
Software Engineering

The Software Survivors

by Bill Cave & Henry Ledgard

THE SOFTWARE SURVIVORS

by William C. Cave & Henry F. Ledgard

© Copyright 2005, 2006, and 2011 by William C. Cave & Henry F. Ledgard

Published by

Visual Software International
Spring Lake, NJ

December 2006

Revised Edition September 2011

TABLE OF CONTENTS

 Acknowledgements i

 Preface iii

Part 1 Software Needs, History & Objectives

1 Surviving In A Competitive Market 1-1

2 Measuring Productivity 2-1

3 A History Of Programming 3-1

4 A More Recent History 4-1

5 Objectives of a Software Environment 5-1

Part 2 A New Technology for Software Development

6 Evolution Of A New Technology 6-1

7 An Overview Of VisiSoft 7-1

8 Software Architecture 8-1

9 Architectural Design 9-1

10 Language Concepts 10-1

11 Data Structures 11-1

12 Rule Structures 12-1

13 Control Specifications 13-1

14 Simple Examples 14-1

15 Simulation 15-1

16 Very Large Scale Systems and Simulations 16-1

17 Managing Software Life Cycles 17-1

 References R-1

 About the Authors Back Cover

i

Acknowledgements

 The authors would like to acknowledge the many contributors who provided ideas,
assistance, and material that led to this book. This includes the development of key concepts,
historical back up material, and the technology described here. The total number of people
would be much too long to list, and likely would never be complete.

 Many of the direct contributors are former as well as current employees of Prediction
Systems, Inc. (PSI), the forerunner to Visual Software International (VSI). The twenty-four
years of argumentation, experimentation, trial and change, using first hand experience on what
works best - and what doesn’t, the willingness to try new paradigms and approaches developed
by others - to get it right or best from a productivity standpoint - were an overwhelming part of
the culture at PSI and VSI. Without that very special culture, this technology would not exist.

 We will mention a few of those who made significant contributions. Many of these
people worked directly on the software, some as users shaping the approach. Much of the early
software was developed by Dave Furtzaig, Pat Miller, and Marty Bopp. Early in-house users
who provided design guidance were Hwa-Feng Chiou, Zong-An Chen, Don Lin, Dana Alexe,
Rachel Marrotta, Luke Nitti, Jose Ucles, Kim Martis, Ken Saari, and Bill Wollman. Naeem
Malik was instrumental in helping to install systems and train many users in Europe as well as
the U.S., and ran the only real marketing organization PSI ever had. In more recent years, there
were a number of students from Penn State, University of Toledo and Tongji University in
China. Shunqian Wang, who managed the development team until recently, came to VSI from
University of Toledo, and then brought students from Tongji University in Shanghai, e.g., Lin
Yang and Yanna Jaing who still work with VSI, and Mingzhou Yang and Lei Shi. Shunqian’s
leadership was especially critical to the development of our graphical software, both in the CAD
interface facilities, and with the run-time graphics. John Fikus provided major inputs as a user
and developer of complex dynamic models, 3D graphics, and material for describing what
VisiSoft does. Ed Slatt has provided contributions in the more esoteric area of parallel
processing, as well as requirements, being a significant user building large scale planning tools.
Dave Hendrickx and Manu Thaiwani have played key roles since the very early years, helping
with analysis of design approaches as well as software development. As an outside consultant
and user, Dave was the GSS User’s Group Chairman for over a decade.

 Special acknowledgement is due to Ken Irvine who has been involved in the concepts
and basic design, both from a user standpoint as well as in developing the software itself. He has
always questioned anything that appeared to be off-track, and has provided great help with our
written material in general, as well as this book.

 Development of many of the underlying concepts of VisiSoft would not have been
possible without the first hand knowledge and analytical judgments from Bob Wassmer. He has
been part of PSI, and particularly the VisiSoft development team, since the earliest beginnings,
contributing as the key manager over all the years of this effort, as well as major designer and
user.

 Finally, contributions came from large numbers of clients of PSI and VSI, without whom
none of this would exist.

ii

iii

Preface

 This book is a combination of exact science and engineering observation. We treat two
broad issues: the state of the US software industry, and a new technology to challenge this
industry. We cover a number of different topics including competition, productivity,
programming, object-oriented approaches, software environments, and software architecture.

 Many recent reports show that software productivity in the U.S. has been in decline for at
least the past 15 years. We hold that the root problem is the outdated technology foundation
upon which current software is built. The software industry has followed a path of promises
based upon assumptions that, when revealed, call into question the supposed scientific nature of
the industry itself. It is our intent to show how the US software industry can quickly reverse this
trend and achieve dramatic improvements in productivity.

 This is also a book about a new technology that can make this happen. This technology
is a clear departure from existing approaches. It does not require the steep learning curve of
current approaches. It allows subject area experts to become good programmers. It places a
premium on true software reuse. This means the resulting software must be highly
understandable, to a level not seen in current programming environments. The differences in
true reuse between this new technology and current approaches are dramatic. We provide cases
that illustrate equally dramatic improvements in productivity.

 Use of this new technology will require acceptance of innovative new paradigms,
something historically shunned in the software industry. This predicament is described in one of
the best books on new technology, “The Innovator’s Dilemma,” by Clayton Christensen. It
describes the difficulty in understanding the cause and effect of driving forces in industries
where inertia is very high and change is very slow, obvious characteristics of the software
industry. In such an industry, innovation does not come about from within. This is because the
major players have extremely high vested interests that may be toppled by a so-called disruptive
technology.

 Revolutions impose sweeping changes upon the frame of reference used to measure the
values of a system under siege. They can impart significant improvements, wreak havoc on the
system, or anything in between. Major revolutions are usually preceded by smaller waves, ones
with much smaller force. When the big wave comes, everyone knows it has happened. For
software, the major wave has not yet come - but it is on the horizon. This book presents a
disruptive technology to the field of software. The technology itself has not come about by
revolution, but by evolution - since 1982.

 Our challenge is to convince the readers that this new technology is clearly worth any
disruption that it will cause. In articles written by prominent people in the software field, e.g.,
[AN], [LAS], [LE2], [PO], there is a sense that everyone is getting ready to accept a major
paradigm shift. Hardly anyone is disputing the need for it. Based upon observations, the
disruption that a user encounters using the technology described here is small compared to the
return on investment. The goal of this book is to help potential users understand why this
technology works, and help make a long overdue change happen in the software industry.

iv

Part 1

 Software Needs, History & Objectives

Software Survivors Page 1 - 1

Chapter 1 - Surviving In A Competitive Market

Freedom And Competition

 U.S. politicians do a fine job expounding the virtues of free markets and the importance
of world trade. That is, until it looks like another country is going to dominate a market for an
important U.S. industry. Then the protection mechanisms start. The members of that industry
start paying attention to what it will take to get the government to protect them instead of trying
to become more competitive, or shifting their focus to other opportunities.

 Very often, becoming more competitive requires unpleasant choices that certain groups
perceive as not being in their best interests. Spending money to lobby, and fighting to garner
votes for protection from other countries does not help to improve the basic infrastructure of the
country to become a strong competitor. In fact, it teaches people the wrong lesson. Don’t work
hard to figure out better solutions than the other guy. Just get the government (read the
taxpayers) to bail us out.

 When people complain that other countries compete based upon cheap labor, they are
really saying that the U.S. consumer has a better choice when buying the same, or even higher
quality goods. This certainly makes life better for those who buy those goods. If the country
producing those goods makes more money selling them to the U.S., it improves the lives of their
own people. This happened in Japan. After enough years, lifestyles in Japan moved up the
curve, to the point that their own costs of labor and everything else became unsupportable. This
was due in part to government support for banks that in turn were supporting private industry
beyond justified bounds. We now know the rest of the story. It all came crashing down.

Software Survivors Page 1 - 2

 Wal-Mart provides an appropriate example. Many are opposed to “outsourcing”. Yet,
those purchasing items at Wal-Mart are asking “Is it better for me? Does it cost me less?” From
an increasing number of purchasers the answer is “Yes!” Yet, the goods they buy were made in
China, Japan, Mexico, or Brazil. Did that contribute to the loss of manufacturing jobs in the US?
Of course! Is that a kind of “outsourcing”? Indeed! Yet, shoppers that are given total freedom
to choose will keep purchasing at Wal-Mart.

 So what’s the answer? We can stick our heads in the sand and hope the government will
make it difficult for the importers. Or we can try to understand how to be a stronger competitor,
and how we can take maximum advantage of our skills and the freedom to use them. Our best
approach is to the face the truth. If someone can provide goods or services of the same or better
quality at a sufficiently lower cost for people to make a buy decision, so be it. To face the truth,
we must ask ourselves if we can improve our productivity and do better in the foreseeable future.
If the future is too far out, then we better look for another investment.

