSAGE UNTIL LEAD CHARACTER IS A DELIMITER 
 
READ EXTERNAL FILE 
 AT END  EXECUTE SYNTAX CHECK 
 
IF  UPDATED_ADDRESS_FILE EXISTS 
AND UPDATED_ADDRESS_FILE IS NOT EMPTY 
 ASSIGN UPDATED_ADDRESS_FILE TO OUTPUT_FILE_RESOURCE. 

 
 The general direction of the syntax will become more evident in the examples that 
follow.  The three most important factors in developing the VisiSoft syntax were: 
 

understandability, understandability, and understandability ! 
 
 
USE OF UPPER CASE - LOWER CASE 
 
 One can notice that the examples of VisiSoft given here use entirely uppercase letters.  
This is deliberate and, in fact, required.  Why?  What are the motivations for using lower as well 
as upper case?  In prose, one starts the next sentence immediately after the prior, as opposed to 
putting each in a separate paragraph as we do with code?  Therefore, to flag where a new 
sentence starts, one uses capital letters.  But why in a programming language? 
 
 
Solving The Great Library Mystery - Using Upper And Lower Case 
 
 A major motivator for lower and upper case in programming stems from large library 
systems.  Working with X-Windows, one quickly understands why the library routines all have 
long names, with upper case - lower case, that are almost impossible to type correctly the first 
time.  It is to help ensure that one links to the correct library routine.  X-Windows libraries 
contain hundreds of C functions, and each of these must have a unique name.  This is because, if 
one writes a program in C or one of its derivatives, one must be concerned that functions 
contained in two or more linked libraries may have the same name.  When this happens, it is not 
discovered until run time - when odd things start to happen - the result of linking to the wrong 
routine.  Current linking conventions, being the mystery that they are, link to routines with the 
same name, but in different libraries, in what appears to be a random order. 
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 VisiSoft provides a library facility that guarantees uniqueness at link time.  This is 
accomplished by requiring that all library functions within a library module have unique names, 
and that all library modules within a library have unique names. The user must name the library 
and the module as well as the function.  This hierarchical uniqueness capability, built into the 
VisiSoft library facilities, is a major feature, eliminating the need for long unique library function 
names. 
 
 
Prose vs. Programs 
 
 It is well known, and can be proved experimentally, that reading text is easier when the 
font uses proportional spacing and both upper and lowercase are used.  That is, conventional text 
is most readable when we use both upper and lowercase in a proportional font. 
 
 Fixed width fonts (e.g. Courier, Courier New) are normally used for computer programs.  
Our contention is that programs are not like text, but rather like mathematics or tables.  Fixed 
width fonts ensure alignment of code, making it easier to read.  Using a proportional font makes 
good layout difficult, and therefore difficult to read. 
 
 Consider the proportional code 
 

char c1; 
c1 = GetChoice()                                                                      ; 
switch (c1) 
   {case 'a', case 'A':  ProcessOptionA();   break; 
    case 'i', case 'I':  ProcessOptionI();  break; 
    case 'w', case 'W':  ProcessOptionW();   break; 

                default:  cout << "Not a valid choice\n"; 
   } 

 
 
With a fixed width font we have: 
 

char c1; 
c1 = GetChoice(); 
switch (c1) { 
    case 'a', case 'A':  ProcessOptionA();  break; 
    case 'i', case 'I':  ProcessOptionI();  break; 
    case 'w', case 'W':  ProcessOptionW();  break; 

          default:             cout << "Not a valid choice\n"; 
  } 
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 Conventional programming languages make things even more difficult when we start 
using mixed upper and lowercases.  It is not uncommon to see requirements, for example, that  
 

constants be written with all uppercase,  
class and type names start with an initial capital letter, and  
variable names start with a non-capital letter.   

 
These kinds of conventions can be extended to different special cases, where the use of 
capitalization becomes significant as far as interpreting what a name actually means, for example 
 

public class ConsumeAlert extends Thread { 
 private JTextArea output; 
 private HoldAlertSynchronized cHold; 
 private JTextField fireL[], intruderL[], commonL; 
 public  boolean Terminate = false; 
 public  ConsumeAlert( HoldAlertSynchronized h, JTextArea o, 
   JTextField FireL[], JTextField IntruderL[],  
   JTextField CommonL) { 
 
This puts a strain on both the readability and modifiability of the resulting module.  Somehow, 
important properties are supposed to be conveyed by the use of capitalization.  Such conventions 
are difficult for both the learner and the reader.  To compound matters, compound names make 
use of capitalization to separate words.  This also sets up another series of conventions that may 
or may not be followed. 
 
 
The Upper Case Approach 
 

 This leads us to the VisiSoft convention, where the names are all uppercase.  Compound 
names are separated by an underscore.  The resulting programs are eminently easy to read.  This 
convention is both easy to learn, understandable, and clearly more productive. 
 

 Programs are not stories that are only read by the reader.  They are modified by the next 
programmer who has to add new functions and features to a product in the support phase.  To do 
this, one must use existing attribute names as well as add new ones.  This implies that one must 
ensure that old names are not reused improperly.  When looking at long names with upper and 
lower case, it is difficult to remember what is upper case and what is lower case.  Anyone who 
has worked with X-Windows understands this as the library management problem - addressed 
above. 
 

 Programs are thus more like tables.  Tables use monospace fonts, and capitalization is not 
an issue.  Programs also contain mechanical algorithms - a cross between an algebraic statement 
and a logical statement.  They are supposed to convey a clear statement, not subject to 
interpretation.  But they contain more than mathematical statements.  They have complex IF ... 
THEN ... ELSE ... statements imbedded, that may represent very complex logic, logic that would 
take huge logical expressions if represented in a basic language for logic. 
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Chapter 11 Data Structures 
 
 
 
GENERAL HIERARCHICAL STRUCTURES 
 
 Architectural decomposition of a complex system requires an effective breakout of the 
states and transformations comprising the system.  Just as we can deal more economically with 
organizations that have a hierarchical structure, we can deal better with applications whose 
software is organized in a hierarchical form.  Complex system states are generally defined as 
hierarchical structures in an engineering description; it's the natural way to organize systems with 
a high degree of complexity.  Similarly for software, the set of states and substates is most 
usefully represented in terms of complex hierarchies of attributes. 
 
 The use of hierarchies in VisiSoft languages is most apparent in the structure of 
resources.  An example of VisiSoft hierarchical data structures is shown in Figure 11-1, 
illustrating code from a “resource”.  A “resource” is a collection of data descriptions organized 
hierarchically.  These generalized hierarchical data structures support the direct representation of 
a physical system's natural hierarchy.  By using level numbers, the syntax of the resource 
language encourages the grouping and structuring of data. 
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RESOURCE NAME: TRANSCEIVER 
 
 

TRANSCEIVER INSTANCES 
    1  TRANSMITTER                  INDEX 
    1  RECEIVER                     INDEX 
 
GENERAL PARAMETERS 
    1  TRANSMITTER POWER            REAL  INITIAL VALUE 100 
    1  RECEIVER THRESHOLD           REAL 
 
RADIO  QUANTITY(500) 
    1  TRANSCEIVER                  STATUS TRANSMITTING 
                                           RECEIVING 
                                           IDLE 
                                           OFF 
    1  LOCATION 
       2  X POSITION                REAL 
       2  Y POSITION                REAL 
       2  ELEVATION                 REAL 
    1  ANTENNA HEIGHT               REAL 
    1  ANTENNA GAIN                 REAL 
 
RECEIVER_CONNECTIVITY VECTOR QUANTITY(500) 
    1  POWER AT RECEIVER            REAL 
    1  TOTAL_NOISE_POWER            REAL 
    1  CONNECTIVITY MATRIX     QUANTITY(500) 
       2  PROPAGATION LOSSES 
          3  TERRAIN LOSS           REAL 
          3  FOLIAGE LOSS           REAL 
          3  TOTAL LOSS             REAL 
       2  SIGNAL POWER              REAL 
       2  SIGNAL TO NOISE RATIO     REAL 
       2  LINK DELAY                REAL 
       2  LINK                      STATUS GOOD 
                                           FAIR 
                                           POOR 
 
TRANSCEIVER RULES 
    1  TRANSCEIVER PROCESS          RULES TRANSMISSION 
                                          RECEPTION 
                                          TURN ON TRANSCEIVER 
                                          TURN OFF TRANSCEIVER 
 
 
07/13/06 

 
Figure 11-1.  Example of a hierarchical attribute structure of a Resource. 

 
 
 The resource TRANSCEIVER itself is a hierarchical data structure that can be moved as 
a single entity with one instruction.   As a simple experiment, try writing the equivalent of 
TRANSCEIVER in C or C++.  Then try using TOTAL_LOSS in an arithmetic statement. 
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SIMPLE STRUCTURES 
 
 For declarative aspects of the resource language, consider the VisiSoft resource of 
Figure 11-2.  Here the basic structure of a text message is given along with two specific message 
formats that define their content.  Level numbers indicate structure.  Fields within a field are 
given greater level numbers, for example HEADER under FORMAT_A contains three fields: 
 

 PRIORITY   ORIGIN   DESTINATION 
 
 

 

RESOURCE NAME: MESSAGE FORMATS 
 
 

MESSAGE 
    1  SYNC CODE                  CHARACTER 6 
               ALIAS  VALID          VALUE '101010', 
                                           '010101' 
    1  TYPE                       STATUS FORMAT A 
                                         FORMAT B 
    1  CONTENT                    CHARACTER 46 
 
FORMAT A     REDEFINES MESSAGE 
    1  PAD                        CHARACTER 14 
    1  HEADER 
       2  PRIORITY                STATUS FLASH 
                                         IMMEDIATE 
                                         ROUTINE 
       2  ORIGIN                  INDEX 
       2  DESTINATION             INDEX 
               ALIAS  BROADCAST      VALUE 0 
    1  BODY 
       2  LENGTH                  INTEGER 
    1  TRAILER 
       2  MESSAGE NUMBER          INTEGER 
       2  TIME SENT               REAL 
       2  TIME RECEIVED           REAL 
       2  ACKNOWLEDGMENT          STATUS RECEIVED 
                                         NOT RECEIVED 
       2  LAST SYMBOL             CHARACTER 2 
               ALIAS  TERMINATOR     VALUE '\\', '//', '<<','>>' 
 
FORMAT B     REDEFINES MESSAGE 
    1  PAD                        CHARACTER 14 
    1  HEADER 
       2  SOURCE                  INDEX 
       2  SINK                    INDEX 
    1  BODY 
       2  CONTENTS                CHARACTER 42 
 
7/13/06 

 
 

Figure 11-2  Code from a VisiSoft “resource” 
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 The basic message contains 60 characters, 14 in the header and 46 in the body.  An input 
message field defined simply as 60 characters (CHARACTER 60) can be moved directly to the 
top level attribute MESSAGE.  The 60 character block is moved into memory directly.  The 
FORMAT_A and FORMAT_B structures are templates that overlay the memory.  This example 
cannot be replicated in C.  Because the numeric fields do not reside on word boundaries, the 
compiler puts padding into the structure automatically.  So C programmers typically move the 
individual fields, unless they have control over the organization of records being read off a 
database.  But this is impractical, since a database administrator should not care about the 
quirkiness of a particular language.  More importantly, C programmers looking at VisiSoft code 
typically remark that it looks “very inefficient”.  By actual tests, one can gain an order of 
magnitude in speed when reading records from commercial databases using VisiSoft directly into 
a template of multiple fields. 
 
 If one tries to translate the structure in Figure 11-1 to C, one immediately realizes why 
such data structures are not used.  If that is not convincing, try using one of the lowest level 
fields - the ones of interest - in a process statement.  For example, in C, TIME_RECEIVED 
becomes 
 

MESSAGE FORMATS.FORMAT A.TRAILER.TIME_RECEIVED 
 

 
 
MOVING DATA 
 
 VisiSoft resource structures are independent of the word length of a particular machine.  
Most of today's machines have 4 byte words, but some designs have larger words (the CRAY has 
8 byte words, the NEXT machine has 36 bit words).  In VisiSoft, the developer can lay out a 
very complex hierarchical attribute structure that is convenient to describe the module without 
worrying about word boundary alignment as in typical programming languages.  Machine words 
have no meaning in VisiSoft.  What you see (in your attribute structure) is what you get (in 
memory), independent of the machine you are using! 
 
 The MOVE statement is used to move data or assign values to variables.  The format of 
the value is adjusted to fit the receiving field.  For example, 
 
 MOVE ATTENUATION FACTOR TO STORED NUMBER 
 
where 
 ATTENUATION FACTOR is REAL 
 STORED NUMBER is DECIMAL 9(2).9(3) 
 
will result in 
 

 Attribute   Before move   After move 
 ATTENUATION FACTOR 3.276000E-1  3.276000E-1 
 STORED NUMBER  undefined  00.327 
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 When the receiving area of a MOVE statement is a numeric value or a decimal value, 
 

• Decimal points will be aligned and digits of the sending number will be truncated at 
either end, as required by the size of the receiving area.   

 

• When a numeric value is moved to a DECIMAL area, zeros are changed to spaces 
when zero suppression (Z) is specified. 

 

• When the receiving area of a MOVE statement is a CHARACTER value, data is 
aligned on the left and is either truncated at the right or filled with spaces to match 
the size of the receiving area. 

 
As a result, formatting data becomes especially easy, and done in a way that is easy to 
understand. 
 
 
Hierarchical Group Moves 
 

 The MOVE statement is particularly useful when assigning values to a structure, which 
may contain a mixture of attribute types. 
 
 A move in which one or both of the sending and receiving attributes are group attributes 
is called a group move.  A group move is treated as a data move, without consideration for the 
elementary attributes contained within either the sending or receiving attributes.  It is also 
possible to specify an entire resource as the sending or receiving area of a group move.   
 
 The ability to move a complete hierarchical structure, or any substructure within a 
hierarchy with a simple MOVE statement is most important in modeling the flow of information 
in a system.  A good example is moving messages or message elements around in a 
communication system.  These group moves are executed very easily, since one need only refer 
to the attribute name of the highest level group to be moved, and not worry about its size or 
structure.  The modeler need only insure that the receiving structure is organized in a way that 
receives the data being moved into it.  This ability to do hierarchical structure moves is key to 
the machine independent properties of the VisiSoft language. 
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SIMPLIFIED NAMING 
 
 VisiSoft has a generous facility for naming, allowing simpler, more understandable code.  
We begin with a brief review of conventional practices in other languages.   
 
 Most languages have some kind of facility for record structures.  For example, in C++ we 
may have the following: 
 

struct Message { 
 char A [message_size]; 
 int first; 
 int last; 
}; 

or 
class Message {public: 
     char A [message_size]; 
 int first; 
 int last; 
}; 

 
In either case we can declare an object of this particular structure as follows: 
 

Message  My_Message; 
 
To reference a component of a structure, we refer to the name of the structured object followed 
by the name of its component, for example, 
 

 My_Message.first 
 
 In general, a class of structure will have components, some of which may in turn be other 
structures.  For any practical problem with interesting data, complex data structures are common.  
This gives rise to a sequence of names to refer to a component of a structure, as in 
 

 Name1.Name2.Name3.Item 
 
 With object-oriented approaches, access to a component of a structure is sometimes done 
with a method call rather than a direct reference to an individual data item,  for example,  
 

 N = SystemParams.getDefault().getMemorySize(); 
 
Again we may have a cascade of names in order to designate a particular item of data in a 
structure.  In larger programs, this nesting of structures may be several levels deep, with the 
result that many references become long and complex.  Lengthy references to items in a data 
structure result from the requirement that all of the ancestors be referenced, from the outer level, 
in order to refer to the item. 
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 In particular, having defined a hierarchical structure in C, C++, or Java, one must qualify 
each attribute (data item) with all of the names up the hierarchical chain, independent of whether 
that name is unique.  For example, when using an attribute at three levels down in a structure, 
one must write all of the three names - separated by decimal points - to qualify the fourth level 
attribute, even though it is unique.  Something like 
 

 if BUILDING DESCRIPTION.ENTRANCES.FRONT.DOOR == OPEN  
 or BUILDING DESCRIPTION.ENTRANCES.BACK.DOOR == OPEN 

  MAKE_ENTRY() 
 else if BUILDING DESCRIPTION.ENTRANCES.BACK.WINDOW == OPEN 
  CHECK ENTRY() 
 else ... 

 
This makes lines long and unreadable.  
 
 Although these operations are sequential in nature, just understanding the reference to a 
single item attribute may be difficult for a reader other than the author to discern.  (More false 
job security?) 
 
 
The VisiSoft Solution 
 
 VisiSoft tackles this general problem in several ways, each devoted to keeping the 
naming as simple as possible while retaining great clarity and understandability of the 
algorithms.  The first principle has already been discussed; that is: 
 

• A process must be directly connected, architecturally, to all resources that contain data 
referenced by that process (there is no global data). 

 
 Put another way, instructions must be connected to the data segments needed by the 
instructions, and need not be connected to any other resources or data segments in the program.  
This greatly simplifies naming, for the names contained in the connected resources are directly 
visible without regard to any qualification of its parent or other ancestors. 
 
 Of course, as in any language, other connected resources compete for names.  This brings 
us to the second rule in VisiSoft which is: 
 

• Any name can be directly referenced as long as it is uniquely qualified. 
 
 Knowing that only connected resources compete for names, consider the following: 
 

 1  ENTRANCES 
    2  FRONT 
   3  DOOR STATUS OPEN CLOSED LOCKED 
   3  GARAGE  STATUS OPEN CLOSED 
    2  BACK 
   3  DOOR STATUS OPEN CLOSED LOCKED 
   3  WINDOW STATUS OPEN CLOSED 
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Reuse of names that refer to different attributes is allowed provided the intended use can be 
uniquely resolved.  Here, GARAGE and WINDOW can be directly referenced, without 
qualification.  On the other hand, the use of the name DOOR to mean FRONT DOOR or BACK 
DOOR is resolved by adding the qualifier FRONT or BACK - that’s it! 
 

 A conditional statement using the above resource can thus be written as follows: 
 

  IF GARAGE IS OPEN OR FRONT DOOR IS OPEN 
   EXECUTE MAKE_ENTRY 
  ELSE IF WINDOW IS OPEN  
   EXECUTE CHECK ENTRY 
  ELSE ... 
 
In the case of OPEN or CLOSED, reuse of STATUS names is qualified automatically by the 
particular status attribute FRONT DOOR or BACK DOOR.  
 

 Generally, any name in VisiSoft can be directly referenced as long as it is unique.  Names 
are reusable within the same resource or over multiple resources.  Reuse of names in a VisiSoft 
process requires qualification only to the extent sufficient to insure uniqueness of the referenced 
item.  When a name appears in two resources, this may be accomplished just using the resource 
name - no matter what the level of the referenced item.  All of which is a great step towards the 
simplicity, brevity, and understandability of the code. 
 