 But we do not have to look outside the country to find those who would restrict freedom
and competition. Many large organizations, including the U.S. Government, have tried to restrict
the efforts of Microsoft. Microsoft lives without government help. That makes some politicians
mad, but historically it is the best way to serve the country.

 Microsoft is where it is because it produces what people want. Many people dislike
Windows and the Office applications that go with it. They use Microsoft’s products because of
their own need to be productive - to be competitive. Many Microsoft products have become a
defacto (real) standard - not licensed or imposed by government decree. This helps everyone
become more productive.

WHAT FOSTERS PRODUCTIVITY?

 Productivity is directly affected by the way people view their job security and the
protective or competitive nature of the work environment. The differences are considered below.

Protective Environments

 A protective environment is typically characterized by attempts to reduce real measures
of output or productivity. For example, piece work (getting paid by the number of pieces you
produce) is not allowed in a union environment. Such measures of value are now taboo, being
effectively banned by the government. Another characteristic is being protected by who you
know. Protective environments are typically political in nature - they depend on “who you
know”. In such environments, survival does not depend upon the number of points you can
score for the team (that would imply a competitive environment). The only score kept is the
number of favors one owes.

This leads to another characteristic - irreplaceability. This is imposed by hidden or secret
processes that only one or two “inside” people know. Sometimes it is born out by exotic rituals
that outsiders have difficulty relating to. In the end, person A cannot understand what person B
has done to get ahead, rendering person B irreplaceable.

Software Survivors Page 1 - 3

Competitive Environments

 In competitive environments, everyone must be a team player. There is no time for
politics or rituals that waste time and energy, and produce no direct results. To ensure that
production is strong and stable, parts and people must be quickly replaceable so they are
independent of the process. Standardization is set to help - not stymie - people’s understanding
of what each other has done, so one can easily take over from another. If one person discovers a
way to improve productivity, it is quickly shared among those on the team so everyone can score
higher. Being able to communicate ideas quickly is critical to survival in a competitive
environment.

The Business Environment Versus The Work Environment

 We must also distinguish between the business environment (sales and marketing), which
may be very competitive, and the work environment (production), which may be protective. If
company A views the business environment as very competitive, and creates a work environment
to match, and B harbors a protective work environment, then A will move ahead of B. There are
many examples of has-been companies that found themselves unable to compete in their line of
business as competitors moved into their market. Such companies typically had it easy before
the competition came along, so the work environment was protective. Unless the business
environment is constrained, typically by politics, the most productive company will eventually
prevail - just as in sports.

THE SOFTWARE INDUSTRY

 So what does this have to do with software? Everything. The number of hardware
devices that do not depend upon software is shrinking everyday. The number of devices using
computer chips is growing everyday. As we build more computational power into these devices,
they do more for us. They help us to become more productive, and therefore more competitive.

 Software is likely to be a critical industry for any country. It is already a major factor in
determining the productivity - and thus the competitiveness - of nations as well as industries.
We encourage those within the software industry to seek the truth on this important topic, for all
is not well.

Productivity In The Software Industry

 Let us look at the U.S. software industry. In a September 1991 Business week article
titled “Software Made Simple,” [19], industry experts offered great hope for productivity gains
in the future with Object Oriented Programming (OOP) technology. The article admitted that
there were naysayers who compared OOP to the promises of Artificial Intelligence (AI). But it
was stated that, unlike AI, object technology would have an immediate and practical payoff.

Software Survivors Page 1 - 4

 In 1995, leading technologists John Warnock (CEO of Adobe) and Gordon Bell (architect
of the DEC VAX) were quoted in Upside [97]as saying that OOP is a disappointing technology,
that it does not deliver real improvements in software productivity.

 In the July 1996 issue of Software Developer & Publisher magazine, an article by Cave
[25], “Software Survivors,” analyzed the reasons for declining software productivity. It quoted
two other articles, [18] and [86], showing that, while productivity in the computer hardware
industry was increasing faster than in any other industry, software industry productivity was
declining faster than all others for the period 1990 - 1995.

 One of the quoted articles was a 1995 Business Week issue, [18], that surveyed
productivity in 25 industries. From this article, Cave derived percent productivity change over
the previous five year period and came to some astounding conclusions. These are shown in
Chart 1-1. Productivity changes in chips were at the top of the productivity list (+153%), and
Software was dead last (-11%).

 Independently, in February 1995, the Standish Group published a report, [SG], on the
software industry supporting the negative productivity findings and describing software failure
statistics. When discussing these negative results with higher-level managers responsible for
funding software projects, the managers agreed with the data, saying it matched their experience.

 In a March 23, 2003 press release [87] on software, the Standish Group noted that
“Project success rates have increased to just over a third or 34% of all projects.” Can you
imagine such poor statistics in any other industry but software? But even that success came at a
price. They also said that “Time overruns have increased to 82% from a low of 63% in the year
2000. In addition, this year’s research shows only 52% of required features and functions make
it to the released product.”

 A December, 2004 article by Robert Groth, published in IEEE Software, [44], showed the
percent productivity gain per year of various major industries over the 1998-2003 period, see
Chart 1-2. Again, over this period, computer chips (up 95%) had the most gain in productivity.
Software was again last on the chart with a decline (down 5%). The general productivity issue is
discussed in Groth’s article, where different views of this dilemma are offered.

 Some would argue that software applications are becoming increasingly complex, and
when taking complexity into account, simple statistics such as those in Business Week do not
convey a true picture. Thus we have heard arguments that denounce these numbers, e.g.,
arguments noting that we are attempting more sophisticated applications. This factor alone
might account for negating a portion of the gross measure of productivity.

 However, a January 15, 2004 article on the 2004 CHAOS report by the Standish
group [88], indicated that software project success rates improved over 10 years, stating that
“The primary reason is that projects have gotten a lot smaller.” Another reason given was that
“People have become much more savvy in project management.”

Software Survivors Page 1 - 5

CHART 1-1. Data From Business Week - January 9, 1995

PRODUCTIVITY CHANGE
over the years 1990 to 1995

(A survey of 25 U.S. industries)

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

%
 P

ro
du

ct
iv

ity
 C

ha
ng

e
..

CHIPS

SOFTWARE

CHART 1-2. Data From Groth [44], IEEE Software, November/December, 2004

PRODUCTIVITY CHANGE
over the years 1998 to 2003

 (A survey of U.S. Industries)

-40

-20

0

20

40

60

80

100

120

CHIPS

CONSUMER ELECTRONIC
S

TELECOMMS

HARDWARE

BANKIN
G &

 FIN
ANCE

CONSTRUCTIO
N

HEALTH C
ARE

IN
SURANCE

EDUCATIO
N

SOFTWARE

%
 P

ro
du

ct
iv

ity
 C

ha
ng

e
 ..

.

Software Survivors Page 1 - 6

 Additionally, one can make arguments that the amount of memory available, the speed of
hardware, the documentation facilities, the editors, and automatic control and test facilities
compensate for any increase in complexity. However, none of these arguments have a scientific
basis. Our experiences, as well as those whom we have queried in the business of producing
software, support the observations about the low productivity of current software technology.
But none of these observations seem to stop the software industry from following a path that
clearly puts it further behind in the productivity race each year.

 An article in the November 2003 issue of the Communications of the ACM, "Measuring
Productivity in the Software Industry", [1], discussed the productivity problem in software. But
it did more than just report on the problem. It developed a rationale for measuring the
productivity of development and support environments as a first step to solving this problem.

 As we approach what appear to be physical limits in the semiconductor industry, engineers
have continually removed the barriers. Through the use of Computer-Aided Design (CAD) tools
and graphical visualizations, the promise of Moore’s law continued to be fulfilled for many
years. Microprocessor speed, memory size, and affordability skyrocketed. As stated by Larry
Constantine, [30], software engineering has capitalized on these advances to offset its own poor
productivity. But in recent years, Moore’s law has not held. Improvements in hardware speed
have been slowing dramatically. And this is putting more pressure on software productivity.

Improving Software Productivity

 In hardware design, approaches must evolve in a proper experimental environment in
order to scale well. Intel’s design and fabrication processes are an example of the evolution of
technology evolved in a production environment. We question the ability to achieve software
productivity increases that come anywhere near to those of hardware without suitable
experimentation in a production environment.

 Unlike hardware, software has yet to capitalize on fundamental engineering concepts to
improve productivity. This is described by Poore, [73], and also by Anselmo, [2]. Maybe it is
time for the software industry to start questioning its own underpinnings and start trying to
understand what is required to turn the software productivity curve around.