 Two other considerations are appropriate to this discussion.  One is the use of 
architecture to ensure independence of data: 
 

• Resources connecting two processes should only contain those attributes that must be 
shared between the processes. 

 

• Attributes used by a single process, such as temporary attributes, pointers, or counters, 
should be contained in a resource dedicated to that process.   

 
 Another consideration is the practice of good naming conventions.  Names are a major 
contributor to understandability. 
 

• Attributes should not be used for more than one purpose, even in a dedicated resource. 
 
Then names can be dedicated to one use and need not be generic, e.g., I, J, K, etc.  
Understandability increases significantly when names are meaningful, e.g., RECORD_COUNT, 
CHARACTER_POINTER, etc. 
 
 The time it takes to think of a name that clearly represents what the attribute itself is 
representing is a great investment in the future reuse of resources and particularly processes that 
use it in complex algorithms.  It should go without saying that the time to type it is 
inconsequential. 
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STATUS ATTRIBUTES AND ALIAS CLAUSES 
 
 The STATUS clause is used to indicate each of the allowed states that a variable may 
assume during execution.  STATUS attributes correspond to enumeration types in other 
languages.  By defining a STATUS attribute, the programmer can set the state of an attribute to a 
predefined named state, then test to see if that attribute is set to a predefined named state.  For 
example, we may have 
 

TRANSCEIVER  STATUS TRANSMITTING 
     RECEIVING 
 

PROBABILITY  STATUS LOW, MEDIUM, HIGH 
 
This significantly improves the understandability of complex conditional rules, for example, 
 

 IF TRANSCEIVER IS RECEIVING  . . . 
 

while significantly reducing the chances for a logic error. 
 
 The ALIAS clause in VisiSoft extends the idea of status attributes to a wider range of 
applications.  An ALIAS clause enables one or more values to be identified by a single identifier 
called the alias name.   The ALIAS clause may be used along with a CHARACTER, 
DECIMAL, INTEGER, INDEX, REAL, or DREAL attribute. 
 
 The list of numeric or nonnumeric literals, separated by commas, specify the group of 
values which are to be associated with the alias name.    More than one ALIAS clause may be 
specified for a variable.  Some examples are 
 

  INPUT MESSAGE 
 1  LEAD CHARACTER    CHAR 1 
    ALIAS CONTROL CHAR      VALUE 'S', 'R' 
    ALIAS DELIMITER       VALUE '.', ',', ';', ':' 
 1  MESSAGE TEXT    CHAR 78 
 1  LAST DIGIT    INDEX 
     ALIAS TERMINATOR       VALUE 0,9 
 
 Both STATUS values and ALIAS names can add to the understandability of a program.  
Thus we can have eminently readable statements such as  
 

 IF TIME_OF_DAY IS NOON 
  SET RECEPTION_PROBABILITY TO HIGH 
 
 IF LEAD CHARACTER IS A DELIMITER . . . 
 
 IF LAST DIGIT IS NOT A TERMINATOR . . . 
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PROCESSING TABLES 
 
 Arrays become complex tables specified with a QUANTITY clause.  For example, 
 

   MESSAGE BUFFER 
  1  MESSAGE   QUANTITY(20) 
     2  MESSAGE HEADER 
   3  MESSAGE TYPE CHAR 8 
   3  MESSAGE PRIORITY STATUS LOW 
         MEDIUM 
         HIGH 
     2  MESSAGE BODY  CHAR 68 
 

Here  MESSAGE BUFFER contains 20 messages. 
 
 Processing tables of data is an important part of almost any large-scale application.  The 
SEARCH table statement provides for automatic searching of tables over some or all indices, 
and execution of a rule when the specified table conditions are found to be true.   
 
 As an example, consider the following structure: 
 

NUMBER OF TRANSCEIVERS  INDEX 
RECEIVER    INDEX 
TRANSCEIVER    INDEX 
 
LINK CONNECTIVITY VECTOR  QUANTITY(500) 
 1  CONNECTIVITY MATRIX  QUANTITY(500) 
    2  PROPAGATION LOSS   REAL 
    2  SIGNAL TO NOISE RATIO  REAL 
    2  LINK     STATUS GOOD FAIR POOR 

 
 To SEARCH this two-dimensional table executing TRANSMISSION for every LINK 
that is GOOD, one can use the following statement: 
 

 SEARCH CONNECTIVITY MATRIX OVER RECEIVER, AND TRANSMITTER 
  EXECUTING TRANSMISSION 
   WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD 
 
 To limit the search range to NUMBER_OF_TRANSCEIVERS instead of covering the 
500 by 500 range, one would write the following: 
 

 SEARCH CONNECTIVITY MATRIX 
  OVER RECEIVER TO NUMBER OF TRANCEIVERS 
   AND TRANSMITTER TO NUMBER OF TRANSCEIVERS 
    EXECUTING TRANSMISSION 
     WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD 
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 To search the LINK_CONNECTIVITY_VECTOR to find the good links to a particular 
RECEIVER over the same range of TRANSMITTERs, one would write the following: 
 
 RECEIVER = SELECTED_RADIO 
 SEARCH LINK_CONNECTIVITY VECTOR 
  OVER TRANSMITTER TO NUMBER OF TRANSCEIVERS 
    EXECUTING TRANSMISSION 
     WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD 
 
This is a powerful feature for searching databases or parsing character strings.  Much of the 
detailed and sometimes complex algorithms for table handling are done automatically and 
conveniently. 
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Chapter 12.  Processes and Rule Structures 
 
 
 Almost every popular language includes some variant of if-then-else structures, do-while 
loops, and usually, some variant of a switch or case statement.  These structures lead to a static 
understanding of control and are reasonably well behaved.  In fact, these structures are so 
familiar and widely used that they go unquestioned. 
 

Nevertheless, it is our perception that the way these control structures are defined leads to 
a major impediment to understandability.  We believe that there are technical difficulties with 
these structures, and that additional elements need to be considered to achieve good 
understandability of code. 
 
 VisiSoft significantly improves understandability when dealing with complex algorithms, 
conditional statements, and repetition.  The elegant solution implemented in VisiSoft is a clear 
departure and improvement over conventional control structures, implementing the one-in one-
out structure suggested by Mills [66].  The VisiSoft approach is similar to that devised for 
COBOL, a language known for its readability.  However, it eliminates two severe problems in 
the COBOL approach. 
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PROCESSES, RULES, AND STATEMENTS 
 
 The executable aspects of a software system in VisiSoft are embodied in a construct 
called a “process”.  A process is a collection of executable statements organized in a hierarchical 
structure. A VisiSoft process can be invoked from any other process by using a CALL statement:  
 

CALL process_name 
 
Here control is immediately transferred to the called process. 
 
 Within a process,  groups of statements are organized into “rules”.  A rule is a named 
sequence of statements invoked by an EXECUTE statement.  A process is thus defined as 
follows: 
 

• A process consists of one or more rules, each with a unique name. 
 

• Each rule name must appear on a separate line (starting in column 1) followed by one or 
more statements (starting in column 5 or beyond) that make up the rule. 

 

• Each statement must begin on a new line, but can extend over many lines. 
 
An example of a VisiSoft process is shown in Figure 12-1.  The combination of statements and 
rules in a process form a logical structure of hierarchical levels. 
 
 
Controlling Complexity With Rule Hierarchies 
 
 To control the complexity of highly conditional algorithms, a VisiSoft process can 
contain a hierarchy of rules.  The hierarchy of rules is controlled through a simple one-in, one-
out control structure, embodied in the EXECUTE statement.  This statement allows the designer 
to deal with rules that are at an "equal level" in the hierarchy of logical operations, without 
resorting to the dangers of nested control structures.   
 
 When a process is invoked, the first rule is executed first, starting with the first statement.  
Other rules within this process may be executed by using an EXECUTE statement.  Figure 12-2 
shows an example of the process PLACE_CALL, which has five rules.  A process terminates 
once the last statement in the first rule is performed. 
 
 What this means is that each process has a top-level rule (e.g., RULE_1), whose 
statements are executed in order.  When the statements in this first rule have been executed, 
control returns to the calling process.  Any rule may contain EXECUTE statements that invoke 
other rules within the process. 
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PLACE CALL                                             level 1  
     IF CLOCK TIME IS GREATER THAN ONE HOUR                     
         STOP.                                                  
     IF ACTIVITY(SOURCE) IS WAITING TO CALL                     
         EXECUTE ATTEMPT CALL                                   
     ELSE EXECUTE RETRY LATER.                                  
                                                                
--------------------------------------------------------------- 
ATTEMPT CALL                                            level 2 
      INCREMENT CALLS ATTEMPTED                                 
      IF LINES IN USE(OFFICE(SOURCE)) ARE LESS THAN             
         LINES IN OFFICE(OFFICE(SOURCE)) THEN                   
         EXECUTE MAKE CALL                                      
      ELSE EXECUTE BLOCK CALL.                                  
                                                                
RETRY LATER                                                     
     SET ACTIVITY(SOURCE) TO RETRY LATER                        
     CALL TERMINATE CALL                                        
                                                                
--------------------------------------------------------------- 
MAKE CALL                                               level 3 
     INCREMENT LINES IN USE(OFFICE(SOURCE))                     
     IF CALLERS PLAN(SOURCE) IS PLACE NEW CALL                  
         SET PHONE NUMBER TO UNKNOWN                            
         EXECUTE LOOK UP NUMBER UNTIL PHONE NUMBER IS FOUND.    
     OFFICE NUMBER = OFFICE(DESTINATION)                        
     CALL CONNECT CALL                                          
                                                                
BLOCK CALL                                                      
     INCREMENT CALLS BLOCKED                                    
     SET SIGNAL TO SUBSCRIBER TO BUSY                           
     MOVE 'BLOCKED AT SOURCE' TO CALL STATE                     
                                                                
--------------------------------------------------------------- 
LOOK UP NUMBER                                          level 4 
     DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1             
     IF DESTINATION IS NOT EQUAL TO SOURCE                      
         SET PHONE NUMBER TO FOUND.                             

 
Figure 12-1.  Example of the hierarchical rule structure of a process. 

 

 
This dual structure has several advantages: 
 

a. Flow of control is always linear within a rule. 
 

b. At the end of a rule, control returns to the statement following the EXECUTE statement.  
This guarantees the 1-in, 1-out property. 

 

c. A process may contain one or more rules, each identified by a mnemonic name.  This 
gives great flexibility in the number of conditional statements a process can support. 

 

d. There are no parameters passed to processes in VisiSoft, as is typical in conventional 
languages.  All data is shared by resources. 

 

e. There is no nesting of IF statements. 



Software Survival             Page  12  -   4   

 Statements that are at the same logical level are all contained in the same spot.  This 
makes them easier to build, and much easier to understand by someone other than the original 
author.  The additional layer of hierarchy in a process allows the designer to partition complex 
algorithms that deal with the same attribute structures into isolated sets at similar levels in a 
logical hierarchy. 
 

The example of Figure 12-1 involves at least 4 levels of control, yet is strikingly simple 
to understand.  It also shows the ability to "push down" the complexity of rule sets into 
hierarchical logical levels.  As a result, a process is typically somewhat larger than a “well 
written” C++ or Java function that are more the size of a rule.  But it should be much more 
understandable, and will require many fewer comments, perhaps even none.  Furthermore, a 
process with 20 rules may take a number of C++ or Java functions to implement. 
 
 
SEPARATION OF CONTROL STRUCTURES FROM STATEMENT STRUCTURES 
 

 A Process defines the way a system transitions from state to state.  A process is 
comprised of a set of rules that determine how the resources available to that process change 
depending upon their current state.  (We must emphasize that the term rule as used here is 
different from its use in a rule-based language, e.g., PROLOG.)  
 
 
Understandability of Complex Conditional Situations 
 
 One of the most important benefits of the VisiSoft conventions for rule structures is the 
handling of complex conditional situations.  Consider the example in Figure 12-2.  In particular 
consider 
 

IF SYMBOL IS AN UNDERSCORE 
OR SYMBOL IS A PERIOD 
    EXECUTE CHECK_WORD_BLOCK 
ELSE  
    EXECUTE SCAN_FOR_SPECIAL_CASES. 
 
IF STATEMENT IS A SPECIAL_CASE 
    EXIT THIS RULE 
ELSE ... 
 

 
Here we see the equivalent of a case statement.  But in VisiSoft, the statements that are contained 
within the case statement may be placed later in the process and given a name, in this case 
CHECK_WORD_BLOCK and SCAN_FOR_SPECIAL_CASES.  This adds great clarity to the entire 
process, as we can read and understand the top level of control without getting involved in nested 
details that may be quite complex. 
 
 To simplify IF ... THEN ... ELSE chains, an EXIT THIS RULE statement allows one to 
exit a rule directly.  This eliminates additional IF statements that must check a status attribute 
that has been changed above, simply by exiting the rule immediately after the change. 
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BUILD_WORD_BLOCKS  
    ADD 1 TO SEARCH_INDEX  
    MOVE INPUT_CHARACTER(SEARCH_INDEX) TO SYMBOL  
    IF SEARCH_INDEX IS GREATER THAN 72  
    AND SYMBOL IS NOT EQUAL TO SPACE  
         MOVE '10390' TO ERROR CODE  
         EXECUTE REPORT_ERROR. 
 
    IF SYMBOL IS AN UNDERSCORE 
    OR SYMBOL IS A PERIOD 
         EXECUTE CHECK_WORD_BLOCK 
    ELSE  
         EXECUTE SCAN_FOR_SPECIAL_CASES. 
 
    IF WORD_BLOCK IS STARTED 
         EXECUTE CHECK_WORD_BLOCK. 
 
    IF SYMBOL IS NOT EQUAL TO SPACE 
        MOVE SYMBOL TO LAST_NONBLANK_CHARACTER. 
 
    IF SEARCH_INDEX IS EQUAL TO RECORD_SIZE 
        SET WORD_STATE, COMPLETION_STATE TO COMPLETED. 
 
CHECK_WORD_BLOCK 
    SET SCAN_TYPE TO WORD 
    MOVE DEBLOCK_WORD(WORD_INDEX) TO KEY_WORD_TABLE 
    MOVE ZEROS TO CHARACTER_INDEX 
    SET WORD_STATE TO BEGIN 
    IF DEBLOCK WORD(WORD_INDEX) IS NOT EQUAL TO SPACES 
        SET LITERAL_TYPE TO NON_NUMERIC 
        ADD 1 TO WORD_INDEX. 
 
SCAN_FOR_SPECIAL_CASES 
    IF ..... 
          STATEMENT_1 
    ELSE IF   ..... 
          STATEMENT_2 

 
Figure 12-2.  Un-nested Conditional Structures 

 
 
Understandability of Loop Structures 
 
 A related and visible property of a VisiSoft process is the use of loop structures that 
isolate the body of the loop (the statements to be repeated) in a separate rule.  Only the name rule 
is used within the control structure itself.  
 
Thus we must write something like 
 
   EXECUTE LOOK UP NUMBER  
      UNTIL PHONE NUMBER IS FOUND 
 
and place the body of the loop elsewhere 
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   LOOK UP NUMBER 
        DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1             
        IF DESTINATION IS NOT EQUAL TO SOURCE                      
            SET PHONE NUMBER TO FOUND. 
        . . . 
 
After the body of the loop LOOK_UP_NUMBER is executed, control automatically returns to 
the EXECUTE statement. 
 
This is a powerful feature for clarity.  For rather than a sequence of nested structures, we can 
again always read the control at a single level. 
 
 
Logical Levels and Independence 
 
 Figures 12-1 and 12-2 also illustrate process structures that follow the rule for grouping 
hierarchical logical levels.  Since the logical levels are totally independent of position, the 
process need not be organized this way, but in any manner the designer deems most 
understandable.  Except for the first rule appearing first, the rest of the rules can be shuffled like 
a deck of cards. 
 
 Probably the largest benefit of the hierarchy of rule structures within processes is the 
understandability of complex conditional statements, and the ease with which one can add new 
conditions. These hierarchical structures support the direct representation of a physical system's 
natural flow of control. 
 
 
NESTED CONTROL STRUCTURES IN CONVENTIONAL LANGUAGES 
 
 Nesting of control structures is a feature of virtually all conventional programming 
languages.  For example, it is not uncommon to see  
 

An if-statement 
containing an if-statement 

which contains a while-loop 
 

 Such an example by itself is not especially problematic, but does suggest the mental 
complexity of keep track of code with nested control.  Moreover, the mental complexity 
increases as the length of the code and the length of nested sequences grows.  It is not 
uncommon for single blocks of code to extend over more than one page 
 
 Things can get complex even without a nested loop.  When there is nesting and the 
statements contained in the IF are of some length, the problem is getting a clear picture of the 
entire structure.  When nested IF’s cover many lines, it is hard to see what is going on. 
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 As we get into larger or more complex situations, we mire ourselves in the complexity of 
logical flow.  The program can eventually become unreadable.  And this is often the accepted 
norm on software projects.  Along these lines, we note that recursion is not allowed in VisiSoft. 
 
 
Rule Pointers and Process Pointers 
 

A nice step towards simplification and understandability of processes is the VisiSoft 
ability to assign the name of a rule or a process to a “rule pointer” or “process pointer”.  Let us 
look at rules. 
 
 The RULE clause is used to define the allowed rule names that a pointer attribute can 
assume during execution.  Consider: 
 

NEXT_ACTION     RULE  INITIALIZE_NETWORK  
                      START_TRANSMISSION 
                      START_RECEPTION 
                      DISCONNECT_CALL  

 
Here, NEXT_ACTION is a Rule attributes. 
 
 By defining a RULE attribute, the modeler can execute a rule based on the value of the 
rule attribute.  This can be simulated by a case statement in a conventional programming 
language.  The value of the VisiSoft approach is the simplification on control flow.  Meaningful 
names can be used for the rules and the rule-pointer, and the choice of action can be set when an 
appropriate condition is met.   
 
The rule pointer will likely be set in a conditional statement prior to a point where the rule is to 
be executed, such as: 
 

IF TRANSCEIVER(TRANSMITTER) IS TRANSMITTING 
 SET NEXT_ACTION TO START_TRANSMISSION 
ELSE IF TRANSCEIVER(RECEIVER) IS RECEIVING 
 SET NEXT_ACTION TO START_RECEPTION 

 
Then, at the point where the choice of rules is to be executed (that choice will already have been 
made as above), one merely EXECUTE's the rule pointer name. 
 

EXECUTE NEXT_ACTION 
 
 
Process Pointers  
  
The PROCESS pointer clause is similar to the RULE pointer clause.  It is used to define each of 
the allowed process names that a PROCESS pointer attribute can assume during execution.  It is 
used to support the PROCESS pointer version of the CALL statement for executing processes. 
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The mechanism is almost identical to rule pointers.  For example, 
 

NEXT_PROCESS  PROCESS   COMPUTE_TIMERS 
                DRAW_TERRAIN 
                COMPUTE_MEASURES 
. . . 

 
IF INPUT_OPTION IS INITIATE 
 SET NEXT_PROCESS TO COMPUTE_TIMERS 
ELSE IF INPUT_OPTION IS CALCULATE 
 SET NEXT_PROCESS TO DRAW_TERRAIN 

 

Then, at the point where the choice of process is to be called, (that choice will already have been 
made as above) one merely CALL's the process pointer name. 

CALL NEXT_PROCESS 
 
 
INTERTASK COMMUNICATIONS AND CONTROL 
 
 The next example provides for two very simple interactive tasks, each sending messages 
to the other.  The messages are input via the keyboards of each task, and appear on the screen of 
the other task.  This is done using separate windows controlled by separate tasks running 
concurrently under the VisiSoft Run-Time Monitor.  Figure 12-3 below shows the architecture of 
this simple example.  The implementation follows in Figure 12-4. 
 
 The session starts by the user running task 1, which automatically opens a window.  
Task 1 immediately starts Task 2, with a window, and suspends itself.  The very first message of 
the session, 'ASK A QUESTION', is put on the screen of task 2 by initialization.  From then on, 
the conversation proceeds with the keyboard entry being put into CONVERSATION_ BUFFER, 
an intertask resource.  The task that accepts input from the keyboard then resumes the other task 
and suspends itself.  When a task is resumed, it displays the message in CONVERSATION_ 
BUFFER upon the screen, accepts the next input from the keyboard, putting it into the 
CONVERSATION_ BUFFER, resumes the other task and suspends itself.  This continues until 
one of the keyboard entries is STOP. 
 
 

 
 

Figure 12-3  Architecture of a real-time intertask communications example. 
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Intertask Resource:  
 
 CONVERSATION_DATA 
  1 ANSWER   CHAR  4 
    ALIAS  STOP      VALUE 'STOP' 
  1 REST    CHAR 60 
 
 
Task 1 
 
 PROCESS_1 
  START TASK_2 WITH WINDOW 
  SUSPEND TASK_1 
  EXECUTE ANSWER_A_QUESTION 
   UNTIL ANSWER IS STOP 
  TERMINATE THIS TASK 
 
 ANSWER_A_QUESTION 
  DISPLAY CONVERSATION_BUFFER 
  ACCEPT CONVERSATION_BUFFER 
  RESUME TASK_2 
  SUSPEND TASK_1 
 
 
Control Specification for Task 1 
 
 *CONTROL SECTION 
       TITLE, EXAMPLE OF INTER-TASK COMMUNICATIONS & CONTROL 
       LEAD_PROCESS IS PROCESS_1 
 *END 
 
 
Task 2 
 
 PROCESS_2 
  MOVE 'ASK A QUESTION' TO CONVERSATION_BUFFER 
  EXECUTE ASK_A_QUESTION 
   UNTIL ANSWER IS STOP 
  RESUME TASK_1 
 
 ASK_A_QUESTION 
  DISPLAY CONVERSATION_BUFFER 
  ACCEPT CONVERSATION_BUFFER 
  RESUME TASK_1 
  SUSPEND TASK_2 
 
 
Control Specification for Task 2  
 
 *CONTROL SECTION 
       TITLE, EXAMPLE OF INTER-TASK COMMUNICATIONS & CONTROL 
       LEAD_PROCESS IS PROCESS_2 
 *END 

 
Figure 12-4.  Elements of a simple two task example. 
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 Anyone who has worked with intertask communications and control in UNIX, referred to 
as Inter-Process Communication (IPC), will testify to the level of difficulty involved in creating 
the little example above.  All of the effort of setting up and managing shared memory control 
blocks, shared memory areas, and the difficulties of putting processes to sleep and sending 
signals to wake them up is done for the user, behind the scenes, by VisiSoft.  These VisiSoft 
features ease the programming of real-time communications and control applications. 
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CHAPTER 13   CONTROL SPECIFICATIONS 
 
 
 
 In contemporary software environments, there are facilities to put together the 
components of a project.  Typically, a project will require different kinds of resources, e.g. a 
compiler (perhaps a debugging compiler), libraries, access to operating system routines, files, 
access to directories, and so forth.  On some systems, there is a specific language to control these 
aspects, generally known as a script or Makefile. 
 
 VisiSoft handles this issue in an elegant way that is independent of both the machine and 
operating system.  This is through a separate high level language known as the “Control 
Specification” language.  An example is shown in Figure 13-1. 
 
 The Control Specification is eminently readable and organized.  It contains a sequence of 
labeled sections.  Each section specifies some property of the environment.  The notation used 
for the syntax is based on a simplified English-like format. 
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CONTROL SECTION 
    TITLE, SIMPLE TELEPHONE SYSTEM 
    LEAD_PROCESS IS INITIALIZE_NETWORK 
 
LIBRARY SECTION 
    C:/S/LIBS/GENERAL 
    C:/S/LIBS/RTG_DRAW 
 
GRAPHICS SECTION 
    ACTIVATE GRAPHICS 
    WORLD_SPACE LOWER_LEFT  = (0, 0),  
      UPPER_RIGHT = (1280, 1024) 
    NVS/BDS = 1.0 
    INITIAL_WINDOW LOWER_LEFT = (-100, -100), WIDTH = 1280 
 
    ICON  OFFICE_OUTLINE   = OFFICE,          SCALE(1.0, 1.0) 
    ICON  MAN              = MAN              SCALE(2.0, 2.0) 
    ICON  PHONE            = PHONE,           SCALE(1.0, 1.0) 
    ICON  TERMINAL         = TERMINAL,        SCALE(1.0, 1.0) 
    ICON  PBX_LINE_TERM    = PBX_LINE_TERM,   SCALE(1.0, 1.0)    
 
    . . . 
      
    INST  GENERATED_CALLS  = THERMOMETER_VERTICAL, 
                     LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE 
    INST  BLOCKED_CALLS    = THERMOMETER_VERTICAL, 
                     LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE 
    . . . 
     
    OVERLAY 3 = DRAW_SWITCH IN PHONE BACKGRND 
                AT 0,0, SCALE 1, 1, MENU SWITCH 
                COLOR BACK_BLUE 
                ***COLOR BACK_WHITE 
    OVERLAY 4 = DRAW_LABELS IN PHONE BACKGRND 
                AT 0,0, SCALE 1, 1, MENU LABELS 
                COLOR BACK_WHITE 
 
    RTG_EVENT_HANDLER INTERACTIVE_SCENARIO 
 
DATABASE INPUTS 
    ASSIGN SFI INPUT_DATA.SFI TO READ_SCENARIO_DATA 
 
DATABASE OUTPUTS 
    ASSIGN SFI OUTPUT_DATA.SFI TO OUTPUT_TEST_DATA 
 
END 
 

 
Figure 13-1.  Sample task control specification. 
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Some of the items addressed in the Control Specification include: 
 

• LEAD_PROCESS   The process named as the LEAD_PROCESS is started when the task 
is executed. 

 

• TRACE   A debugging facility used to trace processes, rules, and produce trace output 
when one or more processes have been prepared with the one of the trace options on. 

 

• TIME PROFILE   Provides a histogram of the percentage of time spent in each process. 
 

• LIBRARY SECTION   This section allows the user to specify the paths and names of 
libraries to be used when preparing a task that uses library modules. 

 

• GRAPHICS SECTION   This section is used to invoke the VisiSoft Run-Time Graphics 
facilities.  This section has numerous options for the user. 

 

• DATABASE INPUTS AND OUTPUTS   These sections may be used to reassign 
external files to an external resource, or to invoke the Standard File Interface (SFI) option 
for input data to a task. 

 

• MODEL SECTION   Listed here are models that contain processes to be started in a 
simulation (only applies to GSS). 

 
 
STANDARD FILE INTERFACE (SFI) 
 
 When users want to change or look at data files, they typically want to use an editor or 
print the files as raw data.  If users want to put the resulting data into a spreadsheet, (e.g. EXCEL 
or SAS) for data analysis or plotting, or if they wish to create a readable report, they must do 
considerable work.  The amount of time consumed is high compared to what it takes to 
understand and use a standardized file input and output system. 
 
 Ideally, one would like to have standard interfaces to readily available database 
management packages, e.g., Oracle, ACCESS, DB-2, etc., as well as spreadsheets, e.g., EXCEL 
and LOTUS, or statistical analysis packages, e.g., SAS and SPSS.  This is why a number of users 
developed the Standard File Interface (SFI) formats.  The SFI approach greatly simplifies 
reading and writing large sequential data files. 
 
 There are a number of facets to be understood in order for SFI to be appreciated.  These 
include creation of the raw data files, editing of input data, and providing for standard file input 
to, and output from, a simulation so that users do not have to build data input and output modules 
for each file.  SFI also provides for standard reporting facilities that take care of header 
information and page counting. 
 
 Most important, direct interfaces to database management systems for data entry and 
management, and to spreadsheets and statistical packages for data analysis and plotting is a 
necessary requirement today.  All of these considerations are addressed with SFI. 
 



Software Survival             Page  13  -   4   

 All SFI files must contain one format record for each field in the data records.  These are 
used to automatically recognize the data element names and their formats on input and output 
files, and to send and accept data from EXCEL, LOTUS, DBase, and other formatted databases.  
In addition, standard reporting and plotting facilities can be used directly with SFI files because 
the format records contain all of the information to determine what a user wants to see.  See 
Figure 13-2. 
 

*  HUB - SUBSCRIBER DEPLOYMENT FILE 
**************************************************** 
*  SFI HEADER RECORD FOLLOWS 
* 
TERMINATOR = SPACE, SPACES = 1 
* 
*************************************************** 
*  SFI FORMAT RECORDS FOLLOW 
* 
NAME = HUB_ID                   INTEGER 
NAME = AREA_CODE                INTEGER 
NAME = NUMBER_OF_SUBSCRIBERS    INTEGER 
NAME = SERVICE_TYPE             CHARACTER 
*  C = CAS, L = LAM, S = SAM, I = SAM-SI, A = ADMIN 
NAME = CABKE_ID                 INTEGER 
NAME = SERVICE_FREQUENCY        FLOAT 
NAME = DEST_FREQ                FLOAT 
NAME = MEAN_INTERGEN_TIME       EXPO 
NAME = GREETING_TIME            EXPO 
* 
*************************************************** 
*      DATA RECORDS FOLLOW THE DESCRIPTION BELOW 
* 
*HUB AC SUB S CID   SFR    DF       MIT     GRT 
* 
001 908   5 C  30  65.8  2.73  39.2E+03  -.56E5 
001 908   0 L   8  65.8  2.73  39.2E+03  -.56E5 
001 908   0 S   4  65.8  2.73  39.2E+03  -.56E5 
001 908   0 I   8  65.8  2.73  39.2E+03  -.56E5 
001 908   0 A   4  65.8  2.73  39.2E+03  -.56E5 
001 201  10 C  30  65.8  2.73  39.2E+03  -.56E5 
001 201   0 L   8  65.8  2.73  39.2E+03  -.56E5 
001 201   0 S   4  65.8  2.73  39.2E+03  -.56E5 
001 201   0 I   8  65.8  2.73  39.2E+03  -.56E5 
001 201   0 A   4  65.8  2.73  39.2E+03  -.56E5 
001 609   8 C  30  65.8  2.73  39.2E+03  -.56E5 
001 609   0 L   8  65.8  2.73  39.2E+03  -.56E5 
001 609   0 S   4  65.8  2.73  39.2E+03  -.56E5 
001 609   0 I   8  65.8  2.73  39.2E+03  -.56E5 
001 609   0 A   4  65.8  2.73  39.2E+03  -.56E5 
002 215   9 C  30  65.8  2.73  39.2E+03  -.56E5 
002 215   0 L   8  65.8  2.73  39.2E+03  -.56E5 
002 215   0 S   4  65.8  2.73  39.2E+03  -.56E5 
002 215   0 I   8  65.8  2.73  39.2E+03  -.56E5 
002 215   0 A   4  65.8  2.73  39.2E+03  -.56E5 
002 610   7 C  30  65.8  2.73  39.2E+03  -.56E5 
002 610   0 L   8  65.8  2.73  39.2E+03  -.56E5 
002 610   0 S   4  65.8  2.73  39.2E+03  -.56E5 
002 610   0 I   8  65.8  2.73  39.2E+03  -.56E5 
002 610   0 A   4  65.8  2.73  39.2E+03  -.56E5 

 
Figure 13-2. Example of an SFI input file 
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 Each SFI input file must be associated with a unique VisiSoft process.  This is 
accomplished when building the architecture by connecting a file icon to a process and selecting 
the desired SFI file name. 
 
 SFI input processes automatically call the SFI file input subsystem to read the next record 
and move each field into the user specified attribute.  The SFI input subsystem automatically 
performs the following functions: 
 

• Opens and closes the input files 
 

• Reads each record from a file 
 

• Reads each field from a record 
 

• Transforms and checks numeric fields 
 

• Produces appropriate error messages 
 
 This facility is directed squarely at easing the burden on the programmer and system 
designer, thus another contribution to increased productivity. 
 
 
SPECIFICATIONS FOR RUN-TIME GRAPHICS 
 

VisiSoft greatly simplifies the use of graphics for viewing output during run-time.  When 
using the Run-Time Graphics (RTG) facility, the designer must identify elements that will be 
used from the graphics library.  RTG control specification statements are used to invoke the 
graphics facilities, set parameters, and identify the graphic objects within their respective 
libraries.  Therefore, the control specification contains an additional section, known as the 
GRAPHICS section. 
 
 Figure 13-3 provides an illustration of an RTG graphics window.  This example contains 
icons, lines, instruments, and backgrounds.  In this figure, the SWITCH, PBXs, and OFFICES 
can be drawn as backgrounds.  The men and telephones are examples of RTG ICONS.  The four 
thermometer type bars on the right are examples of RTG INSTRUMENTS.  The lines 
interconnecting the switch with PBXs and PBXs to telephones are examples of RTG LINES.  
The overall picture is an illustration of what may appear in the RTG graphics window during 
execution. 
 

Various options exist for setting the world space, window size, and the relative size of 
elements to be shown on the screen.  Symbols to be inserted in the graphics window, whether 
from the application or by interactive input, must also be defined in the control specification. 
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Figure 13-3.  Illustration of icons lines and instruments to represent network activity. 
 
 
 
The Graphics Section 
 
 The GRAPHICS SECTION is used to define the graphics library elements to be available 
at run-time as well as the process that is invoked whenever an interactive input event occurs.  At 
this stage the modeler defines the graphic symbols and their attributes.  The following key 
identifiers are used: 
 

ICON     -  Defines Icons 
 

INST     -  Defines Instruments 
 

LINE     -  Defines Lines (connectivity links) 
 

OVERLAY   -  Defines the Background Overlays 
 

RTG_EVENT_HANDLER -  Defines the Automatic Event Handling Process 
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Activating Graphics 
 
 Two separate modes of RTG graphics are available, ORTHO and PERSPECTIVE.  
ORTHO refers to a 2-Dimensional mode of operation for RTG, which provides a view looking in 
the negative Z direction.  PERSPECTIVE refers to a 3-Dimensional mode of operation for RTG, 
which allows the user to view objects from any viewpoint in space toward a specified look-at 
point, such as the origin.  The format for the statement defining the RTG graphics mode of 
operation is shown below.  The default mode of operation is ORTHO. 
 

ACTIVATE [GRAPHICS] ⎧ ⎫
⎨ ⎬
⎩ ⎭

[ORTHO]

PERSPECTIVE
 

 
 
World_Space Definition 
 
 If an application has run time graphics, users can define the “play-box” and  VIEW 
POINT for 2D and 3D graphics scenes. 
 
 The “play-box” or WORLD SPACE is the box inside of which all of the action takes 
place.  This box is defined by the two points (Xmin, Ymin, Zmin) and (Xmax, Ymax, Zmax).  
These two coordinates define the diagonal line that spans the play-box.  For example, X could 
range from -3 to +7 miles.  Z could range from 0 to 80,000 feet.  The format for the statement 
defining this rectangle box is shown below.   
 

WORLD_SPACE LOWER_LEFT  = (Xmin, Ymin [, Zmin]) 
  UPPER_RIGHT = (Xmax, Ymax [, Zmax]) 

 
 If the run time graphics mode is PERSPECTIVE (3D), an initial view vector can be 
specified.  The initial view vector is defined by two points:  
 
 the viewer’s viewpoint (viewer_x, viewer_y, viewer_z), and 
 

 the viewer’s look-at point (lookat_x, lookat_y, lookat_z). 
 
 The user must also decide how large symbols should be in the world space.  The scale 
factor is the called the NVS / BDS ratio, and can be set by the user.  The default is 1, i.e., the size 
as drawn of the original icon. 
 
 All foreground objects and background overlays are drawn over the RTG window 
background color.  By default, the RTG window background is black.  Users can choose 
different colors (e.g., white instead of black).  
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Icon Names 
 

 Icons are drawn and defined in a special VisiSoft facility known as the Icon Library 
Manager (ILM).  Within an application, an icon is given an internal program name, which in turn 
is associated with a specific icon defined in the ILM.  
 

ICON icon_name = icon_library_name 
 

  [, SCALE scale_x, scale_y [, scale_z]]  
  [, COLOR color] 
  [, STYLE style] 
  [, THICKNESS thickness] 

 
When the x, y, or z scale factors are specified, all of the icons in a hierarchy are scaled as well as 
their relative distances.  The values for color, line style, and line thickness only apply to 
variable-property icons.  These must be created in the ILM with parts whose color has been set 
to the variable color.  For example, we may have 
 

ICON PHONE  = TELEPHONE_03, COLOR RED, STYLE 1, THICKNESS 1 
ICON OFFICE = OFFICE_10, COLOR LIGHT_GREEN, STYLE 1,  

    THICKNESS 3 
 
 
Instruments 
 

 Intruments are predefined VisiSoft objects that take on special properties similar to actual 
instruments.  The values assigned to an instrument describe the default settings that the 
instrument is to assume unless otherwise explicitly stated in a process.  For example, we may 
have 
 

INST CALLS_GENERATED  =  THERMOMETER, LOW 0, HIGH 400,  
INITIAL_VALUE 0 

 
 
Background Overlays 
 
 Background overlays are separate user models created using VisiSoft and VSE draw 
libraries, or Open-GL directly for very special functions.  To incorporate a background overlay 
in an application, it must be defined in the control specification. 
 
 Each background overlay must be defined using a separate OVERLAY statement as 
shown in Figure 13-1.  The sequence of names, i.e., overlay_name, module_name, and 
library_name, specifies the process in a VSE library module to be called to draw the overlay.  
The menu_name is placed in the background overlay list that can be used to interactively toggle 
any of 100 background overlays on or off. 
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 By default, the origin - (0, 0, 0) point - of coordinates defined inside the overlay module 
is automatically registered relative to location (0, 0, 0) in the world space.  The AT clause can be 
used to register the (0, 0, 0) point in the overlay to a different location in the world space.  
Likewise, the SCALE clause can be used to reconcile an overlay to the coordinates used for the 
world space.  The default scale factor is 1. 
 