 Part of this effort will require rethinking the programming profession. In the chapters that
follow, we will address many issues pertaining to improving productivity in the software
industry, and perceptions of the many types of people it employs. Is it really a large union that’s
just not organized like other unions? Is job security dependent upon ensuring the other guy can’t
figure out what was done? Or is job security really dependent upon being more productive than
programmers in a competitive company, maybe somewhere around the globe?

 Survival in a competitive environment depends heavily upon the ability to deal with
increasing complexity. This is certainly true for high technology industries, as well as military
machines. The organization that is best prepared to deal with increasing complexity has a
significant edge. In the long term, those who encumber themselves with unproven beliefs and
rituals will be the losers, while those who make determinations based upon scientific findings
will be the winners. As history has shown many times over, economics will prevail in the end.

Software Survivors Page 2 - 1

Chapter 2 - Software Productivity

“When you can measure what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind……” Lord Kelvin

 In the computer field, we have always taken for granted our ability to compare the
productivity of one computer versus another. We make decisions to purchase different brands of
hardware based upon taking measurements and using benchmarks. Most of us are familiar with
MIPS (Millions of Instructions Per Second) and MFLOPS (Millions of FLoating point
Operations Per Second). Computer speeds determine how fast we get work done. If we have to
wait many seconds for the computer to respond to our actions, our work is interrupted. Buying a
computer that improves personnel productivity by a factor of 10% can be important to one’s
work.

Software Survivors Page 2 - 2

 In the early days of computers, people thought of improving their productivity when
developing large programs. Various programming languages, e.g., Assembler, FORTRAN,
COBOL, etc., were developed specifically to improve programmer productivity. Managers -
who came up through the ranks - understood the problems. They compared the time it took to
build programs and selected what they considered the best language for their applications. They
were able to make informed decisions on what would be used in their shop.

 In the 1970s, the concepts of “structured programming” and “top-down design” became
important. The literature was filled with approaches to improve productivity in developing
software, and most of the contributions made a lot of sense. It was a period of “software
enlightenment”. But it is barely remembered today. This is due mainly to the fact that there
were no languages that implemented the proposed approaches in a way that ensured
improvements in productivity.

 Without tools that implemented the concepts of this enlightenment period, it was
impossible to measure or realize real productivity improvements. Arguments regarding the
desirable features of a programming language appeared to diverge in the literature. Many of the
authors were from the academic environment, with no real production experience. Conflicts
arose in the literature, conflicts that left open the next big push - to the C language.

C was the result of a small and simple effort at Bell Laboratories to port a game written in
FORTRAN. C-like languages were considered a joke by many in the field, and were said to have
killed the concept of top-down design. The phrase “write-only language” became popular -
implying no one except the original author could read the resulting code.

 When building and supporting software, there are many schools of thought regarding the
“best” approach. Bookstores are filled with selections on what is best for the programmer. A
common excuse for failures is the lack of well stated requirements. Yet the vast majority of
programmer hours are spent maintaining existing systems with well-defined requirements.
Experienced software managers who came up through the ranks are rare today. When you find
them, they generally agree that it is the programming environment that is the major factor
affecting productivity. Yet, unlike hardware, there are no accepted measures that afford
benchmark comparisons of productivity in building and maintaining software. More
importantly, productivity is hardly mentioned in the literature. Comparisons of programming
approaches are generally based upon literature advocating a given method. Invariably they lack
scientific measures to back up the claims.

 What may appear to be unnecessary in solving a classroom problem may be critical in
controlling the evolution of a large system in production. Just as with large scale chip design, if
an academic institution is not tied into a production environment, it may be difficult for the
faculty to understand what may be important to that environment. Unfortunately, many books on
software are written by faculty members who rewrite the books they used in school, with little if
any real software production experience.

 In this chapter we offer a framework that we believe essential to making improvements in
software productivity. We start by addressing characteristics affecting the success of a software
project.

Software Survivors Page 2 - 3

ISSUES IN SOFTWARE PRODUCTIVITY

Ability To Deal With Increasing Complexity

 When building application software with interactive user interfaces, complex databases,
dynamic graphics, networks, etc., software complexity grows rapidly. When a large application
becomes popular, the user base expands, and functionality requirements can grow well beyond
original expectations. As new features are added to a large system, the software becomes even
more complex, and the development and support tools are put under great stress, particularly in a
production environment. In such an environment, managers are constantly looking at their
calendars and wondering when the next slated release will be out. The more facilities contained
in that environment to ease the development of new functionality, the higher the productivity.

Scalability

 As software product size and complexity increase, the software development
environment is stressed in different directions. Various features of a development environment
can help or hinder the growth of an evolving product. Scalability is a measure of the size that
can be achieved under full control, and the ease with which a software product can continue to
grow.

 In hardware design, it is well known that approaches not evolved in a production
environment typically don’t scale well. Intel’s approach to chip design and fabrication is an
example of the evolution of a good production environment. We question the ability to achieve
software productivity increases that come anywhere near to those of hardware without a suitable
software environment. That implies relying on a technology that is engineered in a production
environment.

Reusability

 Reuse is critical to productivity. Reuse is also a major justification for Object-Oriented
Programming (OOP). Unfortunately there is no accepted definition of reuse, or a measure of its
achievement.

 One can take the view that reuse only has meaning when functionality is inherited as
defined in the OOP sense. Given that most of the functionality already exists in a module, then
one must fit the desired functionality and resulting code around the reused module (class) and
accommodate differences. We call this “reusability in the OOP sense.” Here one must consider
the original module, the effort to understand fully the reused module, and the additional code
needed to get the full functionality via inheritance. In this approach, one may well inherit
functionality that one does not need. Note also that if visibility into what is inherited is low due
to hiding, costly conflicts may arise downstream.

Software Survivors Page 2 - 4

 The fundamental issue in reusability is the effort required to reuse an existing software
module in a new function. We want to minimize the effort (in time and dollars) in support as
well as development. This leads to a practical definition of reusability as:

the reduction in effort when one starts with a previous module and modifies it to produce
the new function - instead of creating it.

Reusability pays when the amount of modification is small compared to the total effort required
to build and support a new module. We must also consider total life cycle costs. Given a
development environment that minimizes the life cycle reusability effort, we can expect even
higher productivity.

 Consider reuse in a production environment. Given that we can copy a module and
modify it, the relative amount of change affects our approach. If we must modify a significant
percentage of the module, then supporting two distinct modules is hard to argue against. On the
other hand, for large complex modules, one may find that the percentage change is quite small.
In these cases, the original module is usually composed of sub-modules, most of which remain
unchanged. The unchanged sub-modules can become utilities that remain intact to support both
higher level modules.

 But if these modules are hidden, we cannot modify them directly. So it is most important
to be able to see these modules and submodules, visually, just as the designer of hardware chips
can see the modules. This implies visualization of the architecture, a property that has no
counterpart in OOP. This has nothing to do with change control, a point of confusion in OOP.

 Before addressing measures for comparing software development environments, we must
consider measures of the end product in terms of achieving success. Clearly, we must be able to
compare what came out of the development environment to determine if it meets the end user
requirements. Since we will rarely - if ever - have the luxury to build the same large piece of
software using two different environments, we must be able to gauge the relative difficulty in
building two different products built in two different environments. The quality of a product,
i.e., availability, reliability, and supportability also determines end product success as well. The
factors affecting end product success are addressed below.

Software Survivors Page 2 - 5

PROPERTIES OF REQUIREMENTS THAT AFFECT PRODUCTIVITY

 As illustrated in Figure 2-1, we are working toward the ability to compare the
productivity of different software development environments. Our interest in this section
addresses the properties of the product requirements that affect the effort. Clearly, the quality of
a product, i.e., availability, reliability, and supportability determines end product success. The
properties of a product’s requirements that affect the ability to achieve a high level of quality are
addressed below. They affect productivity.

PRODUCT
REQUIREMENTS

DELIVERED
PRODUCT

SOFTWARE
DEVLOPMENT
ENVIRONMENT

PRODVECT 06/01/06

Figure 2-1. Measuring productivity of a software development environment.

 More importantly, different software development environments will fare differently
depending upon these properties. Small classroom exercises can be produced quickly in simple
environments. But these environments may fair poorly when developing and supporting large
complex products.

Functionality

 Poorly specified requirements are often cited as the cause for late and buggy software.
Sometimes this is true. However, the authors are aware of multiple cases where functionality
was well specified, including user-supplied test data to determine whether requirements were
met, and the software efforts still failed. In fact, the vast majority of software man-hours are
spent in the support mode where the requirements are generally well known, and the productivity
is considered low.

 A more important factor appears to be the amount of functionality one must deal with.
We must be able to quantify the size and complexity of the function space specified for a
software product in order to determine the difficulty one faces in development and support for
that product. This has been addressed in the function-point method, see Capers Jones, [52], and
[53].