 The color or color ramps used by overlay draw routines can be changed in the control 
specification.  Similarly, the coordinates of the light source must be provided when using 3-D 
shading.  This coordinate is used by the overlay to determine the direction of the light source 
vector with respect to the look-at point mentioned above. 
 
 The user is responsible for creating background overlays.  The RTG_DRAW library, 
available to the user directly from VSE, includes most of the utilities required to draw 2D or 3D 
background overlays. 
 
 Figure 13-1 illustrates the specification of some of the above features in the Graphics 
Section of a Control Specification.  The RTG_EVENT_HANDLER clause identifies the process 
to be invoked automatically when a graphics event has occurred. 
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Chapter 14.  Simple Examples 
 
 
 The above illustration is a screen shot from a simulation of multiple platforms moving 
and communicating in 3D terrain.  The terrain is drawn using digitized terrain databases as an 
RTG background overlay.  This chapter describes two examples of VisiSoft graphics using RTG 
to demonstrate the ease with which one can build graphical representations of system dynamics.  
One is a simple bouncing ball with a smiley face.  The other is the game of TIC-TAC-TOE, 
where players could use their own computer on a network. 
 
 
SMILEY - THE BOUNCING BALL 
 

 This is an example of a bouncing ball.  It uses an RTG icon with a smiley face as the ball, 
and some simple equations to make the ball bounce in a somewhat realistic manner.  As shown 
in Figure 14-1, the ball is pushed off a wall on the left, and bounces to the right, with diminishing 
height.  This motion can be represented by the product of a sine wave and an exponential decay 
function, with parameters adjusted to suit the desired speed of motion.  It is also simple to have 
the ball spinning for a bit of realism. 
 

 This example uses the Icon Library Manager to build the smiley icon, and uses a 
background overlay for the wall and floor.  It also illustrates how one makes use of RTG to move 
icons against a background. 
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Defining The Problem 
 
 Figure 14-1 illustrates the desired motion of the ball, and the smiley face icon. 
 

X

Y

SmileyExample  8/28/06  
 

Figure 14-1.  A ball is pushed off a wall and bounces away. 
 
 
 Motion is handled using the following simple set of equations as a function of time T : 

 

X = K1·T 
 

Y = K2 · ABS[SIN(K3·T)] · e -aT 
 

Φ  = K4·T 
 
K1 determines speed in the X direction.  K2 determines the amplitude of the sine wave which is 
modulated by the decaying exponential with time constant a.  K3 determines distance between 
bounces.   Φ is the rotation angle of the ball, and K4 determines speed of rotation. 
 
 
Building The Icon 
 
 To build the icon, one must click on the ILM button in the VDE window.  This brings up 
the Hierarchical ILM.  Then one clicks on the Create Elementary button to get into the 
elementary ILM drawing board shown in Figure 14-2.  Using the drawing tools on the left button 
bar, the face outline and eyes are formed using the ellipse, and the mouth is formed using the 
filled polygon.  The grid is determined by parameters from the Status Bar, toggled by clicking on 
the Status button on the right side of the lower button bar.  The icon is saved with the name 
SMILEY. 
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Figure 14-2.  Building SMILEY using the Elementary Icon Drawing Board. 
 
 
 

Building The Architecture 
 

 The basic architecture for bouncing smiley is shown in Figure 14-3.  It requires only one 
resource and one process.  These are both shown in their respective edit sessions in this figure.  If 
we ignore the gray wall in Figure 14-4, this will run as is, bouncing the smiley ball, using a fairly 
simple control specification.  The more complete one (with an overlay) is shown in Figure 14-6. 
 
 
Building The Background Overlay 
 

 There are different ways to add in the wall.  One could use an icon.  But that gets redrawn 
in the foreground every time smiley moves.  A better way is to use the background overlay 
facility within RTG, removing the requirement to redraw the background when only the 
foreground changes, as is the case here.  To do this, the user creates a library module as shown in 
Figure 14-5.  This process calls DRAW_RECTANGLE in DRAW_MOD in RTG_DRAW, a 
VSE library that provides the facilities of Open-GL without having to write C code. 
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Figure 14-3.  Architecture for bouncing SMILEY. 
 
 
 

 
 

Figure 14-4.  Running bouncing SMILEY. 
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Figure 14-5.  Architecture for SMILE_WALLS. 
 
 
 
 
 
 

 

CONTROL SECTION 
    TITLE, TEST OF SMILE 
    LEAD_PROCESS IS PROCESS_SMILE 
   
LIBRARY SECTION 
    C:\S\LIBS\RTG_DRAW 
 
GRAPHICS SECTION 
    ACTIVATE GRAPHICS 
    WORLD_SPACE LOWER_LEFT = (-500, -500), UPPER_RIGHT = (500, 500) 
    BACKGROUND_COLOR = WHITE 
 
    ICON  SMILE    =  SMILEY, SCALE (0.5, 0.5) 
     
    OVERLAY 1 = SMILE_WALLS IN SMILE_WALLS IN SMILE_LIBRARY 
                          MENU WALLS, 
                            AT (0.0, -50.0) 
                         COLOR GRAY 
 
END 
 

 
Figure 14-6.  Control Specification for SMILEY. 
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 To create the walls using the RTG_DRAW library, one merely sets the fill to 1 if the 
object being drawn is to be filled with a color.  In this case, we are drawing two rectangles, so we 
must specify the lower-left and upper right vertices and call the DRAW_RECTANGLE routine 
in module DRAW_MOD. 
 
 Then, to make this work, we must add the LIBRARY SECTION into the Control  
Specification in Figure 14-6, and also specify the overlay module (as OVERLAY 1 here).  We 
must provide the process_name, module_name, and library_name that we have created above.  
We must also provide a menu name if we want to turn it on and off, the point at which the object 
will be inserted, and the color of the object if filled. 
 
 To bring up the walls (overlay) automatically, we must add an INSERT OVERLAY 1 
statement at the top of PROCESS_SMILE.  Some minor changes are required to the formulas to 
start the smiley ball at the top of the wall.  This is best done by setting T = 3 instead of 0 to start.   
 
 
Building A Panel To Change Speed 
 
 Now let’s put in a panel to change the speed interactively.  We will use a slider bar such 
as shown in Figure 14-7.  To do this, we must first add a panel resource to the architecture shown 
in Figure 14-7 
 

 
 

Figure 14-7.  A slider bar for controlling SMILEY’s speed. 
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 The SMILE task architecture shown in Figure 14-8 has been augmented with a 
SMILE_SPEED resource at the bottom of module SMILEY.  This resource holds the 
information for the slider bar shown during run time in Figure 14-7 above.  This resource is built 
automatically by the Panel Library Manager (PLM), after one has saved the drawing of a panel. 
 
 To vary the speed of the SMILEY ball, we will use the SUSPEND statement to suspend 
the task for varying fractions of a second.  This is the SUSPEND_TIME that has been added to 
the bottom of the SMILE_DATA resource shown in Figure 14-8.   
 

 
 

Figure 14-8.  A new SMILE_SPEED resource for a slider bar to control SMILEY’s speed. 
 
 
 Additional statements have been added to the process to display the panel, initialize the 
suspend time, query the panel for inputs, and update the suspend time if inputs have occurred.   
 
 The PLM is used to build the panel using a panel drawing board, shown in Figure 14-9, 
with the various widgets available to the user.  The panel widgets are on the left column of 
buttons on the PLM drawing board.  A vertical sliding bar has been used to adjust the speed.  
While the ball is bouncing, the user can adjust the speed of the ball by moving the slider up and 
down. 
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Figure 14-9.  Building the slider bar panel in the PLM to control SMILEY’s speed. 
 
 
 To build the slider bar, one just drags out the slider bar widget and places it in the panel, 
selecting the vertical option in this case.  Prompted inputs allow selection of the minimum and 
maximum values of the bar.  The user can add text to put the labels MAX - 20.0, SPEED, and 
MIN - 0.1 .  After saving the panel, the panel resource, SMILE_SPEED gets built with all of the 
statements needed to use the widgets in the panel.  So all of the code that a user must write to 
build this example is shown above.  That’s it! 
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TIC TAC TOE GAME 
 
 In this example we will build an interactive game of Tic Tac Toe.  The board will be built 
as a background overlay and the X and O letters will be built as icons that can be inserted on the 
board.  This is shown in Figure 14-10 below.  To determine where a player has placed the X or O 
icon, we must test the position of the icon relative to the board.  Our test will simply be to 
determine if the center of the icon lies within one of the blue squares.  If so, we will take it and 
center it, provided the grid square is empty. 
 

0
0 100
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200
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300

300

X O

X

X
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O

TicTacToe  9/1/06

 
 

Figure 14-10.  The game of TIC TAC TOE. 
 
 
BUILDING THE GAME BOARD BACKGROUND OVERLAY 
 
 The (x, y) coordinate system for the game board is shown in Figure 14-10.  It has been 
designed for ease of testing the placement of an icon.  Given that the grid squares are each 84 
units on a side, then all sides are 8 units away from the 0, 100, 200, 300 lines.  Valid placement 
implies that the center of an icon must be in one of the ranges [8, 92], [108, 192], and [208, 292] 
in both the x and y directions.  The background overlay is composed of 10 squares, the outer 
square and the 9 inner squares.  This library module is rather simple to build.  It is shown in 
Figure 14-11 below.  The process is in the upper left corner and the resource in the lower right. 
 
 To start the game, each player will be given five icons of X or O.  To place an icon on the 
board, the player left mouse clicks on one of the icons to select it, and holding the button down, 
drags it to place it over the desired grid square.  When the button is released, the position of the 
icon is tested to ensure that it lies in one of the grid squares that is free.  If not, it will not be 
accepted, and a beep will occur telling the player he has not selected a valid position.  The player 
must then click on the icon to select it and drag it to a valid square, where it will be automatically 
centered. 
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Figure 14-11.  TIC TAC TOE background overlay module. 
 
 
 After the icon is centered, a test will be made to determine if the insertion has completed 
the game.  If not, an icon from the other player’s set must be selected and placed.  The game 
continues until one of the players wins or it is determined that no one can win. 
 
 
BUILDING THE GAME 
 
 The game starts with each player’s icons next to the board as shown in Figure 14-12.  As 
icons are placed, their positions are checked to ensure the center of the icon lies within an 
unoccupied blue box.  Valid entries are centered automatically, and the state of the board is 
updated.  A panel indicates the state of the game, and also contains a button that can end the 
game at any time. 
 
 After each valid entry, the state of the board is checked to determine if there is a winner.  
If so, a red line is drawn through the entries that won the game.  This is illustrated in 
Figure 14-13.  Otherwise, the game continues. 
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Figure 14-12.  TIC TAC TOE starting screen. 
 
 
 
 
 
 

 
 

Figure 14-13.  TIC TAC TOE ending screen. 
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 The architecture is shown in Figure 14-14, with the two resources TIC_TAC_TOE and 
GAME_STATE.  The MESSAGE_PANEL resource is not shown since it is built automatically 
using the PLM.  Although it must be referred to by process TIC_TAC_TOE that controls the 
panel, the references are quite simple. 
 
 

 
 

Figure 14-14.  TIC TAC TOE ending screen. 
 
 
 The process TIC_TAC_TOE is shown in Figures 14-15a & b.  It is the most complex of 
the processes.  The rule GET_NEXT_EVENT starts with the statement 
 

GET NEXT EVENT AND WAIT 
 
This causes the task to wait on an RTG event.  When an event occurs, the process specified as 
the RTG EVENT HANDLER (in this case: GET_NEXT_EVENT - Figure 14-16) is invoked, 
after which control is returned to the statement following the GET NEXT EVENT AND WAIT 
statement in TIC_TAC_TOE.  
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TIC_TAC_TOE 
    EXECUTE INITIALIZE 
    EXECUTE GET_NEXT_EVENT 
        UNTIL GAME IS DONE 
 
********************************************************** 
 
INITIALIZE 
    MOVE SPACES TO STATE_OF_THE_BOARD 
    SET GAME    TO IN_PLAY 
    SET WINNER  TO NONE_YET 
    INSERT OVERLAY 1 
    EXECUTE INSERT_X_O_ICONS 
    MOVE 'GAME IN PROGRESS' TO MESSAGE_PANEL PANEL_TEXT 
    DISPLAY PANEL MESSAGE_PANEL AT 800, 100 
 
INSERT_X_O_ICONS 
    EXECUTE INSERT_ICONS 
        INCREMENTING ICON_POINTER 
            UNTIL ICON_POINTER IS GREATER THAN 5 
 
INSERT_ICONS 
    X_POSITION = -200 
    Y_POSITION =  360 - 70 * ICON_POINTER 
    INSERT X(ICON_POINTER) ICON AT X_POSITION, Y_POSITION 
    X_POSITION =  500 
    INSERT O(ICON_POINTER) ICON AT X_POSITION, Y_POSITION 
 
********************************************************** 
 
GET_NEXT_EVENT 
    GET NEXT EVENT AND WAIT 
    QUERY PANEL INPUT 
    IF RTG_PANEL_EVENT IS GREATER THAN 0 
        EXECUTE PANEL_INPUT_EVENT . 
         
    IF GAME IS DONE 
        EXIT THIS RULE . 
         
    CALL GET_NEXT_EVENT 
    EXECUTE PROCESS_ICON_MOVE 
    IF POSITION_STATE IS VALID 
        CALL CHECK_FOR_WINNER . 
     
    IF WINNER IS NONE_YET 
        EXIT THIS RULE 
    ELSE EXECUTE GAME_IS_OVER . 
 
PROCESS_ICON_MOVE 
 
  . 
  . 
  . 
 
 

 
Figure 14-15a.  Top part of process TIC_TAC_TOE. 
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  . 
  . 
  . 
 

PROCESS_ICON_MOVE 
    SET POSITION_STATE TO INVALID 
    CALL CHECK_ICON_POSITION 
    IF POSITION_STATE IS INVALID 
        EXIT THIS RULE . 
         
    IF ICON_TYPE IS X 
        UPDATE X(ICON_POINTER) ICON 
            TO X_POSITION, Y_POSITION 
    ELSE 
    IF ICON_TYPE IS O 
        UPDATE O(ICON_POINTER) ICON 
            TO X_POSITION, Y_POSITION . 
 

**************************************************************** 
 

PANEL_INPUT_EVENT 
    ACCEPT PANEL MESSAGE_PANEL 
    IF MESSAGE_PANEL PANEL_BUTTON_STATUS IS ON 
        SET GAME TO DONE . 
 

GAME_IS_OVER 
    IF WINNER IS X 
        MOVE 'WINNER IS X' TO MESSAGE_PANEL PANEL_TEXT 
    ELSE 
    IF WINNER IS O 
        MOVE 'WINNER IS O' TO MESSAGE_PANEL PANEL_TEXT 
    ELSE 
        MOVE 'ERROR'       TO  MESSAGE_PANEL PANEL_TEXT . 
          
    DISPLAY PANEL MESSAGE_PANEL     
    SUSPEND THIS TASK FOR 4 SECONDS 
 

 
Figure 14-15b.  Bottom part of process TIC_TAC_TOE. 

 
 
 
 

 

GET_NEXT_EVENT 
    IF RTG_GRAPHICS_SYMBOL IS AN ICON 
        EXECUTE GET_ICON_DATA . 
 
GET_ICON_DATA 
    MOVE RTG_ICON_SIMULATION_NAME TO ICON_NAME 
    MOVE RTG_ICON_INSTANCE_PTR(1) TO ICON_POINTER 
    IF ICON_CHAR IS EQUAL TO 'X' 
        SET ICON_TYPE TO X 
    ELSE IF ICON_CHAR IS EQUAL TO 'O' 
        SET ICON_TYPE TO O . 
    MOVE RTG_ICON_X TO X_POSITION 
    MOVE RTG_ICON_Y TO Y_POSITION 
 

 
Figure 14-16.  Process GET_NEXT_EVENT. 
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 The two processes, CHECK_ICON_POSITION and CHECK_FOR_A_WINNER are 
relatively simple to build.  CHECK_ICON_POSITION checks to see if the center of the icon is 
within one of the boxes and if so, checks if there is already an icon in that grid square.  If it is 
inside and the square is free, it is placed in the center.  If not, it is put back where it was before it 
was selected.  If placed in a grid square, it then calls CHECK_FOR_A_WINNER to determine if 
that icon has caused a win.  This is done by checking the possible win combinations to determine 
if one is a win. 
 
 
CONVERSION TO A NETWORKED GAME 
 
 The game described above provides a single mouse input and window output, awkward 
for two players.  This can be converted to a two-platform game using a VisiSoft Interprocessor 
Resource.  The architecture is shown in Figure 14-17.  Each player has a corresponding task that 
provides the state of the game in the window, and takes control from and passes control to the 
other player.  So the architecture shown below is repeated on the O side.  This runs in a client-
server mode, where the server is started before the client.  This concept is easily adapted to 
multi-player games. 
 
 

 
 

Figure 14-17.  Multi-platform architecture. 
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THE ICON LIBRARY MANAGER (ILM) 
 
 The examples of icons built using the ILM above are somewhat trivial.  It is worth while 
to consider some others.  Examples of more complex icons are shown in Figure 14-18 below. 
 
 
 

 
 

 
 
 
 

 
 

Figure 14-18.  Examples of more complex icons built using the ILM. 
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Chapter 15.  Simulation 
 
 
 This chapter describes the use of the General Simulation System (GSS) in building 
discrete event simulations.  Although GSS supports the discrete event approach, it provides for 
dynamic nonlinear mathematical modeling within a simulation.  This includes the solution of 
stiff nonlinear systems of differential equations with “look ahead” algorithms.  However, most of 
today’s system designs require that sophisticated sets of IF ... THEN ... ELSE ... rules are built 
into the algorithms, such as those used to provide layered protocols.  This is particularly true in 
the design of complex communications and control systems. 
 

 In this chapter we start with a well known example typically solved using differential 
equations.  We then extend the concepts used to in this example to the simplified design and test 
of embedded algorithms used in a telephone network. 



Software Survival             Page  15  -   2   

RABBIT - COYOTE BIOLOGICAL MODEL COMPARISON 
 
 In this example, we compare a continuous-time system model to its rule-based 
counterpart.  We will use the classical example of biological balance between a host and a 
parasite as provided in many texts, e.g., Gordon, [43], pp. 103.  In this example, the dynamics of 
the interactivity between the rabbit and coyote populations are modeled.  In this model, rabbits 
are the hosts (prey), multiplying in large numbers compared to coyotes that are the parasites 
(hunters).  The equations, when simplified, take the form described by Gordon as follows. 
 

dr  =  A·r(t) - B·r(t)·c(t) 
dt 

 
dc  =  K·r(t)·c(t) - D·c(t) 
dt 

 
The first equation defines the rate of change of the rabbit population, where rabbit births 

are a fraction, A, of the existing population, and rabbit deaths (due to coyote kills) are a fraction, 
B, of the product of the rabbit and coyote populations.  The coyote population changes similarly, 
but they are modeled as the birth rate being a fraction, K, of the product of the rabbit and coyote 
populations, and their death rate is a fraction, D, of their population. 
 
 Figure 15-1 illustrates an approach to describing the model graphically using a fairly 
standard analog diagram for the differential equations.  This set of equations can be solved using 
special methods or existing software systems.  The analog diagram is easily related to the 
equations. 
 
 Figure 15-2 shows a stock and flow diagram for the same system, using slightly different 
coefficients for the equations.  This diagram is somewhat more easily related to the stock and 
flow of rabbits and coyotes, but is harder to relate to the system of equations. 
 
 The classical approach to determining the coefficients for this problem is to assume the 
solution to be quasi-stable, i.e., oscillatory, with no damping to a stable state.  This is justified on 
the grounds that oscillation is observed in real life.  However, as we shall show, this is not a 
realistic representation of the physical system, since any perturbation will drive the system into 
an unstable state, causing at least one of the populations to got to infinity or zero.  In fact, 
basically stable systems may appear to operate in constant oscillation, even though they require 
continuous perturbation from an external source.  One merely has to redefine the external source 
as part of the overall system.  Any form of clock or electronic oscillator is good example.  This is 
fine when using simple mathematical models of oscillators as examples in a classroom 
environment, where the complexity of nonlinear models need not be described.  However, it 
presents a misleading picture when trying to explain the real biological behavior of interest here.  
And this is another case where  
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Figure 15-1.  Rabbit - coyote biological model using anolog symbol diagram. 
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Figure 15-2.  Rabbit  - coyote biological model using system dynamics symbol diagram. 
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A MORE REALISTIC MODEL OF THE PHYSICAL PHENOMENON 
 

 The theory and design of electronic oscillators has been well researched.  Their 
operational characteristics are governed by nonlinear physical phenomenon, refer to 
Hafner, [49].  Accurate representation of real physical oscillatory behavior requires nonlinear 
models.  In addition, damping exists in all physical systems to some degree, as do external 
perturbations.  When the perturbations are absent, the system will relax, with decreasing 
oscillatory behavior, to a stable state - normally not oscillatory because of the effects of 
damping.  When a perturbation occurs, the system moves from its stable state into what may 
appear to be oscillatory motion that naturally decays.  These perturbations can came close 
enough together to cause superposition of their effects, and give the appearance of continual 
oscillatory motion.  We submit that is the case with the typical biological model. 
 

 The model of a system that is less than critically damped will show the same form of 
oscillatory responses every time it is perturbed.  Clearly, biological systems such as rabbits and 
coyotes are always being perturbed by external factors not modeled here.  These can produce 
what would appear to be continuous oscillation, even though the systems themselves are highly 
stable.  These additional perturbations would hardly change the overall behavior of the system.  
Depending on how one chooses the coefficients in the nonlinear equations, vastly different 
results can occur.  One must study the effects of perturbations on the populations to gain good 
agreement with reality. 
 

 Given these facts, both of the linear models described above can misrepresent the real 
physical behavior of the biological system, particularly if one is concerned about studying the 
survival of the populations.  It is more realistic to represent coyote deaths as due to starvation 
(not enough rabbit kills) as well as natural causes.  Similarly, given reasonable circumstances, 
the rabbit population in a linear model quickly grows to infinity - an impossible consequence if 
we are studying a finite geographical area, with a finite food supply. 
 

 Rabbits will also starve if they don't have enough food, and can die of natural causes as 
well.  Also, the incubation periods of different animals can be significantly different, affecting 
the time constants for birth after pregnancy.  As we add these more detailed representations to 
gain accuracy, the model will necessarily become more complex.  But, instead of solving a set of 
equations for fictitious coefficients to land on the single point of oscillation, we are providing 
real characterizations, observed phenomena and watching the simulated results.  Furthermore, 
both of the prior approaches require a knowledge of how to transform the description of a 
physical problem into differential equation format, and then find a means to solve it.  Our rule-
based approach dispenses with this requirement.  The description appears in a natural language 
format, requiring only a knowledge of algebra. 
 
 
A RULE-BASED RABBIT-COYOTE BIOLOGICAL MODEL 
 

 Figure 15-3 below shows a GSS version of the rabbit-coyote simulation using the same 
biological type model.  This approach is totally different than that using differential equations 
described in the prior section.  Note that we are modeling the physical phenomena directly, 
minimizing abstractions.  This is a great aid when it comes to adding detail to the model.  As a 
result, the processes in the model relate directly to pregnancy, birth, natural death, and of course 
the rabbit hunt, as the affect the population of the herds. 
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Figure 15-3.  Rabbit - coyote biological model using the GSS Model Development Graphics. 
 
 

 The GSS Processes rules and Resource data structures are shown on the next three pages.  
Although not many decision processes are represented in these simple models, the approach to 
the computations is more understandable in terms of real life considerations.  One does not have 
to understand differential equations to represent the physical system.  However, the models 
account for many more details than their counterparts using an abstract mathematical approach.  
Equally important, the counterpart of nonlinear differential equations would be much more 
complex to write and solve. 
 
 We also note that using discrete event simulation, most of these processes run 
independently, transforming the states of the herds when they run.  The pregnancy process 
affects the percent of pregnant animals in the herds.  The birth process causes an increase in the 
herd size.  The natural death process causes a reduction in the herd size, and the rabbit hunt 
causes a reduction in the rabbit herd.  Note that the red codes inside processes cause them to be 
started since they run independently, scheduling themselves in the future. 
 
 Graphs of the dynamic behavior of the possible rabbit - coyote relationship, as 
represented in GSS, are shown in Figures 15.4 through 15-7.  These results were obtained by 
modifying the birth, death, and hunger submodels for each.  It can be seen that a wide range of 
results can be obtained, depending upon various factors.  Figures 15-4 and 15-5 show the result 
of a single perturbation, at the beginning of the chart, on this very stable system.  We note that a 
sequence of perturbations, occurring two years apart, will give the appearance of continuous 
oscillation.  We would expect perturbations to occur at least this often. 
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RESOURCE:  RABBIT_HERD 
 
RABBIT 
    1    POPULATION                  INTEGER INITIAL_VALUE 10000 
    1    PREGNANCY_SET               INDEX   INITIAL_VALUE 1 
    1    PREGNANCIES    QUANTITY(9)  INTEGER   
    1    NATURAL_DEATHS              INTEGER 
    1    TOTAL_DEATHS                INTEGER 
    1    HUNGER_DEATHS               INTEGER 
    1    HUNGER_DEATH_FACTOR         REAL 
    1    DEATHS_BY_COYOTE            INTEGER 
    1    REPRODUCTION_RATE           REAL    INITIAL_VALUE 0.2 
    1    NATURAL_DEATH_RATE          REAL    INITIAL_VALUE 0.05 
    1    MEDIAN_POPULATION           INTEGER INITIAL_VALUE 10000 
  

 
 
 
 
 
 
PROCESS:  RABBIT_PREGNANCY 
 
PREGNANCY_CONTROL 
  ***     DETERMINE PREGNANCY GROUP (MONTH - INSTANCE) 
    IF PREGNANCY_SET IS GREATER THAN 2 
        PREGNANCY_SET = 1. 
  ***     COMPUTE NUMBER OF PREGNANCIES FOR THIS PEROID 
    PREGNANIES (PREGNANCY_SET) = REPRODUCTION_RATE * POPULATION 
 
  ***     SCHEDULE BIRTH AND PREGNANCY DATES 
    SCHEDULE RABBIT_BIRTH IN 60 DAYS USING PREGNANCY_SET 
    SCHEDULE RABBIT_PREGNANCY IN 30 DAYS USING PREGNANCY_SET 
    INCREMENT PREGNANCY_SET. 
 

 
 
 
 
 
 
PROCESS:  RABBIT_BIRTH 
 
 
RABBIT_BIRTH_CONTROL 
    ADD PREGNANCIES(PREGNANCY_SET) TO POPULATION 
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PROCESS:  NATURAL_RABBIT_DEATH 
 
RABBIT_DEATH_CONTROL 
    IF POPULATION IS GREATER THAN ZERO 
        HUNGER_DEATH_FACTOR = ((MEDIAN_POPULATION + POPULATION)/ 
                                               MEDIAN_POPULATION)**2 
        TOTAL_DEATHS = NATURAL_DEATH_RATE * POPULATION * 
                                               HUNGER_DEATH_FACTOR 
        SUBTRACT TOTAL_DEATHS FROM POPULATION. 
    IF POPULATION IS LESS THAN 2 
        STOP. 
    SCHEDULE NATUAL_RABBIT_DEATH IN 30 DAYS 
 

 
 
 
 
 

RESOURCE:  COYOTE_HERD 
 
COYOTE 
    1   POPULATION                 INTEGER INITIAL_VALUE 250 
    1   PREGNANCY_SET              INDEX   INITIAL_VALUE   1 
    1   PREGNANCIES  QUANTITY(9)   INTEGER *** ALLOW UP TO 9 INSTANCES 
    1   NATURAL_DEATHS             INTEGER 
    1   HUNGER_DEATHS              INTEGER 
    1   TOTAL_DEATHS               INTEGER 
    1   RABBIT_KILLS               INTEGER 
    1   HUNGER                     REAL 
    1   COYOTE_RABBIT_RATIO        REAL 
    1   REPRODUCTION_RATE          REAL    INITIAL_VALUE 0.1 
    1   NATURAL_DEATH_RATE         REAL    INITIAL_VALUE 0.02 
    1   HUNGER_DEATH_RATE          REAL    INITIAL_VALUE 0.02 
    1   APPETITE                   INTEGER INITIAL_VALUE 20 
    1   PROBABILITY_OF_CATCH       REAL 
    1   MEDIAN_RABBIT_CATCH        INTEGER INITIAL_VALUE 10000 
 

TIME_FACTORS 
    1   DAY_COUNT                  INTEGER 
    1   MONTH                      INTEGER 
 

 
 
 
 
 

PROCESS:  COYOTE_PREGNANCY 
 
PREGNANCY_CONTROL 
 

  ***  DETERMINE_PREGNANCY SET (MONTH - INSTANCES) 
    IF PREGNANCY_SET IS GREATER THAN 3 
        PREGNANCY_SET = 1. 
 

   ***  SET COYOTE PREGNANCIES AND SCHEDULE BIRTH 
    PREGNANCIES(PREGNANCY_SET) = REPRODUCTION_RATE * POPULATION 
    SCHEDULE COYOTE_BIRTH IN 90 DAYS USING PREGNANCY_SET 
    SCHEDULE COYOTE_PREGNANCY IN 30 DAYS USING PREGNANCY_SET 
    INCREMENT PREGNANCY_SET. 
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PROCESS:  COYOTE_BIRTH 
 
COYOTE_BIRTH_CONTROL 
    ADD PREGNANCIES(PREGNANCY_SET) TO POPULATION 
 

 
 
 
 
 

PROCESS:  COYOTE_DEATH 
 
COYOTE_DEATH_CONTROL 
    IF POPULATION IS GREATER THAN ZERO EXECUTE 
        COMPUTE_COYOTE_DEATHS. 
    IF POPULATION IS LESS THAN 2 
        STOP. 
    SCHEDULE COYOTE_DEATH IN 30 DAYS 
 
COMPUTE_COYOTE_DEATHS 
  ***     DETERMINE COYOTE HUNGER 
    COYOTE HUNGER = 3*(5*COYOTE POPULATION/RABBIT_KILLS) ** 3 
    NATURAL_DEATHS = NATURAL_DEATH_RATE * POPULATION 
    HUNGER_DEATHS = COYOTE HUNGER * HUNGER_DEATH_RATE * POPULATION 
    TOTAL_DEATHS = NATURAL_DEATHS + HUNGER_DEATHS 
 

 
 
 
 
 

PROCESS:  RABBIT_HUNT 
 
RABBIT_HUNT 
  ***  DETERMINE RABBIT_KILLS 
    PROBABILITY_OF_CATCH = (RABBIT POPULATION/ 
                        (RABBIT POPULATION + MEDIAN_RABBIT_CATCH)) ** 2 
    RABBIT_KILLS = APPETITE * COYOTE POPULATION * PROBABILITY_OF_CATCH 
    DECREMENT RABBIT POPULATION BY RABBIT_KILLS 
    IF RABBIT POPULATION IS LESS THAN 2 
        STOP. 
    IF RABBIT_KILLS ARE LESS THAN ZERO 
          RABBIT_KILLS = 1. 
    SCHEDULE RABBIT_HUNT IN 30 DAYS 
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Figure 15-4  Oscillatory relationship when basic model is linear and rabbits are limited by food. 
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Figure 15-5  Stable relationship when basic model is nonlinear and rabbits are limited by food. 
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Figure 15-6.  Unstable relationship when model is linear and rabbit growth is not limited. 
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Figure 15-7.  Extinction occurs when model is linear and rabbit growth is slow and limited. 
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TELEPHONE NETWORK SIMULATION 
 
 Figure 15-8 is the graphical output representing the telephone network simulation.  This 
is a simulation of four business offices (green boxes), each with different numbers of people 
having phones.  We are concerned with interoffice calls that must go through the PBXs (gray 
boxes) and the local telephone company’s central switch (brown box).  We must determine how 
many lines to buy between each office PBX and the central switch.  In the picture, green lines are 
in use, black indicates call setup in progress, and tan represents unused lines. 
 

 
 

Figure 15-8.  Graphical output representing the telephone network simulation. 
 
 To minimize our cost, we want to buy as few lines as needed to ensure a specified 
probability that calls will be completed under stress conditions (the busy hour).  To do this, we 
must measure calls attempted, calls completed, calls that were blocked (not enough lines) and 
calls not completed because the other party was busy (not blocked). 
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 The architecture for this simulation is shown in Figure 15-9.  The simulation was 
designed to support up to ten local offices with up to twenty subscribers each.  Each office has a 
PBX that is connected to the central switch.  In addition, modules exist for initialization, running 
the busy hour scenario, providing dynamic graphical output, and collecting the data needed to 
determine the results. 
 

TELEPHONE_NETWORK

 
 

Figure 15-9.  Architecture for the telephone network simulation. 
 
 
 A single simulation is used for a given design, i.e., a selected number of trunk lines 
between the PBX and central switch for each office.  Then using the GSS optimization facilities, 
the number of trunk lines can be varied while running a set of simulations, e.g., 50 to determine 
the optimal solution.  Then, having set the optimal solution, a Monte Carlo run can be performed 
using 50 simulations to create a distribution of outcomes to verify that the constraint on the 
desired probability is met. 
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VALIDITY OF THE MODELS 
 
 The most important factor in using simulation to perform design and testing is to ensure 
that simulated results match what happens under live (real) test conditions, i.e., that the 
simulation results are a valid representation of the system.  As illustrated in Figure 15-10, 
simulation validity is determined by the validity of the measures of merit (MOM) obtained from 
the simulation.  These measures, of equipment performance or overall system effectiveness, must 
quantify values that an analyst must use to make decisions.  In order for these measures to be 
valid, they must be based on data from the simulation that is accurate relative to predicting what 
will occur in a real environment with real systems.  This implies that the models and scenarios 
used in a simulation must provide a sufficiently accurate representation of the real system and its 
environment. 
 

MODELING  7/30/03

SIMULATION  VALIDITY
MOM

VALIDITY

SCENARIO
INPUT

VALIDITY
MODEL ACCURACY
DATA COLLECTION ACCURACY
MOM  COMPUTATIONAL ACCURACY

 
 

Figure 15-10.  Determining Model Validity 
 
 
 Generally speaking, the major factors boil down to two: validity of the scenario, and 
accuracy of the models.  With a good simulation design, many scenarios can be created by the 
users to investigate different worst cases.  Typically, the critical piece is accuracy of the model 
representations.  As one learns more about the problem, one must be able to increase model 
detail to account for more factors.  The ease with which this is accomplished depends directly 
upon the simulation environment. 
 
 
REUSABILITY OF THE MODELS 
 
 More importantly, one would like to pull a model off the shelf and reuse it in different 
simulations.  The ability to do this depends directly upon the range of validity of the model.  This 
implies that models with sufficient detail can be used for a wider array of problems than those 
tailored simply to a specific application.  An example in communications is a propagation model 
that covers a very broad band of the frequency spectrum.  Such a model is typically much more 
complex than one that covers a small band of the spectrum.  But to be reusable, models must be 
understandable and independent.  These properties are defined below. 
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MODEL INDEPENDENCE 
 

 Looking at the architecture in Figure 15-9, one observes two factors.  First, the models 
are built along the physical lines of the system being modeled.  The office model contains the 
model for subscribers and PBXs.  This model is connected to the switch model.  The instrument 
model is connected to the subscriber model, since that is where the calls are initiated and the 
resulting blocked, busy, and connected signals are recorded.  The scenario control module is 
connected to the office and switch.  The number of connections between models never exceeds 
two, making it relatively easy to disconnect a model and reconnect it in another simulation. 
 
 
MODEL UNDERSTANDABILITY 
 

 This property determines the ability of an analyst or modeler, other than the original 
author, to understand the model to the extent that it is easily validated and reused.  From an 
economic standpoint, models that are more easily understood are more valuable because they are 
more easily validated, modified, and reused. 
 

 We note that the most complex model from an element standpoint is the subscriber 
model.  Within that model, placing calls is the most complex.  Let’s look at the SUBSCRIBER_ 
ATTRIBUTES resource and the PLACE_CALL process in Figures 15-11 and 12, noting that one 
of the resources that PLACE_CALL uses is not shown. 
 

 

SUBSCRIBER                          INDEX 
 
SUBSCRIBER_INFORMATION 
    1  CALLERS_PLAN                 STATUS PLACE_NEW_CALL 
                                           RETRY_CALL 
    1  SUBSCRIBER_TYPE              STATUS DATA 
                                           VOICE 
    1  SUBSCRIBER_STATUS            STATUS BUSY 
                                           FREE 
CURRENT_CALL_PARAMETERS 
    1  CALL_TIME                    REAL 
    1  CALL_START_TIME              REAL 
    1  CALL_DURATION                REAL 
    1  PHONE_NUMBER                 STATUS UNKNOWN 
                                           FOUND 
CALL_ATTRIBUTES 
    1  CALL_INTERGEN_TIME           REAL ***INITIAL_VALUE 12 ***MINUTES 
    1  AVERAGE_CALL_DURATION        REAL ***INITIAL_VALUE 4  ***MINUTES 
    1  VARIANCE                     REAL ***INITIAL_VALUE 1  ***MINUTE 
    1  RETRY_INTERGEN_TIME          REAL ***INITIAL_VALUE 4  ***MINUTES 
  
PHONE_BOOK 
    1  PHONE_BOOK_STATE             STATUS INCOMPLETE 
                                           COMPLETE 
    1  PHONE_TOTAL_OFFICES          INDEX 
    1  PHONES_IN_OFFICE QUANTITY(4) INDEX 
 
DIALED_OFFICE                       INDEX 
DIALED_SUBSCRIBER                   INDEX 
 

 
Figure 15-11.  Resource: SUBSCRIBER_ATTRIBUTES. 
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PLACE_CALL 
    IF SUBSCRIBER_STATUS IS FREE 
        EXECUTE MAKE_CALL 
    ELSE EXECUTE RETRY_LATER . 
 