 Additionally, successful software systems typically serve an ever-widening range of
functionality. When comparing software development environments, one must evaluate their
ability to handle the increasing functionality of a software product as it evolves in the
marketplace, pushing the need for scalability in the development environment.

Software Survivors Page 2 - 6

Complexity

 Having good descriptions of all of the functions to be built into a software product is not
likely to be sufficient when trying to predict the level of difficulty to produce it. The level of
complexity of each function must be considered as well. Productivity can take on significant
variations due to different levels of complexity of implementation of the functions. Complexity
factors can be categorized for different functions so that a weighted measure can be derived.
But, they are hard to predict.

 The difficulty in assessing complexity is particularly true when developing complex
algorithms with huge decision spaces. Often, one does not know all the cases to be dealt with
until one is well into testing. Having an environment that supports the growth of complex
algorithms, as they are expanded to handle all of the unanticipated cases, can help to improve
productivity dramatically. We also note that an environment that provides the ability to easily
isolate and test software modules also improves productivity.

Quality

 As functionality and complexity grow, the number of opportunities for bugs multiplies.
Knowing that two pieces of software have equal numbers of new bugs found per month is not
sufficient to determine the comparative quality of each. One may have much more functionality
than the other. Furthermore, many more people may be using one, and using it more heavily,
than the other. These factors must be accounted for when comparing the quality of different
pieces of software.

 Quality of software can be measured in terms of the availability of its specified functions,
and the time and cost to support that software to maintain an acceptable level of availability. The
acceptable level of availability will be determined by the users of that software, particularly if
they have a choice. Measures of availability can incorporate the level-of-usage factors for all
functions. In the following we assume that software is designed to meet a quantified level of
quality, as described in [23], and [1].

Software Survivors Page 2 - 7

LIFECYCLE CONSIDERATIONS

 Figure 2-2 depicts two characteristics that can be used to understand productivity of a
software development environment. The top characteristic shows an investment curve for
development and support of software. The area under the curve represents the product of time
and cost per unit time, yielding the total dollar investment to build and support a piece of
software. For software products, more time and money is spent supporting product
enhancements and error corrections than in original development.

Time

Rate
of

Investment
$

IOC SOB

Development
Costs Support

Costs

SOFTWARE LIFE-CYCLE
INVESTMENT CHARACTERISTICS

Time

Revenue
Generation

$

IOC SOB

Sales & Maintenance Fees

Life-Cycle 6/9/05

Figure 2-2. Measuring the productivity of software development and support.

 The second characteristic illustrates the revenues generated from product sales and
maintenance fees per unit time. Revenues start to flow when an Initial Operational
Capability (IOC) is reached, and start to cease upon System OBsolescence (SOB).

 If the development time (to IOC) is stretched out, and total development costs remain
constant, i.e., the expenditure rate is slower, then the time to reach revenue growth is pushed out.
Total revenues are reduced if competition gets in earlier, or if the product becomes obsolete.
This causes loss of Return On Investment (ROI = total revenue - total investment). This can
happen if initial product quality is not sufficiently high, since customer dissatisfaction will
inhibit sales growth and encourage competition.

 Improvements in productivity must be reflected in improvements in ROI. Therefore,
productivity is inversely proportional to the costs incurred. This comprises development costs
and support costs. Additionally, if development costs remain fixed while IOC is reached in half
the time with equal quality, revenues can start flowing earlier. This implies that if developer A
spends money twice as fast as developer B, but reaches the same quality at IOC in half the time,
A can expect a higher ROI. It takes much higher productivity for A to achieve this.

Software Survivors Page 2 - 8

 The total cost, C, can be estimated as

 C = K M,

where M is the total man hours expended during development and integration, and K is a loaded
man-hour cost that depends on overhead, general and administrative expenses. We note that this
only reflects the cost part of productivity. As indicated above, a highly productive developer
will benefit from completing a project in half the time, even though the total cost may be the
same. Thus, if the length of time to complete the project is factored in directly, then productivity
may be inversely proportional to the total cost multiplied by the project duration, T. This is
factored into the prior estimate.

 C T = K M T

 We are not stating that this is the measure of (inverse) productivity. We are asserting that
one must conduct experiments and take measurements to validate such an hypothesis. We
encourage other hypothesis; but whatever the measure, it must be backed up by a scientific
method, using valid repeatable experiments.

 We note that the support mode is typically dominated by incremental developments
(enhancements), and can be treated accordingly. We also note that, if a given level of quality is
achieved for competing software systems, then the revenue side is accounted for fairly, since
other factors, e.g., marketing costs, are neutralized.

DESIGN & IMPLEMENTATION PROPERTIES AFFECTING PRODUCTIVITY

 Having addressed the important external (product requirements) variables that affect
productivity, we can now investigate the internal product design and implementation properties
that affect productivity. Our goal is to characterize a software development environment that,
based upon our experience, supports these properties so as to reduce the time and man hours to
develop and support a software product. Ideally, we would like to identify a minimal set of
orthogonal factors. To this end, we offer the following factors.

Independence

 When attempting to reuse a module, one must be concerned with the independence of
that module relative to its use by other modules. If the reused module is not in the same task,
then one may have to copy it, e.g., as a library module, for use in different directories or
platforms. If it needs other modules to operate, they also must be copied.

 The more a module is tied to (i.e., shares data with) other modules in a system, the higher
its connectivity to other parts of a system. The connectivity (number of connections) is
measurable. The higher the connectivity, the lower the independence. When designing
hardware modules to be independent, one works to reduce the number of connections to other
modules to a minimum. We note that visualization of the architecture is critical to performing
this design task for hardware. This is true for software as well.

Software Survivors Page 2 - 9

 When building software using OOP, class abstractions cloud the ability to visualize
connections. Understanding how data is shared between software modules can be difficult,
especially when inheriting classes that inherit other classes. It is hard to simply “inspect” a
module to determine its degree of connectivity and understand the way it interacts with other
parts of the system.

 Hiding and abstraction in the OOP sense make it difficult to pull (copy) a module from
one system and place (reuse) it in another. This difficulty in reuse, from a production standpoint,
stems from the effort required to measure the level of independence in a typical OOP
environment. More importantly, if one cannot measure it, one cannot design for it, let alone
improve it.

 In the case of hardware, one designs for minimum connections between modules. One
uses CAD tools that provide a visualization of the architecture to do this. Connectivity
(coupling) is a key property affecting design productivity. This is true in software as well. But
to fully understand this principal, one must be able to “see the architecture” and inspect the
connections visually.

Understandability

 When managing a large software project, one gets to witness the loss of productivity that
occurs as two programmers reinvent the same module. Productivity is lost trying to decrypt
algorithms and data structures that are coded so as to minimize the number of keystrokes used to
write them, or to maximize “economy of expression”.

 If these algorithms are passed on to someone else, they may become enveloped in
comments to explain the code, sometimes multiplying the size of a listing by whole numbers.
Some claim that understandability of a language can be gauged by the average number of
comments in well documented code. Taking time to choose good names - and minimizing their
reuse for different purposes - is paid back many-fold in a large system. In our view,
understanding the code directly is a major factor in productivity of software, especially in the
support phase of the life cycle of a product. The improvement in using understandable notations
has been measured by Ledgard, [59].

 More important than names is the use of control structures. This has been emphasized by
many previous authors, particularly Mills, [66]. This is a significant property affecting
productivity when building complex algorithms. This is addressed further in Chapter 12.

 More important than language is the underlying architecture of a system. This property is
hard to envision if you have never seen a direct visualization of software architecture. This is
only accomplished if there is a one-to-one mapping from drawings of the architecture to the
physical layer, i.e., the code, just as there is in a drawing of a complex computer chip. We
believe that without this visualization, significant productivity improvements can never be
achieved for software.

 Using OOP, the opposite situation occurs. The architecture - if it exists at all - is hidden
behind the code - the only representation of the real system. Diagrammatic representations are
abstractions that do not reveal the true complexity or hidden dependencies.

Software Survivors Page 2 - 10

 Understandability of the architecture contributes directly to the design of independent
modules. We believe that one can measure the visibility of software architectures as provided by
different development environments and relate that to productivity.

Flexibility

 One motivation behind the Extreme Programming movement, as well as Microsoft’s
software development philosophy, is the incremental approach to software. This was the topic of
a book by Cave in 1982, [24]. In this approach, functionality can be added in small pieces, often
with a working “daily build”. This requires an environment that supports this approach.

 Computer-Aided Design (CAD) tools make hardware architectural changes easy,
especially when a system has been designed on a modular basis. A CAD system that does the
same for software, i.e., starts with a visualization of the architecture on a modular basis, and
provides a one-to-one mapping into the detailed code, can ensure design independence of
modules while allowing visibility of the desired details. This capability in hardware engineering
is alluded to in Poore’s paper, [73]. Based upon first hand experience, we can attest that this
capability, embedded in a software development environment, provides real reusability.

 With such a flexible facility, one can design a little, build a little, and test a little, growing
a system incrementally to ensure components are meeting specifications and showing near term
results. One can quickly detect when changes cause components to fall out of specification
ranges. Fault isolation is much more easily accommodated. These factors all lead to higher
productivity.

Visibility

 Electronic circuits are described by systems of differential equations. Yet, it is hard to
imagine designers working without drawings of circuits. As circuits get large, e.g., thousands of
elements, it is the visualization of the architecture - the parsing of functions into iconic modules
and lines to show how they are interconnected - that becomes overwhelmingly important.
Visualization of the architecture is the key to productivity.

 We claim this is also true with software. However, one must achieve a one-to-one
mapping from the architecture diagram to the code in order to gain the benefits derived from the
equivalent in hardware. This is only achievable when data is separated from instructions as
described by Cave, [25]. If there is a silver bullet in software, this is it. Productivity gains can
multiply using this CAD technology so as to achieve the equivalent of a Moore’s curve for
software allowing large complexity increases every year.

Software Survivors Page 2 - 11

Abstraction

 No one can argue the usefulness of abstraction. It certainly can help to get through major
design problems. It can also serve to sever ties to reality in a production environment. It is easy
to draw block diagrams for sequential tasks that relate to the code. But in highly interactive
systems, mouse and keyboard event handlers support many functions, and the software
architecture becomes orthogonal to user functionality. Block diagrams lose meaning when one
looks at a software design from the extremities of the functional interface to the detailed code
that manages databases and devices.

PRODUCTIVITY OF SOFTWARE DEVELOPMENT ENVIRONMENTS

 We can now address the properties of a software development environment that lead to
higher productivity. Simply put, it is an environment that best supports the productivity
properties of the requirements, the life cycle, and the architecture and implementation of the
desired final product. The properties described above can be used as proxies to measure the
development environment. For example, how easy is it for a newcomer to a project to
understand the architecture, or the code? How easy is it for that person to reuse already
developed modules, possibly modifying parts of them to suit different functionality? How easy
is it for someone to take over a large set of modules without the original author? Just as in
hardware, these properties can be observed directly by knowledgeable managers in a software
production environment.

CONDUCTING EXPERIMENTS TO MEASURE PRODUCTIVITY

Borrowing from DeMarco’s Controlling Software Projects, [35], “You can’t control what
you can’t measure.” Before we can expect to improve productivity, we must measure it.

 Since we will rarely - if ever - have the luxury to build the same large piece of software
using two different environments, we must be able to gauge the relative difficulty in building two
different products built in two different environments.

 Apparently, benchmark comparisons of different approaches to developing software do
not exist because of the size of experiments envisioned to perform the task. People envision two
teams developing a sufficiently complex piece of software using competing environments. One
can see why such an expensive undertaking is not done.

 But most experiments in science are not very large in scope. Focus is usually on creating
sequences of small experiments that can lead to larger conclusions. We believe software can be
broken into pieces such that the methods that produce them, including integration, can be
examined experimentally.

 But just as computer chip manufacturers are constantly taking data to improve
productivity, both in the design phase and the production phase, so can software product
companies. Managers in competitive environments are always looking to cut costs and time
while improving quality. This implies that management understands the details sufficiently to
guide change, and that the designers and programmers are motivated to be on the same sheet of
music - trying to improve productivity while maintaining - if not improving - quality.
Unfortunately, there are many environments in which neither case exists.

Software Survivors Page 2 - 12

CONCLUSIONS ON PRODUCTIVITY

 As the quote from Kelvin implies, we cannot expect to improve software productivity
without measuring it. The measures of a software end product - functionality, complexity, and
quality - are not new. They form the foundation for measuring productivity.

 If a given level of quality is achieved for the same software system by competing
organizations, their relative productivities may be measured as being inversely proportional to
the product of their cost and development time.

 Productivity of a software environment depends upon the understandability and
independence of modules produced. These are inherent properties of a software system that can
be increased or decreased by design. Development environments that provide good visualization
and CAD techniques can help software designers to construct systems with these properties just
as they do for hardware designers.

 Finally, we must be able to measure changes in productivity to validate our assumptions
regarding its dependence on these properties. We believe that this can be done using a large
number of small experiments that, combined statistically, will represent the productivity of a
development environment. We perceive that such experiments are suitable for university
collaboration.

 In this book, we hope to make it clear. It is time for the software industry to start
questioning its own underpinnings. It is time to start seeking the truth and trying to understand
what is required to turn the software productivity curve upward. Part of this effort will require
rethinking the programming profession. Is it really a large union that’s just not organized
explicitly like other unions? Is job security dependent upon complex code that another
programmer can’t figure out, therefore making the first indispensable? See [94]. Or is job
security really dependent upon being sufficiently more productive than programmers in a
competitive company, maybe somewhere around the globe? If you think the answer is the latter,
read on and consider how you can help to make the software industry more productive.

Software Survivors PAGE 3 - 1

Chapter 3 - A HISTORY OF PROGRAMMING
 - LESSONS FROM THE EARLY DAYS

Authors’ note: In presenting the history below, we emphasize two important ideas in software. First,
“independence”, by which we mean the ability to make modifications to software without affecting other portions of
the software. And second, “understandability”, by which we mean the ease with which a programmer can read
(and thus change) a portion of the software written by another.

Software Survivors PAGE 3 - 2

IN THE BEGINNING ... (circa 1955 - 1965) - DRAMATIC JUMPS!

 Back in the old days we wrote code in ones and zeros. To be a programmer, one had to
understand the machine. Programming involved registers, arithmetic instructions, control
instructions, I/O instructions, the program counter, etc. Even writing a simple program was not
easy. One had to define what was in each memory location one expected to use. Figure 3-1
illustrates the format of a program. This example is for a fictitious, but simple, single address
machine with an A register. For example, OP Code 1000 cleared the A register to zero and then
added the contents of the specified memory address, e.g., [13], into A (in our example,
location 13 contains the value 25).

 Notice “the separation of data from instructions”. The data could be put anywhere. The
instructions had to follow in sequence, unless a transfer (GOTO) was used.

MEM
LOC

OP
CODE

MEMORY
ADDRESS

COMMENTS

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

1000
1001
0010
1010
0111
1110
1100
1001
0011
1111
0011
1111

00001101
00001110
00001111
00010000
00001110
00001011
00000010
00001111
00000000

00001111

CLEAR AND ADD [13] TO A
ADD [14] TO A
READ TAPE INTO 15
SUBTRACT [16] FROM A
STORE A IN 14
TRANSFER TO 11 IF A IS NEGATIVE
TRANSFER TO 2 IF A IS POSITIVE
ADD [15] TO A
PRINT A
STOP
PRINT [15]
STOP

13
14
15
16

00011001
00011010
00000000
00110010

25
26
0
50

Figure 3-1. A computer program written in binary.

 Interestingly enough, working in the binary number system was not the difficult problem.
The problem was changing the program. Let's suppose we wanted to put a few additional
instructions into this program starting at memory location 8. Then, all entries from there down
get new memory addresses, implying that every reference to them must be changed, a real mess!
Even if we were clever enough to insert a GOTO to some higher location with our new
instructions, we still had to move the old instruction in 8 to the new location, and put another
GOTO at the end of the new sequence (to get back). Time spent debugging these changes and
random jumps was immense. The important lesson here is that all lines of code were dependent
upon the sequence, and thus each other. This lack of independence made change very difficult.

The Properties of Understandability and Independence

 It didn't take much time for people to start writing translators to make programs more
readable, and therefore more understandable. The first simplification was the use of mnemonic
names for Op Codes and using decimal numbers for addesses instead of binary.

Software Survivors PAGE 3 - 3

 A major step toward improving productivity was the assembler. Each machine had its
own assembler, written by the manufacturer. The first assemblers allowed programmers to
eliminate the use of actual numeric addresses for data as well as transfer points. Instead,
alphanumeric labels were allowed. Because these reference identifiers were no longer
sequential, and were totally independent of position, one could insert new instructions anywhere
without disturbing the rest of the code. Figure 3-2 illustrates a simple program written in an
assembly type language.