MAKE_CALL 
    IF CALLERS_PLAN IS PLACE_NEW_CALL 
        SET PHONE_NUMBER TO UNKNOWN 
        EXECUTE LOOK_UP_NUMBER UNTIL PHONE_NUMBER IS FOUND . 
    MOVE OFFICE TO SUBSCBR_PBX_SRCE_OFFICE 
    MOVE SUBSCRIBER TO SUBSCBR_PBX_SRCE_SUBSCBR 
    MOVE DIALED_OFFICE TO SUB_PBX_DES_OFF 
    MOVE DIALED_SUBSCRIBER TO SUBSCBR_PBX_DEST_OFFICE 
    SET SUBSCRIBER_STATUS TO BUSY 
    SET SUBSCRIBER_SIGNAL TO PLACE_CALL 
    MOVE CLOCK_TIME TO CALL_START_TIME 
    SCHEDULE RECEIVE_SUBSCRIBER_INPUT NOW 
    CALL CONNECT_SUBSCRIBER 
 
RETRY_LATER 
    SCHEDULE PLACE_CALL IN EXPON(RETRY_INTERGEN_TIME) SECONDS 
     
LOOK_UP_NUMBER 
     DIALED_OFFICE = (PHONE_TOTAL_OFFICES * RANDOM) + 1 
     IF DIALED_OFFICE IS EQUAL TO OFFICE 
         EXIT THIS RULE . 
     DIALED_SUBSCRIBER = 
         (PHONES_IN_OFFICE(DIALED_OFFICE) * RANDOM) + 1 
     SET PHONE_NUMBER TO FOUND 
 

 
Figure 15-12.  Process: PLACE_CALL. 

 
 
 The SUBSCRIBER_ATTRIBUTES resource contains most of the important information 
on the state of a subscriber.  The two other resources within the SUBSCRIBER model are 
SUBSCRIBER_SYMBOLS, which contains the subscriber icon information, and 
SUBSCRIBER_PBX_INTERFACE, which contains state information to be sent to the PBX.  
We note that these attributes have been selected to help make the PLACE_CALL process easily 
understood by a third party.  The most difficult part is the transfer of information from the 
subscriber to the PBX regarding the calling subscriber’s own number and office number, as well 
as the numbers of the called office and subscriber.  We note that routing tables are not needed to 
obtain the desired measures from this simulation. 
 
 To provide for additional insight into these models, the process RECEIVE_ 
SUBSCRIBER_INPUT is also provided in Figure 15-13.  The intent here is to demonstrate the 
readability of the rules.  Although this simulation has be characterized as simple, the algorithms 
for passing information through the system, so that all of the control messages necessary to set 
up a call are modeled, are not so simple.  However, any engineer who has an understanding of 
these algorithms can quickly learn the logic of the models, and determine their validity or 
reusability. 
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RECEIVE_SUBSCRIBER_INPUT 
    IF SUBSCRIBER_SIGNAL IS PLACE_CALL        *** SOURCE 
        EXECUTE ATTEMPT_CONNECTION 
    ELSE IF SUBSCRIBER_SIGNAL IS END_CALL     *** DESTINATION 
        EXECUTE BREAK_CONNECTION. 
 
ATTEMPT_CONNECTION 
    IF TRUNKS_AVAILABLE ARE GREATER THAN 0 
        EXECUTE ESTABLISH_CONNECTION 
    ELSE EXECUTE CONNECTION_FAILURE. 
 
ESTABLISH_CONNECTION 
    SET PBX_SUBSCRIBER_LINE TO BUSY 
    DECREMENT TRUNKS_AVAILABLE 
    MOVE SUBSCRIBER_MESSAGE TO PBX_SWITCH_MESSAGE 
    SET PBX_SWITCH_SIGNAL TO PLACE_CALL 
    SCHEDULE RECEIVE_PBX_SIGNAL NOW 
 
CONNECTION_FAILURE 
    SET PBX_SUBSCRIBER_SIGNAL TO BLOCKED_AT_SOURCE 
    SCHEDULE RECEIVE_PBX_RESPONSE NOW 
        USING SUB_PBX_SRC_SUB 
 
BREAK_CONNECTION 
    INCREMENT TRUNKS_AVAILABLE 
    MOVE SUBSCRIBER_MESSAGE TO PBX_SWITCH_MESSAGE 
    SET PBX_SWITCH_SIGNAL TO END_CALL 
    SET PBX_SUBSCRIBER_LINE TO FREE 
    SCHEDULE RECEIVE_PBX_SIGNAL NOW 
 

 
Figure 15-13.  Process: RECEIVE_SUBSCRIBER_INPUT. 

 
 
 We should also point out that all of the statements are intuitive except for the 
SCHEDULE statement.  This statement schedules a process to be run at a future time (n seconds 
from now) or at the current time (NOW).  This causes the process name to be placed in a queue 
at a specified time and priority (not used above).  Also stored in the queue are up to six instance 
pointers so that when the process runs, it knows what model instances it represents.  These 
instance pointers are determined in the architecture (VDE) environment.  The selection of the 
instance pointers is shown in Figure 15-14, where the names SOURCE and DESTINATION are 
selected as the first and second instance pointers. 
 

 Thus, when one process schedules another, the values of the instance pointers are 
automatically passed from one to the other through the scheduler.  The modeler only has to use a 
common name for these pointers and set them to the desired value where necessary.  This makes 
the models much easier to write as well as read. 
 

 To make all this work, behind the scenes all such resources are instanced, i.e., there is a 
copy for each instance.  So every model instance has a separate copy of all the resources 
contained within it.  If a model is not instanced, then there is only one copy.  But if there are up 
to 10 subscribers each in 4 offices, there are 40 instances of subscriber resources.  This makes 
running simulations very efficiently on parallel processors also very simple.  In fact, the modeler 
need not even think about that problem.  This is discussed in Chapter 16. 
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Figure 15-14.  Selection of Instance Names for RECEIVE_PBX_RESPONSE. 
 
 
 
INTERACTING WITH THE SIMULATION 
 

 In this particular simulation, the user can interact with the simulation while it is running.  
This can be done in a few ways.  One can click on the ICON button (in the left set of buttons in 
Figure 15-1).  This brings up a list of icons that are available to the simulation.  If a user selects a 
subscriber icon, it can be inserted into any of the offices provided there is room for more 
subscribers (not all are active).  When it is clicked down, a subscriber initialization process takes 
place to activate it as part of the running simulation.  It can then initiate and receive calls.  Thus, 
an analyst can watch what happens when more subscribers are added to an office.  Similarly, one 
can add or subtract trunk lines interactively and watch the results.  The ability to make changes 
interactively aids in the analysis of complex systems. 
 
 
DESIGNING AND TESTING COMPLEX SYSTEM ALGORITHMS 
 
 It is becoming almost impossible to design and test large systems that depend upon 
complex software algorithms without the aid of simulation.  Using VisiSoft, the algorithms 
written in VSE can be placed directly in GSS simulations.  Companies that use VisiSoft have the 
significant advantage of using GSS as a design tool for new algorithms and also a test tool for 
existing algorithms.  Creating test cases that repeat complex conditions is very difficult without 
the aid of simulation.  So when problems are encountered in the field, simulation can be used to 
determine the root causes, redesign fixes, and run further tests without creating live tests, 
generally a dramatic way to cut scarce personnel time and costs. 
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Chapter 16.  Very Large Scale Systems 
 
 
 
 This chapter describes cases that occur with large scale systems and complex software.  
In engineering, one learns to investigate the limiting cases, producing limiting factors that help 
one to determine the best technological approach to solving problems in design architecture and 
language.  In this chapter, we investigate extremely large software systems that stress many 
aspects of the software development and product upgrade process. 
 
 
SINGLE PROCESSOR SYSTEMS 
 

 In this section, we are looking at large scale software systems designed to run on a single 
processor.  Multi-Processor and Parallel processor systems are covered in following sections. 
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Motivation 
 

 The new paradigm described in this book was driven by the need to develop large scale 
simulations of communication and control systems, simulations that would have to be run very 
fast - on parallel processors under a single operating system.  As indicated in Chapter 5, this led 
to the “separation principle,” [55].  This approach allows one to track software module 
independence and automatically allocate processors to processes at run-time on a large parallel 
processor. 
 As we have shown in prior chapters, the separation principle also provides the basis for 
engineering drawings of software, with a one-to-one mapping from the drawings to the code, a 
true form of software architecture.  Prior to VisiSoft, software architecture did not exist, an 
observation that should now be apparent to the reader.  The analogy between current 
programming approaches, and architects in other fields trying to produce designs without 
drawings, should also be apparent. 
 
 
Current Pertinent Comparisons 
 
 Operating systems have always been difficult pieces of software to build, going back to 
the days of OS-360 and the collapse of the MULTICS project.  Time response requirements on 
speed, multiple tasking coupled with handling large numbers of events in real time, and 
managing large numbers of distributed databases is difficult enough.  But sheer size - Microsoft 
claims that Windows is up to 50 million lines of code - leads one to question the lack of an 
architecture.  Having 4000 programmers writing code presents even more questions. 
 
 It is pertinent to make a comparison of two companies in the Seattle, WA area.  Anyone 
who has been inside a hanger at Boeing where large aircraft are assembled has to be amazed at 
the size of the hangers and the complexity of the assembly and testing process.  But one had to 
be equally amazed at the size of the drawings wrapped around the walls of these hangers - 
multiple stories high - with rolling catwalks to review them.  Most everything is on computer 
terminals now.  But without these CAD systems and drawings, one could not begin to understand 
how it all fits together.  Now imagine taking the drawings away and having everything described 
in a language - as is done at Microsoft. 
 
 This is not an absurd analogy.  The Windows operating system happens to offer an 
extreme case.  But there are many systems with a few million lines of code.  Having used 
VisiSoft for years, one cannot envision controlling the architecture of a system with just 10,000 
lines of code without a good architecture and corresponding drawings. 
 
 After experiencing the development of large scale systems (more than a million lines of 
code) using VisiSoft, one learns that simply invoking an architecture by an experienced architect 
can cut the number of lines of code by whole numbers.  The combination of engineering 
drawings, high level languages, and large data structures and rule structures - that are controlled 
hierarchically and easy to follow - can increase productivity by an order of magnitude when 
upgrading and enhancing a large software product. 
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Managing Libraries Instead of Managing Code 
 
 Above 1,000,000 lines of code, management of dynamic distributed databases, fielding 
and scheduling real time events, and complex 2D and 3D graphical user interfaces translate into 
managing large numbers of libraries.  An example is managing dynamic lists.  If programmers 
are building different linked lists for different applications, they are likely being mismanaged.  In 
simulations and real time systems that move huge amounts of data, linked lists appear in many 
higher level modules.  In some cases, the same programmer may decide to tailor more than one 
of these for different functions, usually because they are “pressed for time” to get out the release.  
They don’t have time to build one that can be used three or four times. 
 
 Now multiply this by just 20 programmers and one may have  on the order of 50 linked 
lists, each being debugged and tested separately.  It is likely that this number could be reduced to 
three or four library modules that are bug free as well as extremely fast.  This requires a library 
management facility to ensure that everyone knows what is available, and that rebuilding one of 
these is unacceptable practice. 
 
 When building a large scale system, library development and management is critical.  
When building the next system, it is even more critical, since the next system is likely to be 
larger, but can be put together and tested faster given a huge set of reusable libraries. 
 
 Having engineering drawings of the software enforces the practice of using libraries.  
This is because an architect can specify libraries to be used by the coders, and can then check the 
module drawings to ensure no one is rebuilding an existing module - one that is just a tiny bit 
different than one on the shelf.  Most often, the tiny difference can be incorporated into an 
existing library without changing the way it works for the current users.  Then it is still the same 
library with a slightly new feature.  If it must be slightly different from the existing module from 
a user standpoint, the person responsible for the existing library module is the best person to 
copy it, rename it, modify it, and make it available as a new module.  It will likely be built and 
totally debugged in less than 10% of the time. 
 
 Libraries contain reusable modules that can be shared by huge numbers of programmers.  
Documenting library functions and how they are used is part of the library management function.  
The amount of time taken to organize, document, and distribute libraries is paid back in whole 
number multipliers, from the first time they are used. 
 
 
PARALLEL PROCESSING 
 

 Hardware designers have succeeded in producing parallel and distributed processor 
computers with theoretical speeds well into the teraflop range.  However, the practical use of 
these machines on all but some very special problems is extremely limited.  The inability to use 
this power is due to great difficulties encountered when trying to translate real world problems 
into software that makes effective use of highly parallel machines.  This has been described by 
numerous authors over many years, see for example [70], [8], and [67]. 
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COMMERCIAL MARKET REQUIREMENTS 
 

 In the commercial marketplace, speed benefits gained using a parallel computer must 
sufficiently outweigh the cost to develop and support the software.  If not, then real 
commercialization, based upon solid economics, will not occur.  These economic goals will be 
achieved if the following requirements can be met: 
 

1. Subject area experts who understand the problems to be solved must be able to describe 
them easily and directly to computers without concern for parallelism, or even prior 
knowledge of computer programming. 

 

2. The software must be generated automatically to take full effective advantage of the 
inherent parallelism of the problem on a Massively Parallel Processor (MPP). 

 
 These two requirements are tightly interrelated.  The subject area expert should not care 
whether the problem is being solved on a single processor machine, or one with hundreds of 
processors.  The run-time software must be generated to make effective use of the available 
parallelism of the host machine, adapting to changes in the environment, a very tedious but 
mechanical process. 
 
 

REQUIREMENT FOR SPECIAL PROGRAMMING SKILLS 
 

 Current approaches to solving problems on parallel processor machines have not, in 
general, overcome these two barriers.  Problem description for parallel - as opposed to single -
processing generally incurs a huge cost increase for all but a few special cases.  This is 
compounded by the fact that the problems requiring large processor power are themselves 
complex, and best understood by subject area experts. 
 
 For example, a communications engineer trying to design a specific set of algorithms, to 
implement a very complex set of protocol standards, has difficulty just describing his problem 
using graphic diagrams with plain English text.  To constrain him to describe his problem in an 
esoteric programming language is difficult.  To force him to learn the language of a system 
programmer, i.e., the operating system, is unlikely.  To further burden him to describe his 
problem so that it runs efficiently on a parallel computer makes the approach intractable. 
 
 One is then led to an approach that augments the engineering staff with parallel processor 
programmers who perform problem translation for the computer.  However, it is well accepted in 
most engineering departments that, when programmers are used to translate an engineer's 
problem to a computer, problem solution becomes a process whose length increases 
exponentially with problem complexity.  Finally, translation onto a parallel processing machine 
currently requires very special programming skills that are commensurably scarce and expensive. 
 

 This is why engineering departments invest heavily in Computer-Aided Design (CAD) 
tools that they interface with directly - on their own terms.  These CAD tools provide interfaces 
that are tailored to their problem and automatically generate highly efficient computer code.  We 
believe that this is the solution approach to be taken toward commercialization of parallel 
computing. 
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HARDWARE FIRST 
 

 Solutions to the parallel processing problem tend to skip over the software piece of the 
problem, going from application requirements to hardware architecture.  (The word architecture 
implies hardware in the parallel processing literature.  The words “software architecture” do not 
appear.)  Software is not much more than an afterthought relative to the size of the hardware 
design effort.  This approach, illustrated in Figure 16-1, is termed software bypass. 
 

APPLICATIONS SOFTWARE HARDWARE

 
 

Figure 16-1.  Software bypass - designing the hardware first. 
 

 
   Subject area experts who want to use parallel computers cannot simply enter their 
problem specifications into a piece of hardware.  They must first write the very complex 
software required to control parallel processor hardware.  Without knowledge of the special 
operating systems and languages for parallel computers, these experts typically turn to 
programmers to do the job.  Programmers see the chance to increase their value by learning how 
to be parallel programmers.  Their interest is in learning deeper specializations to broaden their 
higher-paying job opportunities.  This cycle of thinking is at odds with commercial market 
requirements. 
 
 
USE OF ABSTRACT REPRESENTATIONS 
 
 Certainly there are many uses of abstractions when building models of highly complex 
systems and their environments.  One could not perform simulation without abstraction of reality 
into models that run on a computer.  The General Simulation System (GSS), [45], provides for 
ease of abstraction where complex processes that may be spread across all of the entities in a 
system are represented in a single list.  GSS contains a library of high speed list management 
facilities that eliminate the need for the modeler to develop linked list software, a basic 
abstraction in modeling.  However, one must consider the trade offs between time and cost of 
development as well as speed and memory utilization at run-time. 
 
 With today's parallel processors, memory utilization is not an issue.  It is difficult to 
conceive of a problem where the amount of memory on a large parallel processor computer 
presents a limitation.  Using conventional techniques for parallel processing, the trade is usually 
between development time and running time, given resource constraints in dollars.  This leads to 
decisions on how models are represented. 
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 The choice is usually between the way one deals with abstractions, and typically ends up 
with substantial hand tailoring of code to the parallel processing environment.  This implies a 
huge effort in development, resulting in significant time and cost, to use parallel processors.  
More importantly, the abstractions required for parallel processing make it difficult for a modeler 
with subject area expertise to understand the code. 
 
 
THE INHERENT NATURE OF SYSTEM DECOMPOSITION 
 
 As systems are designed to be more user-friendly and adapt to their environment with 
greater effectiveness, they become more complex.  To deal with a high level of complexity, 
designers must partition systems into modules that operate independently, minimizing the shared 
interfaces.  If module interfaces are designed for maximum isolation, they incur a minimum 
transfer of information.  This maximizes the ratio of internal processing to interface processing, 
which in turn maximizes their measure of independence.  This is the type of software 
architecture required for effective use of parallel processing.  Given a high degree of module 
independence and inherent parallelism, many applications have still failed to achieve a high 
degree of efficiency in parallel processor utilization.  This is because current software 
approaches cloud this level of architecture. 
 
 The two most prominent parallel processing companies in the early 1990s, Kendall 
Square Research (KSR) and Thinking Machines Corp. (TMC), failed due to lack of good 
software environments for both developing and running applications.  There are a number of 
reasons that no software environment has yet to crack the problem.  We believe that the two most 
important reasons are: 
 

 (1) Decomposition of a large software system is an architectural problem, and the 
architecture of a system of independent modules is best described graphically (like 
hardware) - not using a language; 

 

 (2) Software architectural design methodology and supporting technology have not been 
tied to the requirements of efficient scheduling and assignment of processors to processes 
during run time. 