LABEL OP
CODE

MEMORY
ADDRESS

COMMENTS

RESTART

END2

CLA
ADD
RDT
SUB
STO
TRN
TRU
ADD
PRN
STP
PRN
STP

X1
X2
Y1
Y2
X2
END2
RESTART
Y1
A

Y1

A = X1
A = A + X2
READ TAPE INTO Y1
A = A - Y2
X2 = A
TRANSFER TO END2 IF A IS NEGATIVE
TRANSFER TO RESTART IF A IS POSITIVE
A = A + Y1
PRINT A
STOP
PRINT Y1
STOP

X1
X2
Y1
Y2

25
26
 0
50

Figure 3-2. A computer program written in assembly language.

 As the desire for new functions and features expanded, and more memory became
available, computer programs started to grow in size. Drum memories became sufficiently
reliable so that sections of larger programs could be stored on the drum, and rapidly overlaid into
main memory when they were needed. The concept of standard overlay modules soon became a
necessity, particularly for handling I/O devices such as keyboard input, printed output, paper
tape input and output, etc. This led to the separation of programs into subroutines, with
provisions in the assembler language for jumping to them by name.

 As overlays became popular, one had difficulty laying out the patchwork of where
routines would be mapped into main memory. This was solved using relative addressing at the
subroutine level. Assemblers that translated code on a relative address basis were known as
relocatable assemblers, implying that the actual starting addresses of the program counter and
data blocks remained undecided until they were loaded. It was still up to the programmer to do
the overlay and set the starting address pointers. But, this provided for spatial independence of
overlays, relative to where they were mapped into main memory, making them much more
reusable.

Software Survivors PAGE 3 - 4

Independently Linked Subroutines

 And so, as subroutines became much more reusable, programs grew even larger. This led
to another problem. All routines belonging to an overlay had to go through the assembler in one
shot. As main memory became larger, making a simple change to a single routine still required
that the whole overlay be reassembled.

 This problem led to the development of a separate link and load phase, wherein a single
subroutine could be assembled independently of the rest. This subroutine could then be relinked
with the rest of the overlay that was previously assembled into a partially linked object module.
As a final step, a load module was produced with the absolute addresses resolved. The software
that provided this facility was called a linking loader. This allowed subroutines to be built and
assembled independently, making them and their object modules the basic reusable elements.
Object modules resided as independent entities in library pools that were scanned during the link
process.

 A growing list of library routines created the next problem, that of duplicate names. To
this day, the problem of duplicate object module names, amplified by flat file object libraries and
very simple library managers and linkers, plagues a growing part of the programming world.
This has led to a lot of bandaids in programming languages to cover up problems that are
properly solved at the environment level. We will address these problems downstream.

Flow Charts

 Because of the difficulty in understanding assembler code, and particularly the
instructions for transferring control, programmers created the flow chart. When using boxes and
diamonds to illustrate functions and decisions, a symbol on the flow chart typicaly encompassed
many instructions. So the number of lines of code was larger than the number of flow chart
symbols. These advantages dissappeared with understandable languages and control constructs.

THE FIRST BIG JUMP IN UNDERSTANDABILITY - FORTRAN

 The desire to make the programming job easier led to still another major step toward
making the machine do more of the work of understanding what the human meant. People
writing programs to solve large sets of mathematical equations were the first to invent a more
understandable language and corresponding translator - the FORmula TRANslator
(FORTRAN). FORTRAN shifted the burden of translation from a language that humans could
easily read and write, onto the computer. Productivity went way up because of a number of
factors.

• One person could understand much more easily what another person wrote. This
allowed a large program to be constructed with a team effort. It also allowed
completion of an effort and reuse of code without the original author.

• Many errors endemic to assembly language disappeared. Probably the most
common was scribbling on instructions (and immediately the rest of memory.)
FORTRAN took away the Von Neumann facility of being able to write instructions
that modified themselves (some assemblers prohibited this also).

Software Survivors PAGE 3 - 5

• More and more smarts were built into the translation process as people learned what
it took to be more productive. These included improved syntax, various forms of
error checking and prevention, run time messages, etc.

 It is interesting to note that many programmers of the day looked askance at FORTRAN,
disagreeing with the above bullets for various "technical" reasons. One of these was efficiency
of the code produced, until it was recognized that it was a rare programmer who could do as well
as the designers of automatic code generators. In spite of this resistance, FORTRAN became
one of the best examples of the following:

 When understandability takes a leap, so does ease of change, and thus productivity.

 Anyone racing to build computer programs to solve mathematical problems quickly got
on board the FORTRAN train. If they didn't, they couldn't compete.

 For people building data processing systems, FORTRAN left a lot to be desired. It was
cumbersome to work with files having complicated record structures. The FORTRAN
FORMAT statement is a quick way to get listings of columns of numbers, and some
alphanumeric data, but there was no friendly mechanism for creating the complex data structures
necessary for dealing with large data files. Even the data structure capabilities existing in
advanced versions of FORTRAN today leave much to be desired.

 A major problem with FORTRAN is the fall through approach to coding that is a carry
over from assembly language coding. Every line depends upon where it falls in the sequence.
Labels exist for looping and GOTOs but, in general, one cannot isolate blocks of code inside a
subroutine and move them around without great difficulty. An example of a very efficient
sorting algorithm, published in the ACM Journal in 1969, [93], is shown in Figure 3-3. This
algorithm is very efficient at sorting, and is a clever algorithm with a sophisticated mathematical
background. Unless one is familiar with the implicit statistical methods for sorting referenced in
the paper, one is hard pressed to understand the underlying algorithm. The example is not meant
to reflect poorly on the excellent work of the author. Rather it is a reflection on programming
style and practices in that era. Note that, to save time, GOTO's are used to replace DO loops.
This accentuates the fall through approach. As an exercise, try putting this example into a flow
chart.

 This program also exemplifies "economy of expression." A minimum number of
keystrokes is required to retype it from the journal - an important consideration of the time. One
can also imagine being assigned to make changes to a five to ten page subroutine of this nature -
clearly a humbling experience for a rookie. Of course, things just aren't done that way anymore
(we hope), at least not in FORTRAN. We strongly suggest that economy of expression is
inversely correlated with the overall life cycle economics of a large software product. We
believe that this can be verified by experimental evidence, e.g., that reported by Fitsimmons and
Love, [38], Ledgard et al, [59], and Sitner, [92].

Software Survivors PAGE 3 - 6

 SUBROUTINE SORT(A,II,JJ)

C SORTS ARRAY A INTO INCREASING ORDER, FROM A(II) TO A(JJ)
C ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO 2**(K+1)-1 ELEMENTS
 DIMENSION A(1), IU(16), IL(16)
 INTEGER A, T, TT
 M=1
 I=II
 J=JJ
 5 IF(I .GE. J) GO TO 70
 10 K=I
 IJ=(J+I)/2
 T=A(IJ)
 IF(A(I) .LE. T) GO TO 20
 A(IJ)=A(I)
 A(I)=T
 T=A(IJ)
 20 L=J
 IF(A(J) .GE. T) GO TO 40
 A(IJ)=A(J)
 A(J)=T
 T=A(IJ)
 IF(A(I) .LE. T) GO TO 40
 A(IJ)=A(I)
 A(I)=T
 T=A(IJ)
 GO TO 40
 30 A(L)=A(K)
 A(K)=TT
 40 L=L-1
 IF(A(L) .GT. T) GO TO 40
 IT=A(L)
 50 K=K+1
 IF(A(K) .LT. T) GO TO 50
 IF(K .LE. L) GO TO 30
 IF(L-I .LE. J-K) GO TO 60
 IL(M)=I
 IU(M)=L
 I=K
 M=M+1
 GO TO 80
 60 IL(M)=K
 IU(M)=J
 J=L
 M=M+1
 GO TO 80
 70 M=M-1
 IF(M .EQ. 0) RETURN
 I=IL(M)
 J-IU(M)
 80 IF(J-I .GE. 11) GO TO 10
 IF(I .EQ. II) GO TO 5
 I=I-1
 90 I=I+1
 IF(I .EQ. J) GO TO 70
 T=A(I+1)
 IF(A(I) .LE. T) GO TO 90
 K=I
 100 A(K+1)=A(K)
 K=K-1
 IF(T .LT. A(K)) GO TO 100
 A(K+1)=T
 GO TO 90
 END

Figure 3-3. Example FORTRAN program published in the late 60's.

Software Survivors PAGE 3 - 7

 Although FORTRAN has come a long way since it was first offered, many problems still
exist, causing it to be used less and less each year. The problems described above caused the
desire for a new approach early on, particularly for large data processing programs, and a new
language was produced in the early 60's to fit the bill. This was COBOL.

THE SECOND BIG JUMP IN UNDERSTANDABILITY - COBOL

 The COmmon Business Oriented Language (COBOL) was developed by experienced
programmers to achieve a common goal - build a language that humans could easily understand,
one that could read close to plain English. To the extent that COBOL quickly became owner of
approximately 80% of the world's code for about two decades, it was the most successful
programming language ever devised. An October ‘95 article in Inform, [51], cites studies by
IDC, Gartner, and Dataquest that showed COBOL still accounted for over 53% of all
applications in the world, 80% of all business applications, 50% of all new business applications,
and 5 billion lines of new code added each year. This is because of its ability to improve real
economic measures of programmer productivity, where it counts - in the maintenance phase of a
life cycle. And these improvements are clearly due to its understandability.

 Yet, no language has been more maligned by a vocal segment of the software industry
than COBOL. And, this is not a new phenomena. In the 1960's, when the financial industry in
New York City was going through conversions to new IBM-360s, costs to upgrade software
were going through the roof. At that time, experienced programmers insisted that accounting
applications could only be written efficiently in assembly language. (Neither EXCEL nor
LOTUS existed then.) What they were really concerned about were armies of high school
graduates that were marching into Manhattan and dramatically lowering the cost of building new
software using COBOL.

 Data processing managers had to fight to dislodge the company software assets from the
hands of the assembly language programmers and turn them over to a younger, less skilled
workforce who could write code that everyone could understand. In that highly competitive
economic environment, it was only a matter of time. The cost of software development and
support plummeted with COBOL, and the leftover money was spent developing more
sophisticated applications. COBOL also created a separation of skills, and a separate workforce
of systems programmers still using assembler and Job Control Language (JCL).

 As scientists, we cannot ignore the success of COBOL. We must understand the facts
behind its ability to cut costs and improve productivity. Certainly, one cannot contest the
readability of COBOL relative to any other language. Greater readability leads directly to
understandability. Next, COBOL implemented the one-in one-out control structure advocated
years later by Mills, [66]. The objective of this control structure is to eliminate "waterfall" or
"fall through" coding, providing a hierarchy of blocks of instructions, within a subroutine. This
additional layer of hierarchical structure can serve to increase the understandability of
subroutines, a feature that does not really exist in other languages. However, as we will describe
below, the COBOL implementation hindered the desired improvements in logical clarity.

Software Survivors PAGE 3 - 8

 COBOL's ability to process data has been unsurpassed. The most important factor in
data handling is the data description. COBOL allows a user to organize data structures the way
one wants to see it, hierarchically, by logical organization. Not by type. Furthermore, What-
You-See-Is-What-You-Get (WYSIWYG) in memory. There is no such thing as "word boundary
alignment" behind the scenes. Most programmers do not understand the importance of this
feature unless they have done sufficient character string manipulation or data processing using a
character oriented language. If one has never had this feature, one can't appreciate how great it
is! It's what allows one to do group or subgroup moves from one data structure into another,
e.g., moving part of a message or record, defined as all character data, into a template defining
each field. It provides for redefinition of data areas so that they can be looked at using different
templates or filters without moving the data.

 One cannot do these things in any language that permits word boundary alignment to go
on behind the scenes. Until VSE, described in Section 2, no language has provided these data
structure facilities nearly as well as COBOL. And these are critical when dealing with complex
data structures.

Caveat - The Very Large Subprogram Problem

 We must also understand the weak points of COBOL. One of these is breaking large
programs into subprograms. This is a result of COBOL’s heritage of sequential batch oriented
jobs. This is a difficulty for COBOL. Although COBOL provides a subprogram capability, it is
not easily used. This has led to extremely large COBOL programs that are difficult to change
and maintain.

 The reason that COBOL programs are not easily broken into subprograms is subtle.
COBOL’s sharing of data structures between subprograms by pointer is clearly superior to
passing individual data elements. However, the mechanism for accessing data structures poses a
problem since each structure must be declared in "working storage" before it can be used by
another subprogram, where it then must be declared in a "linkage section." These two classes of
declaration impose a constraint that makes it difficult to structure, and especially to restructure,
an architecture. It is amplified by the requirement that, in a calling chain, if any routine down
the chain wants access to the structure, it must be declared in all routines along the way. One
cannot switch or discard the “MAIN” routine without a big upheaval.

 As indicated above, COBOL contains a one-in one-out control structure as advocated by
Mills. However, the implementation via the PERFORM paragraph statement does not preclude
the waterfall from one COBOL paragraph to the next, hindering the ability to achieve the desired
level of logical clarity. Another implementation “feature” allows programmers to PERFORM
sequences of paragraphs, further maligning potential clarity. These sequences become especially
difficult to follow when they are exited by GOTO statements that can jump control anywhere,
including the middle of another sequence somewhere else in a large subprogram. This problem
seems to be exacerbated by COBOL’s unusually large subprograms.

Software Survivors PAGE 3 - 9

The Tower Of Babel - Programming Languages

 Although we have only discussed FORTRAN and COBOL, many other early languages
had their impact on the software development process. Although some of these languages have
had substantial followings during certain time periods, none have matched the long-term success
of FORTRAN and COBOL. ALGOL was developed in the early 1960s, partly as an algorithm
specification language, one that could be used to specify the details of computer architectures. It
was the language used for papers in the Association of Computing Machinery (ACM) Journal. It
was the principal language of the Burroughs 5500, one of the earliest time-sharing machines.

 SIMULA was another early language, used for simulation. Although hardly used in the
U.S., it is referenced frequently. PL/1 was IBM's answer to provide one language to take the
place of COBOL and FORTRAN, a noble goal. However, it was never close to COBOL from a
readability standpoint, and had so many options that programs were very difficult to understand
and debug. APL is an excellent language for solving vector - matrix equations, but is
scientifically oriented. PASCAL and BASIC have been well utilized, but have never reached the
acceptance level of COBOL or FORTRAN. We will simply mention that each of the
U.S. Department of Defense services invented its own language: TACPOL (the Army), CMS2
(the Navy), and JOVIAL (the Air Force). Each language was "justified" based upon the unique
requirements of its particular military environment. That is, until Ada came along and the U.S.
Department of Defense mandated the use of Ada to replace them all. But, it did not get as far as
PL/1.

Software Survivors PAGE 3 - 10

Software Survivors PAGE 4 - 1

Chapter 4 – A More Recent History

“Continued and rapid growth in the power of hardware has not only enabled new
applications and capabilities, but has permitted sloppy, unprofessional programming to
become the virtual standard of business and industry. Hardware has allowed the
software profession to avoid growing up, to remain in an irresponsible adolescence in
which unstable products with hundreds of thousands of bugs are shipped and sold en
masse.” -- Larry Constantine [30]

Software Survivors PAGE 4 - 2

THE WAVES OF A SOFTWARE REVOLUTION

 Revolutions impose sweeping changes upon the frame of reference people use to value a
system. They can impart significant improvements, wreak havoc, or anything in between.
Major revolutions are usually preceded by smaller waves, ones with a smaller force. For
software, the major wave has not yet come - but it is on the horizon. In articles written by
prominent people in the software field, e.g., [1], [58], [61], [73], there is a sense that people are
getting ready to accept a major paradigm shift. Hardly anyone at a managerial level is disputing
the need for it. To help gain an understanding of what the needs are, we will take a look at more
recent history to consider the prior waves - the previous attempts at a software revolution. Our
main purpose in this chapter is to prevent this history from repeating.

THE STRUCTURED PROGRAMMING WAVE (circa 1970 - 1980)

 The first wave of a software revolution came in the 1970s. It was a noble effort, a period
of enlightenment. Serious thought was put into principles for cutting the growth in project
failures and costs of software. The literature expanded rapidly, with contributions derived from
case histories. The “Mathematical Foundations of Structured Programming” by Harlan Mills,
[66], was considered a major contribution. It describes the technical properties of one-in/one-out
control structures, and their corresponding understandability. This was one of the first papers
that tried to set the everyday programming problems in a framework for good scientific analysis.
Academic inputs came from many contributors, e.g., Djikstra, on GOTOless programming.
Djikstra also provided a more mathematical direction for programming improvement.

 But there were clearly great disparities in the productivity of software organizations at
the time. The high correlation in disparities became most apparent when software organizations
were grouped into government versus their commercial counterparts, with the government
lagging far behind in most areas. Exploding budgets and time schedules were absorbed by
taxpayer dollars without knowledgeable oversight. Much of the literature pointed out the
problems of poor management and provided guidelines, procedures, and standards to insure
control of the lifecycle, e.g. [23]. Other software projects simply grew because nothing was
coming out, and the end justified the means. Much of this was due to an even greater disparity:
that of understanding the problems of developing anything complex, not just software.