 
 After one gains a good understanding of the software side of the parallel processing 
problem, it becomes clear that the language environment must be designed to support the 
architecture environment as well as the requirements for understandability and independence of 
the detailed implementation.  This has major implications on scoping the size and controlling the 
hierarchies of independent modules.  At least as important, the architecture environment must 
serve to optimize the scheduling and assignment of processors to processes in the run-time 
environment.  The VisiSoft solution solves both problems. 
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PERTINENT CONSIDERATIONS 
 

Future survival depends upon the speed with which one can deal with increasing complexity. 
 
 
THE IMPACT OF SPEED AND COMPLEXITY ON SURVIVAL  
 
 The things we take for granted today would have boggled the minds of people just 100 
years ago.  Looking back 1000 or 10,000 years is awesome.  Which way would any of us prefer 
to live?  Who is better prepared to survive?  The answer to the first question is generally obvious.  
The answer to the second requires more consideration. 
 
 The U.S. is learning that there are many faces of survival.  The days of firearm versus 
bow and arrow are long past.  Yet a high speed aircraft with smart missiles may not help 
preserve our own infrastructure when attacked by terrorists.  The approach to survival is taking 
on a different meaning than historic war.  The enemy situation is becoming much more complex.  
Accurately predicting what an adversary may do depends upon how much time he has to think, 
communicate, and take action.  The problem of defending the U.S. is being redefined in light of 
the increasing need to deal with speed and complexity as we endeavor to survive. 
 
 
Dealing With Increasing Complexity 
 
 Anyone familiar with the history of mathematics knows the motivations leading to the 
progression of numbers.  It started with “whole numbers” or integers, and progressed to signed 
integers, then to fractions and rational numbers.  It continued to real numbers, imaginary and 
complex numbers.  Each step covered a more complex realm - not by imagination, but by 
necessity. 
 
 There is more to this progression than just the increase in complexity.  Each of these 
extensions is still referred to as a number.  And each encompasses the prior.  Real numbers are a 
subset of complex numbers.  More importantly, many of the laws and transformations still apply 
as we move up the scale of complexity.  Their interpretations are simply extended to be more 
general.  This allows us to deal with jumps in complexity. 
 
 
Selecting The Most Convenient Coordinate System 
 
 As we continue to move up the food chain of numbers and mathematics, we can group 
numbers into vectors.  The position of a body in space can be described by three numbers 
depending upon the coordinate system we choose.  And we learn in higher levels of mathematics 
and physics, particularly in electro-magnetic theory and partial differential equations, that 
problems can be solved more easily if we select the right coordinate system.  For example, when 
a particle moves in a spherical orbit, it is much easier to describe its motion in spherical 
coordinates.  Cartesian coordinates will work, but it takes longer to solve the problem. 
 



Software Survival             Page  16  -   8   

 Selection of the most convenient coordinate system is typically taught under the topic of 
separation of variables.  One learns that the separation principle can be used if the variables 
form an independent set.  The property of independence can be verified using specified tests.  
The concept of choosing the best coordinate system and the property of independence are the 
important principles one can apply when dealing with complexity in a constrained time 
environment.  We will make use of these concepts. 
 

 Einstein introduced the use of tensors to deal with the increasing dimensions of time, 
velocity, and acceleration.  Control system engineers developed the state vector to account for 
the many degrees of freedom required to characterize complex dynamic systems.  The state 
space framework has been shown to be the most general representation of a dynamic system, see 
[4], and [39].  Providing a framework for problem description was not the only benefit of the 
state space approach.  It also afforded a framework for developing faster solutions to problems 
that could run for days on the computers of the time. 
 
 
FRAMEWORKS FOR REPRESENTING COMPLEX DYNAMIC SYSTEMS 
 

 In a competitive time-constrained environment, time (speed) is the most important factor.  
If two sides develop the same capability, the one that gets there first is likely to be the one that 
wins.  When building tools to help people solve design problems or make complex planning 
decisions, time enters into the picture in at least two major ways. 
 

• Development Time - the time it takes to develop the tool 
 

• Solution Time - the time it takes to get a useful solution from the tool 
 
 One can imagine a great tool for solving a problem.  But one must answer the question - 
can we get it built in time to accomplish our goal?  Or, more importantly, will it produce valid 
answers fast enough if we get it built?  Of course cost and risk are also major factors.  However, 
time is usually of the essence. 
 
 
Automating The Representation Process 
 

 As we have indicated in the early chapters, electronic circuit designers developed 
automated tools for solving complex systems of nonlinear differential equations required to 
represent digital waveforms in the time domain.  These Computer-Aided Design (CAD) tools 
allowed engineers to describe large networks topologically and write FORTRAN-like equations 
describing nonlinear functions.  Programming skills became unnecessary.  The code needed to 
generate and run simulations of very large networks was generated automatically.  This afforded 
a huge leap in design productivity.  It enabled the design of huge complex networks leading to 
integrated circuit design. 
 

 CAD system development became a business for many, including the principals of VSI.  
Two systems were developed, one for continuous system modeling (e.g., for digital circuit 
design), and one using a discrete-time framework (for the design of signal processing systems).  
The second used sampled data principles to reduce computation time.  An underlying state space 
framework supported both products. 
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 For large networks, the number of state variables runs to thousands.  Solving worst case 
design problems involves multiple optimization runs of thousands of simulations.  Each 
simulation has to solve the optimal control problem, involving thousands of nonlinear 
differential equations.  Speed and accuracy are the driving forces in designing these systems.  If 
it takes a computer days to get a design, only one or two test points are produced in a week - not 
very attractive. 
 
 
Capitalizing Upon General Principals 
 
 State space is used because it provides the most convenient framework for solving any 
type of dynamic problem.  The general form of the solution holds for any set of independent state 
variables.  This allows for the development of generalized methods, e.g., optimal sparse matrix 
inversion and describing functions, to solve nonlinear problems fast while ensuring algorithm 
convergence.  The end result is to solve huge problems in minutes.  However, this approach 
requires formulating problems in a mathematical framework. 
 
 
Facing Totally New Problems 
 
 Models built using VSI products prior to 1982 were formulated mathematically, i.e., 
using vectors, matrices, and systems of equations.  This approach allowed the solution to be 
derived automatically and solved very fast.  By 1982, this approach was recognized to have 
severe limitations when modeling communications or control systems involving algorithmic 
decision processes.  Clients wanted to describe their problem using more general state concepts, 
and be able to write conditional statements within the system of equations.  It was determined 
that these types of decision processes could be handled using the discrete event approach 
originally developed by Gordon in 1961, see [41] and [42]. 
 
 
A MORE GENERALIZED PROBLEM FORMULATION 
 

 In 1982, discrete event simulation was analyzed.  The motivation was high because of the 
requirement for writing decision algorithms into the models.  Users wanted to break up systems 
of equations and embed English-like conditions and rules, e.g., 
 

IF THE MESSAGE_TYPE IS CONTROL, THEN … , 
ELSE IF MESSAGE_TYPE IS DATA, THEN …  . 

 
 Additionally, there were complaints about the inability of existing discrete event 
simulation products, e.g., GPSS, SIMSCRIPT, and SLAM, to solve our client’s problems.  The 
major complaints were lack of scalability (inability to deal with increasing complexity) and 
excessive simulation run-times.  This led to an investigation of the deficiencies of the other 
products in the market, as well as an analysis of how to formulate the basis for general solution. 
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   At first it appeared difficult to derive a mathematical framework to support this new 
requirement.  This caused concern about the ability to justify design decisions without a formal 
framework.  We appeared to be leaving the world of mathematics.  Time steps were determined 
by the modeler in terms of scheduled events.  This led to the development of a state space 
definition of discrete event systems.  The concept of a generalized state vector and state space 
definition of a GSS model was described in Chapter 5.  The differences and likenesses of 
mathematical and rule oriented formulations are compared in Simulation Of Complex Systems, 
[27]. 
 
 
Facing The Speed Issue 
 

 Because of the excessive running times of competing products (some critical simulations 
were taking 5 to 7 days to run a 2 hour scenario), it was determined that if a new product was 
developed, it must be able to run on a parallel machine.  The experience of the VSI principals in 
computer design, parallel processing, and the knowledge of how chips were evolving to support 
fast computing methods led to an approach that would take advantage of future hardware 
technology. 
 

 As indicated in earlier chapters, parallel processing imposes the requirement that two or 
more processes must run concurrently on separate processors.  This implies that concurrent 
processes must be independent.  The property of independence implies that the processes share 
no data.  This led to the decision to separate data from instructions so the independence property 
could be tracked.  As previously described, the design of GSS was launched in 1982.  It called 
for a connectivity matrix to determine what processes shared what data.  Then when allocating 
processes to processors, the connectivity matrix could be used to determine if a process can run 
concurrently with those already running. 
 
 
Independent Instanced Models - Modeling Made Easy 
 

 The separation of data from instructions led to the ability to produce engineering 
drawings of models, where the lines connecting models determine the independence or lack of it.  
This allows an architect to visually inspect the drawings and determine the independence of a 
model relative to other models.  These concepts have led to the independent instanced model as 
part of the GSS environment.  This allows a modeler to build a single model along physical lines, 
just like building a single piece of equipment.  This model can then be instanced many times, 
automatically, in a simulation.  This paradigm makes it easier to develop models on a large 
parallel processor than by using current methods on a single processor.  This capability has been 
implemented as part of prior efforts. 
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OVERVIEW OF THE USER INTERFACE TECHNOLOGY 
 
 When the GSS environment for discrete event simulation was designed, the two major 
issues addressed were: (1) the difficulty of building valid models; and (2) the time to run a 
realistic scenario.  The difficulty in building valid models was due to the complexity of the 
software.  Run time may have been reduced by parallel processing, but the investment was huge 
and risky.  To address these issues, the CAD approach was developed that led directly to the 
effective use of highly parallel processors.  We note that software applications are considered 
easier to implement on a parallel computer than discrete event simulations because in the 
simulation environment, one must: (1) synchronize each process with the main simulation clock; 
and (2) ensure synchronized data coherency to meet validity requirements.  From this standpoint, 
the software problem is a subset of the simulation problem. 
 
 
Separation Of Data From Instructions For Efficient Processor Allocation 
 
 In software, separating data from instructions violates the OOP rules.  In hardware 
design, this paradigm is the norm as described in Chapter 5.  Data and instructions are separately 
stored and managed on today’s chips.  This is an essential software paradigm for effective use of 
parallel computers, where one has to allocate processes to processors efficiently.  This implies 
knowing which processes can run concurrently, which implies that they must be independent.  
Independence is effectively determined by whether or not they share data.  If allocation is to be 
done automatically, the allocation manager must have the information on who shares what data.  
The technology described here is built upon this concept.  The most significant paradigm shift in 
this development environment is the separation of data from instructions. 
 
 The resulting properties of the technology described here provide enormous benefits for 
parallel processing software design.  First is the ability to represent software graphically, with a 
one-to-one mapping from the drawing to the code.  Second is that software architectures can be 
designed and reviewed from an engineering standpoint to determine module independence.  
Third is the resulting connectivity map of what processes share what data.  Fourth is what 
processes reside inside what modules.  If modules are independent, then processes within those 
modules are best migrated to the same processor.  This information is stored in our run-time as 
well as development databases.  It is this information that provides our ability to optimize the 
allocation of processes to processors to maximize run-time efficiency.  These benefits are best 
described by an example. 
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A Large Simulation Example 
 

 
 We will use the Multi-Switch Simulation (MSS), a large scale communications 
simulation to describe our CAD facilities.  MSS contains nine modules, including circuit, packet, 
and ATM switch modules.  The ATM switch module, shown in Figure 16-2 along with the 
ATM_LINK module, is a hierarchical module containing seven submodules. 
 
 
 

AAL

ATMSWICH  As of 8/8/02

ATM_SWITCH
ATM_SUBSCRIBER_

INTERFACE

ATM_SWITCHING

ATM_
TRANSCEIVER

ATM_LINK

ATM_
RECEIVER

ATM_
TRANSMITTER

CONVERGENCE_
SUBLAYER

SEG_&_REAS_ 
SUBLAYER

ATM_
NETWORK_

LAYER

VIRTUAL_CHANNEL_SWITCH

VIRTUAL_PATH_SWITCH

ATM_
SWITCH_
CONTROL PKT_AAL

 
 
 

Figure 16-2.  ATM_SWITCH and ATM_LINK modules. 
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   The AAL submodule is also hierarchical, containing the CONVERGENCE_ 
SUBLAYER and SEG_&_REAS_SUBLAYER modules.  The SEG_&_REAS_ SUBLAYER 
module, shown in Figure 16-3, is also hierarchical, containing the SR_PROCESSOR and 
SR_QUEUE modules.  These are each elementary modules because they contain primitive 
elements, namely resources (ovals) and processes (rectangles). 
 
 Resources are composed of hierarchical data structures.  An example is shown in Figure 
16-4.  Resources are used to describe the state of a module at any instant of time.  These are 
shared by the processes that have connect lines drawn to them.  Processes are composed of 
hierarchical rule structures, e.g., SR_PROCESSOR shown in Figure 16-5 (it shows 7 rules). 
 
 Processes are used to transform modules from state to state.  These processes are not 
tasks as in a “multi-tasking” operating system (and therefore not UNIX “processes.”)  In GSS, 
processes that are scheduled are parallel threads.  A simulation can run as a task (a UNIX 
process).  VSE and GSS also provide for intertask control and communications at the task level 
so multiple simulations can run and interact as separate tasks. 
 
 We have taken significant departures from existing software concepts to automatically 
generate code to use parallel processor resources effectively, without concern by the user.  The 
first departure is separation of architecture from language.  Design of module architectures is 
done in the architecture environment of VSE and GSS, not the language environment.  In the 
architecture environment, the user determines graphically what resources have access to what 
processes as shown in the drawing in Figure 16-3.  To do this requires the second departure, 
namely the separation of data (resources) from instructions (processes).  Process independence 
can then be determined simply by looking at the lines interconnecting processes and resources 
across modules in the architecture, i.e., module independence is determined by the architectural 
drawing. 
 
 Discrete event simulation has provided us with a view of software design and parallel 
computing that is not afforded in other technologies.  First, GSS processes are scheduled - refer 
to Figure 16-5 where SR_PROCESSOR is scheduling itself in the first rule.  When the MSS 
simulation runs, many thousands of processes are in the schedule at any instant of time.  Of 
these, more than half can be scheduled to run at the same time, e.g., the current time.  These are 
candidates for running concurrently.  Second, we distinguish between software abstractions (that 
prevent concurrent processing) and direct representations of the real-world instructions that can 
run concurrently. 
 
 For example, the SR_PROCESSOR module makes use of a number of utilities 
(connections between a process and a called utility are indicated by circled letters and numbers).  
These utilities (green borders), e.g., SR_QUEUE, help to save memory by having a common set 
of instructions serve each instance of the switch.  Some of the data are reused also, but this is 
generally small compared to the data stored by instance - data that can reside separately with 
each instance.  When memory was expensive, this small memory savings was justified.  When 
running on a parallel processor, with a large memory model, this major bottleneck is unjustified 
and all the circled connections can be removed.  This renders the module highly independent and 
reduces complexity at the same time! 
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Figure 16-3.  SEG_&_REAS_SUBLAYER module. 
 
 
 

 

RESOURCE NAME:  MESSAGE FORMATS 
 
 

STANDARD MESSAGE 
 1 SYNC CODE     CHARACTER 5 
   ALIAS  VALID CODE VALUE '10101', 
       '01010' 
 1 TYPE      STATUS FORMAT A 
         FORMAT B 
 1 CONTENT     CHARACTER 46 
 
FORMAT A   REDEFINES STANDARD MESSAGE 
 1 PAD      CHARACTER 13 
 1 HEADER A 
  2 MESSAGE PRIORITY   STATUS FLASH 
         PRIORITY 
         ROUTINE 
  2 ORIGIN     INDEX 
  2 DESTINATION    INDEX 
        ALIAS  BROADCAST  VALUE 0 
 1 BODY A 
  2 BODY LENGTH    INTEGER 
 1 TRAILER A 
  2 MESSAGE NUMBER   INTEGER 
  2 TIME SENT    REAL 
  2 TIME RECEIVED    REAL 
  2 ACKNOWLEDGMENT   STATUS RECEIVED 
         NOT RECEIVED 
  2 LAST SYMBOL    CHARACTER 2 
       ALIAS  TERMINATOR   VALUE '\\', '//', '<<','>>' 
 
FORMAT B  REDEFINES STANDARD_MESSAGE 
 1 PAD      CHARACTER 13 
 1 HEADER B 
  2 SOURCE     INDEX 
  2 SINK     INDEX 
 1 BODY B 
  2 CONTENTS     CHARACTER 42 

 

 
Figure 16-4.  A resource - a hierarchical data structure. 
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PROCESS:  SR_PROCESSOR 
 
RESOURCES: SR_TO_CS_PACKET    INSTANCES: NODE 
   SR_PARAMETERS 
   SR_QUEUE_INTF 
   SR_TO_SWITCH_PACKET 

 
 
PKT_SR_PROCESSOR 
    EXECUTE GET_SR_MESSAGE 
    EXECUTE PROCESS_SR_MESSAGE 
    IF QUEUE_STATE IS NOT EMPTY 
        SCHEDULE SR_PROCESSOR 
          IN PROCESSING_TIME MICROSECONDS USING NODE 
    ELSE SET PROCESSOR_STATUS(NODE) TO IDLE. 
 
GET_SR_MESSAGE 
    SET  SR_QUEUE_INTF REQUEST TO DEPART 
    CALL SR_QUEUE USING NODE 
 
PROCESS_SR_MESSAGE 
    IF PACKET_TYPE IS A CELL 
        EXECUTE PROCESS_CELL 
    ELSE IF PACKET_TYPE IS A REQUEST 
        EXECUTE PROCESS_REQUEST 
    ELSE EXECUTE INVALID_PACKET_TYPE. 
 
PROCESS_CELL 
    MOVE SR_QUEUE_INTF MESSAGE TO SR_TO_SWITCH_PACKET 
    IF SR_TO_SWITCH_PACKET DESTINATION IS EQUAL TO NODE 
        EXECUTE CHECK_PAYLOAD_DEST 
    ELSE IF SR_TO_SWITCH_PACKET SOURCE IS EQUAL TO NODE 
        EXECUTE CHECK_PAYLOAD_SOURCE             
    ELSE EXECUTE INCORRECT_NODE. 
 
CHECK_PAYLOAD_SOURCE 
    IF PAYLOAD_TYPE IS USER_VOICE 
        EXECUTE PROCESS_CELL_VOICE_SRC 
    ELSE IF PAYLOAD_TYPE IS USER_DATA 
        EXECUTE PROCESS_CELL_DATA_SRC. 
 
CHECK_PAYLOAD_DEST 
    IF PAYLOAD_TYPE IS USR_VOICE 
        EXECUTE PROCESS_CELL_VOICE_DEST 
    ELSE IF PAYLOAD_TYPE IS USER_DATA 
        EXECUTE PROCESS_CELL_DATA_DEST. 
 
PROCESS_CELL_DATA_SRC 
    EXECUTE GET_MESSAGE_INFO_CELL 
    INCREMENT MESSAGE CELLS_TRANSMITTED 
    EXECUTE UPDATE_MESSAGE_INFO 
    IF MESSAGE CELLS_TRANSMITTED IS EQUAL TO MESSAGE CELLS_TO_TRANSMIT 
        EXECUTE GET_NEXT_MESSAGE. 
    CALL ENTER_USER_REQ_IN_VC_Q USING NODE 
 
 
    ...   (This process is incomplete - 2 additional pages are not shown!) 

 

 
Figure 16-5.  A process - a hierarchical set of rules. 



Software Survival             Page  16  -   16   

 To insure independence of modules, a set of architectural design rules has been 
developed that can be enforced automatically as the designer builds modules graphically.  This 
involves viewing a module as an N-port module as used in electronic hardware design.  By 
limiting the number of lines (wires) at a port to two, the independence of modules is ensured.  
Note that we have not considered any aspects of coding, which in VSE or GSS is confined to the 
language environment.  We have only analyzed the module architecture - graphically!  These 
design rules assure ease of module understandability and independence, and therefore real reuse.  
They are the major reasons we have been able to build and validate the world’s largest 
simulations at very low cost.  This same technology is ideally suited to make effective use of 
highly scalable parallel processor computers. 
 
 Another departure from typical software is the integrated management environment of 
VSE and GSS that completely tracks the architecture behind the scenes and contains the 
databases to determine both spatial and temporal independence at run-time.  Modules are tracked 
through all of the hierarchical levels needed by the designer to control design complexity.  Every 
resource and process is tracked relative to what processes have access to what resources within 
multiple module instances.  This database can be used to adaptively manage the allocation of 
parallel processor resources during run-time based upon knowledge of module instance 
independence at any level in the hierarchy.  Load balancing can be achieved concurrently 
through selected instance migration.  This critical information is not available anywhere else! 
 
 We will now relate the number of module instances to opportunities for parallelism.  As 
the top level modules, e.g., a switch, take on higher degrees of complexity, they become 
significant opportunities for highly efficient parallel processing.  If the switch is modeled along 
physical lines, its physical counterpart operates concurrently with its neighbors.  Therefore, 
independent module instances in a simulation can also run concurrently in a parallel processing 
environment.  Such instances are not limited to simulation, but exist frequently in real-time 
control and communication systems. 
 
 Based upon this concept, our hypothesis is as follows: As the number of instances of a 
complex independent module increases, the number of parallel processors that can be used 
effectively increases proportionately, just due to the independent module instances.  Similar 
opportunities for effective use of processors can also be obtained within a top level module 
instance, down to the process level.  This is because of the hierarchical design and resulting 
scope of a VSE or GSS process. 
 
 For example, the ATM_TRANSCEIVER within the ATM_SWITCH in Figure 16-2 can 
have 20 instances (one for each port), all tied to the same instance of a switch.  A scenario of 100 
switch instances can invoke a total of 2000 ATM_TRANSCEIVERs.  We can envision many 
instances of subscribers as well as other packet and circuit switches running concurrently, 
interfacing with each other through links or gateways.  Each of these instances can run 
concurrently since almost all of the processes and resources are interior to the instance and 
therefore independent of the other instances. 
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Quantifying The Importance Of Software Architecture. 
 

 To better understand this typical architectural phenomenon, consider the modules in 
Figure 16-6.  
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Figure 16-6.  Independent instanced modules connected by an interface. 
 
 The top level modules in Figure 16-6 are drawn alike for simplicity, but in fact may be 
different types or instances of the same type.  As an example, we will consider an MSS 
simulation with 100 circuit switches, 50 packet switches, and 50 ATM switches.  Consider that 
each instance of each switch is part of a single module along with its corresponding subscriber 
submodule instance that generates and receives voice calls and data messages and files, and its 
instrumentation submodule that takes measures of traffic.  These large submodules are the largest 
part of each module.  A link interface submodule also exists connecting each top level module.  
Except for the two processes connected from each module to the interface, all other processes in 
each module are independent of those in any other module, i.e., they share no other resources 
between modules.  This is done by design - of the software architecture. 
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OVERVIEW OF THE RUN-TIME TECHNOLOGY 
 

 Significant work has been done by VSI on prior projects toward development of the 
required run-time technology.  This work covers the use of the module architecture knowledge 
described above as well as knowledge of the independence of individual processes at the module 
boundaries to determine what processes can run concurrently.  This work includes development 
of the protocols required to ensure data coherency of resources shared across module boundaries 
and used by processes in different processors.  It includes the synchronization of scheduled 
processes running on separate processors in a simulation.  It provides for controlled variations in 
synchronization that ensure validity of results of a simulation - something not provided by other 
approaches, e.g., the Time-Warped Operating System, and its derivatives (e.g., SPEEDES).  It 
provides for optimal ordering and scheduling of p-threads. 
 

 Figure 16-7 below provides a top level view of the design for the VSE/GSS run-time 
environment for an MPP system.  In addition to the Process Scheduler, there is a Processor 
Allocator to allocate processes scheduled at the current time (or within a pre-defined ΔTmax in a 
simulation) to the available processors.  This design uses standard OS level calls to assign 
parallel threads (p-threads) to processors.  This provides the ability to allocate specific processes 
to specific processors, including the ability to reallocate processes to processors for dynamic load 
balancing if necessary. 
 

PROCESSOR
ALLOCATOR

PROCESS
SCHEDULER

PROCESS_1

PROCESS_2

PROCESS_N

TASK or SIMULATION

VSE / GSS  RUN-TIME ENVIRONMENT

RUNTIME  8/12/02

OPERATING
SYSTEM

 
 

Figure 16-7.  Connection between the VSE process scheduler and the processor allocator. 
 

 
 There are additional mechanics of this environment to be characterized, e.g., the nature of 
the dynamic changes to the schedule versus the state at time T.  This affects the algorithm design 
for optimal ordering in minimal time.  Instanced modules create special submatrices of the 
connectivity matrix that are independent.  These become candidates for quasi-independent queue 
management, potentially in separate processors.  VSI’s experience in discrete event simulation 
for the past 20 years provides significant knowledge of solutions for these types of problems.  In 
addition, processor load balancing must be considered in more detail, but this has been the 
subject of much prior research, both at VSI and elsewhere.  Finally, marrying this new 
technology to hardware is an architectural design issue.  VSI has worked with many hardware 
vendors in the past, and is prepared to work with more in the future. 
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Summarizing The Importance Of The Software Environment 
 

 Given applications with a high degree of inherent parallelism and very efficient parallel 
computers, their effective use comes down to three major factors.  First is ensuring that full 
advantage can be taken of the inherent application parallelism - a software design problem.  
Second is balancing the load - a run-time software problem.  By separating data from instructions 
and using the visual development environment that PSI has already developed, the software 
architectural knowledge exists to do both well.  The third and most important factor is making it 
easy for the subject area experts to describe their problem, without having to twist it into a 
special computer language.  VSI’s success in CAD tools for building very complex discrete 
event simulations and software tools has already demonstrated the ease with which this is done.  
This has built confidence in the ability to bring large scale parallel processing power into the 
mainstream of computing via ease of use - the winning “WinTel” approach. 
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Chapter 17.  MANAGING SOFTWARE LIFE CYCLES 
 

 
 
 This chapter addresses the software life cycle management problem from a perspective of 
the future software industry, and how competing companies must manage in providing both 
tailored systems and software packages to their customers.  We consider both cases as producing 
products that require support for new releases.   
 

 There are many texts and papers on the subject of software management.  They generally 
describe the life cycle in the modern context, as we have in Chapter 5, implying a continuing 
cycle or incremental approach (an early version was prescribed in 1984, [24]).  They also 
provide ample guidance as well as policies, procedures and standards.  We will cover neither 
step-by-step management methods nor equivalent details here.  Instead, we indicate the types of 
approaches one must consider when managing a software product in a rapidly changing 
competitive environment, and how one can adapt management approaches to the new technology 
paradigm presented here. 
 
 
BOUNDING THE ISSUES 
 

 Depending upon where one sits in an organization, there will be a multiplicity of views of 
the problem of managing software life cycles.  One may be involved in an in-house project for a 
small system that will live a relatively short life and require just a few programmers.  
Alternatively, one may be a senior executive in a large software company considering an 
investment involving hundreds of people to develop and support a new product to be sold 
internationally.  Clearly, there are a large number of project sizes in between these two extremes.  
This chapter is aimed at the mid to upper part of this scale and beyond. 
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Quality Versus Productivity 
 
 The Capability Maturity Model (CMM) of Carnegie Mellon’s Software Engineering 
Institute (SEI) is aimed at improving software quality, particularly in the eyes of U.S. 
Government buyers, see [85].  It is known that this approach may cause productivity to suffer as 
one works to increase quality as measured by the CMM.  This is in contrast with the highly 
acclaimed and proven quality control approaches as described by well known experts, e.g., 
W. Edwards Deming, see [34], and Joeseph M. Juran, see [54]. 
 
 Although the SEI-CMM approach claims to be compatible with the Deming/Juran 
approaches, it is basically different.  If one follows the Deming/Juran appoach, productivity and 
quality should rise together.  Also, in the Deming/Juran  view, quality does not emanate from 
management direction or inspection; it comes from design.  To do a proper design requires many 
of the same functions, but they are driven from a different direction, one that fosters productivity 
improvement.  For another view on the advantages and shortfalls of CMM, the reader is referred 
to Bach, [6]. 
 
 Our objective is to improve productivity through technology innovation while 
maintaining - if not improving - quality.  Our definition of quality is represented in [23] and [24].  
A compatible definition of productivity is provided in [1].  More specifically, by using the new 
technology described in prior chapters, we have witnessed great reductions in the required 
intensity of management oversight as well as in the density of programmer activity to achieve 
similar if not better quality outcomes.  This has led to much higher measures of relative 
productivity. 
 
 
Management Versus Technology 
 
 In a rapidly changing competitive environment, management’s most important task is to 
instill the drive for innovation, to improve the quality-productivity combination.  When dealing 
with innovation to garner real improvements, managers must make cautious use of conventional 
wisdom.  As stated by Christensen, [29], this may imply not listening to one’s big customers.  
This is because innovation changes the framework for measuring what’s best. 
 
 A good example of this phenomenon relates back to software companies that specialized 
in accounting packages in the early 1980s.  These companies typically worked with their 
customers in an attempt to come up with generalized packaged systems for accountants to 
automate their bookkeeping.  Then a little software company with no such clients - and hardly 
any management - came up with a “spreadsheet” (VisiCalc).  It wasn’t long before accountants 
started building their own spreadsheets, and most of the software companies building accounting 
packages went out of that business. 
 
 Good management is hard requirement.  But a great new technology can make an order 
of magnitude of difference - independent of management.  One could argue that really good 
management is always looking at new technologies, particularly those being developed by 
others. 
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Programming Language Versus Software Environment 
 

 Programmers think in terms of languages.  Even Visual Studio and Visual C++ are 
language oriented.  This is because, with the exception of VisiSoft, there is no way to build 
architectures for software.  Imagine architects of large buildings being told that their use of 
engineering drawings is a legacy approach, and is best replaced by writing in a language, e.g., 
XML, that can draw figures.  This is effectively what we have been doing in software.  Having 
used VisiSoft to build large software systems, this is not an absurd comparison.  If one has not 
used this new technology, it is hard to relate to.  But having used it, it is hard to imagine not 
using engineering drawings, and instead, hiding the architecture in code. 
 

 But there is much more to a software environment than the drawings and the code.  One 
must keep track of change requests, patches, changed modules headed for the next release, 
changed modules that did not make the release, test drivers, regression test sets, etc.  More 
importantly, there is a large body of technology that can be applied to all aspects of the software 
life cycle.  The more we can integrate these facilities into an overall environment, the more 
teamwork becomes important, and the more incentive there is to make that environment better 
for everyone.  This is a management challenge that will be met by good managers. 
 
 
Hierarchical Software Teams 
 

 In 1972, Fred Baker wrote his famous paper on Chief Programmer Teams, [5].  Since 
Baker worked on the OS-360 project, it became clear that many authors citing his work did not 
understand the context.  One of his points was the limit on the span of control of a single 
manager.  On a project like OS-360, there were a large number of teams, organized 
hierarchically.  These teams were of different types, depending upon what they were doing.  
Some teams did not actually build software; they built documentation or performed testing.  
What Baker emphasized were the different skill sets needed to support different teams, and the 
manageable sizes of the skilled elements. 
 

 Borrowing again from the military, thousands of people must be organized to contribute 
to the cause.  One person cannot manage 1000 people.  Knowing this, Baker focused on the 
different types of organizations needed at the bottom layer and the commonality of skill sets 
required to fulfill the needs of particular types of teams. 
 
 
Building Large Software Organizations That Are Effective 
 

 To control a large software organization, one must first understand the overall software 
architecture, and how it must be supported with documentation and testing.  This leads to an 
organizational architecture that gets mapped into the software architecture, with specific 
functions to be performed by each organizational module.  This implies that one must have a 
software architecture before one can map out the details of an organization to support it.  When 
building large commercial buildings, the architects are hired first.  Once they have developed the 
drawings and specifications, the job is put out for bid.  General contractors pour over the 
drawings and specifications, and map their subcontractors into the architecture.  Why can’t we 
do that with software?  (You should have guessed - we do not design architectures!) 
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 In a large organization, higher level managers must deal with lower level managers.  
Flattening the organization is not nearly as important as having managers who understand what’s 
needed - and what is really being done - below them.  If managers do not understand what their 
subordinates should be doing, and what they are really doing, they cannot manage effectively.  
This gets worse as an organization is flattened.  This points to a major problem in the software 
industry - finding managers that really understand what is needed and what’s going on below.  
This is because programmers generally like to work on their own and do not aspire to be 
managers.  This is a significant problem to be reckoned with, but one that can be solved through 
selection and training.  This is another management challenge that will be met by good 
managers. 
 
 
Policies, Procedures And Standards 
 
 American football teams use plays.  Every player must learn the playbook.  On the field, 
the quarterback calls the plays, and everyone carries out their assignments from the playbook.  If 
they don’t, everyone knows who screwed up.  In the military, the generals layout the strategy, 
and hand it down to the colonels who hand it down to the majors, captains, etc., until it gets 
down to the sergeants who tell the individual soldiers what to do.  When the starting gun is fired, 
everyone moves out.  Neither the football field nor the battlefield has time for bureaucratic 
decisions.  People must make fast decisions using the playbook in a chaotic environment.  
Programmers generally have much more time.  But we still need policies, procedures, and 
standards, and they must be easily understood and followed.  In all cases, managers must have 
control of the unfolding plan.  If someone does not want to play by the book, they must be 
replaced - immediately!  (And we should not have to go through a bureaucracy to remove 
someone from the team.) 
 
 There are many examples of policies, procedures and standards available for software.  
To highlight the most important factors relative to the new technology paradigm, we offer the 
following.  In general, functional specifications must be produced first.  Depending upon the 
application, this should include a well written user’s manual.  The functional specifications 
should be followed by a set of architectural drawings and more detailed software specifications.  
If R&D efforts are needed, e.g., to see if a particular module can be written to meet a stringent 
time requirement, then one may write and test some code in the laboratory.  Otherwise, the 
production programmers are not needed until the functional specifications, software architecture 
and corresponding specifications, e.g., module interfaces, are completed. 
 
 Testing of hierarchical modules requires procedures and standards that serve multiple 
layers in the hierarchy.  These must be mapped into the overall software architecture.  Testing is 
an area where procedures and standards must be applied from a practical standpoint.  One failure 
at the bottom of the hierarchy can cause many failures up the chain (as everyone looks for a 
different bug).  Building and managing regression tests must be spelled out clearly so that this 
important function is performed properly.  This is particularly true for utility and library 
modules. 
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ARCHITECTURAL IMPACTS 
 

 A good architecture is one whose modules are relatively independent.  This makes it 
easier for different people or teams to develop different modules.  Thus, assigning the modules to 
different teams is a critical part of the management process.  Modules delineate the boundaries of 
resources and processes that contain the code.  If an architecture is done down to the resource 
and process level, then the only thing left to be done is to write the code. 
 

 In many cases, after coding has started and more is learned about the modules, the 
architecture must be changed.  As in commercial construction projects, architecture affects many 
aspects of a design, and should not be changed without the review of an architect.  So every team 
must have an architect available to review and make such changes.  This provides an 
independent assessment of such change requests and implementation problems by someone more 
capable of making the right decision. 
 

 In a hierarchical management framework, the architect overseeing the module may 
require approval from a higher level architect who is concerned with the effects that the module 
being changed may have on other modules being built by other teams.  This should all be 
apparent from the drawings.  Now, imagine that this is all being done without any architecture or 
drawings.  Most of the information needed for these important decisions, including the basic 
decomposition of the software design, will be hidden in the code. 
 

 As a project progresses, the need for utilities and library modules will arise if not 
provided for in the initial architectural design.  In fact, it is common to start combining modules 
into libraries to minimize testing and to provide well tested modules that can be depended upon 
when debugging complex algorithms.  This can dramatically accelerate the fault isolation 
process. 
 

 The other side of the library picture is that a sufficient number of teams must be assigned 
to manage the library modules.  Experience has shown that, in a highly effective software 
organization, the number of people building and supporting libraries may be higher than those 
building tailored application modules.  Understanding the importance of investing in libraries 
requires a long term business management perspective. 
 
 
LOOKING BACK 
 

 Once one has managed the development and support of large software products using the 
VisiSoft technology, it is hard to envision having it taken away.  This is because of the control 
one has over problem prioritization, resource utilization, and most important the speed with 
which high quality software is put into a production environment.  Being able to look at an 
architecture from the top, and then being able to drill down to the bottom and look at the code, 
gives one the ability to find and fix problems very fast.  More importantly, one can easily 
perceive problems before they occur, see how direction must be changed, and determine how 
those changes may affect the rest of the system.  There is no doubt that the real winners with this 
technology will be the software product managers! 
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The technology described in this book is a revelation in software.  It provides the
engineering discipline needed to improve quality, productivity, and run-time speed,
while maintaining tight control over extremely large complex software systems.
It describes a sound scientific basis for improving these measures.  It explains the theory
and application of a new approach to building software, particularly when using multiple
processors to speed up run times.  If you want to know where the software field is headed
in the next three decades, read this book.  It is the most significant innovation in software
since the compiler.  Although it takes an engineering background to understand the hard
science underlying the concepts, use of the CAD system it describes can be learned at the
high school level as well as by subject area experts who want to build their own software.
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