 Much of the problem stemmed from the lack of good operating systems. These complex
systems were just evolving. IBM was hit by this phenomenon, particularly on the OS/360
project, and much history was analyzed and published. This included the excellent combination
of technical and management principles offered by Sherr, in Program Test Methods, [90], who
defined the basic regression test method as it applied to software. Another describes the direct
experience of Fred Brooks, the principal architect of OS/360, published in his classic Mythical
Man Month, [12], a best seller. Another major contribution was Baker's Chief Programmer
Teams, [5], one of the original publications on top-down design and organization of the
programming staff.

Software Survivors PAGE 4 - 3

 A large number of publications expanded upon these ideas, or brought forth excellent
new ones. From the literature, it appeared as though the world of software was going to change
forever in these new directions. But most of it has been forgotten. Most computer science
graduates don't know about Harlan Mills. The literature from the 1970s is hardly referenced
(unless it refers to C and UNIX). The ideas were excellent and people accepted them. But,
when they turned around and went back to work, they had little to use to implement the
principles. This is because no software environment existed to support the most important
concepts.

 The lack of an existing environment cannot be considered the sole reason for lack of
success of this movement. It was also due in part by the IBM PC, where most of the original
software had to be written in BASIC. Some software houses today still rely on BASIC
programmers. A more long term influence was the relatively huge funding ($Billions) for UNIX
and C by AT&T, and the U.S. and other governments. And people go where the money is. We
now cover the period of falling productivity - the dark ages of the software field.

THE RISE OF UNIX AND C (circa 1975 - 1985)

The "Paper Tiger" Revolution of the '70s gets beat by UNIX & C in the '80s

 UNIX platforms started to populate information technology. How did this happen?
What happened to IBM's mainframe operating systems, and DEC's VMS? And what happened
to the software revolution of the '70s. To answer these questions, consider the following
influential events in this history.

− The U.S. Government, particularly the Department of Defense (DoD), assumed that its
problems were faced by the rest of the world. These problems were caused by (1)
programming in assembly language, and (2) not using standard operating systems. Most
government developers were hardware-oriented. They lacked real software experience.
This was evident with “embedded systems” where the applications and operating systems
were wrapped together in a single development. Large complex commercial software
successes were built using reliable operating systems and high-level languages. These
were virtually ignored by the DoD hardware vendors who preferred to “roll their own” on
time & material contracts. The end result was the launch of the Ada language effort with
high expectations.

− As a policy, the Government resisted platforms with proprietary (privately developed)
operating systems, e.g., IBM’s MVS, and VM. Many of the reasons have to do with the
Government’s desire to own special licenses that private businesses perceive hard to
control. Somehow, UNIX was considered an OPEN SYSTEM and became the operating
system of choice. Large quantities of VAX computers with UNIX were delivered to the
Government and its contractors, but productivity plummeted. The problem was blamed
on the operating system. (What was not recognized was the use of C and C++ as the
programming languages for this environment.) DEC saved the day with VMS, a new
(proprietary) operating system, along with good FORTRAN and COBOL compilers. It
worked well and started to become the de facto real standard for that period

Software Survivors PAGE 4 - 4

− Computer-Aided Software Engineering (CASE) tools became fashionable in both
government and commercial organizations, being marketed by a number of software
houses. These tools included graphics and automatic requirements documentation. But
the software problem remained unsolved. This is because CASE is left by the wayside
once the coding starts and changes start to mount.

− On the government side, programmers building embedded systems for big contractors
gravitated from assembler into C and C++. When the software problem persisted, DoD
tried to dictate the use of its own new language, Ada. Special contracts were offered to
document case histories of how Ada saved time and money. But despite its elegance,
Ada did not solve the problems. Ada programmers were among the most expensive in
the world. The economic realities of getting systems delivered were hard to combat, and
DoD’s major system program managers got waivers to use software languages other than
Ada. This battle was won by the C++ / OOP crowd.

− UNIX continued to be promoted by AT&T and academia followed. The Government
continued to characterize proprietary software (developed and licensed commercially) as
not in its best interests. After VMS and other proprietary operating systems rose to great
heights, they hit a water-fall drop in sales - as if they were black-listed. UNIX and C had
proprietary stamps, but somehow were OK.

− Hardware vendors are motivated to sell platforms without having to invest in an
operating system, and UNIX allowed users to run multiple tasks in virtual memory mode.

− Whereas INTEL chips all came with an assembler, designers of powerful workstation
chips found a way to hide their instruction set architecture - behind the C-based language
compilers, as C became the new intermediary language.

 The above events were driven by a desire to move toward more powerful platforms at a
lower price. The difficulty, as always, is dealing with the software interface. Learning and using
C-based languages and UNIX required a large investment. Organizations complained about the
unfriendliness of the UNIX-C environment and the corresponding rise in software costs. These
complaints did not stop this movement. The low cost of powerful hardware platforms housing
UNIX became attractive.

 As Windows platforms started selling in large quantities, UNIX developers, e.g., SCO,
SUN, SGI, and HP were able to achieve a reasonable level of compatibility with Windows
application software. Under SCO’s Open Desktop, one could have a Windows session going
and flip back to a UNIX session. C, which came along with UNIX, slowly became as ubiquitous
as COBOL. Because C was developed in the very early 70’s, many of the revolutionary ideas
from the following years virtually disappeared, being replaced by a new wave of thinking -
Object Oriented Programming (OOP).

Software Survivors PAGE 4 - 5

THE RISE OF C, C++ AND OOP (circa 1985 - 2000)

C is quirky, flawed, and an enormous success.
 - Dennis Ritchie, one of the original C authors - from van der Linden, [98].

 Most people in the software field believe that the underpinnings of current software
development environments, namely the C and C++ languages, were developed under a well
planned R&D program at Bell Labs. As pointed out in various references, see Anselmo, [2], this
is a total misperception. AT&T did spend billions of dollars competing in the computer field
and promoting UNIX, and C and C++ were the languages of UNIX. But the real driving forces
behind C were to build a small compiler to fit in a very small amount of memory, and a spartan
syntax that made the compiler easy to build, [2], [56], and [78].

 C++ is a modified version of C to provide an Object-Oriented language. Object-Oriented
Programming (OOP) claims to support reusability, but that definition of reuse is a technicality.
OOP reuse actually inhibits real productivity by making real reuse difficult, see [1] and [83].
The OOP approach has also proven to be hard to scale as new requirements evolve. As a result,
large systems built in C++ go out of control quickly unless the management approach is very
intensive, with large numbers of programmers responsible for relatively small amounts of code,
see [44]. This approach leads to much lower productivity. However, the amount of investment
in this approach - both in careers and dollars - presents huge inertia.

 Object-Oriented Programming (OOP) is defined by a set of properties that are supposedly
independent of a particular programming language, see [95]. These properties constitute a set of
requirements that a language is supposed to meet to be considered Object-Oriented. Today,
OOP is most closely associated with the C++ language.

 When reading the C-based language (C, C++, and Java) literature, one finds sets of
postulates and ultra-simple examples of OOP in C++. If one looks for scientific ties to
programmer productivity and economic measures, one is left disappointed. Although the word
good is used as some kind of measure of a language, one has to ask: "What measures make OOP
good, and particularly, good for what?" More interesting reading is that of the different OOP
camps, and the objections they raise with each other’s approach. Different camps appear to have
their own ideas of what’s good.

 There are allusions that C++ OOP properties provide improvements in computer
programs. But there is little experimental evidence, or suggestions of experiments, to support a
scientific comparison. Our experience on actual projects correlates to the productivity data in
Chapter 1. Based on large projects, our assessment is that it costs more, not less, to build
equivalent quality software using C++ OOP. In the support phase, it is hard for one programmer
to understand what another did.†

† A common joke is that C++ is a write-only language. One programmer writes it and no one
else can read it.

Software Survivors PAGE 4 - 6

 Finally, many experienced people on the sidelines have said that this movement has been
a great step backwards for the U.S. software industry. The feature article of a 1994 issue of
Upside Magazine, [97], interviewed five leading technologists to get their view on the world of
technology in the year 2000. The questions covered broad areas of communications and
automation. One of the questions was “What advancement will be the biggest disappointment?”
Surprisingly, Gordon Bell, architect of DEC’s VAX family, and John Warnock, CEO of Adobe
Systems had the same answer - Obect-Oriented Programming! Warnock said “I think the whole
object thing is a red herring.”

 Having made an investment in becoming proficient in a subject, one does not want to
think of one’s investment of time as being wasted. It is hard to consider scrapping a skill that
has taken years to learn, one that was supposed to provide significant economic benefits. After
all of that effort, one does not want to hear that there is a better direction, especially if the
alternative might involve another learning process. This creates a significant inertial factor
among proficient C++ programmers.

Another Trail From There to Here

 How did it happen that the C-based language technology has moved so far into the
forefront? We'll start to answer this question by referring again to Peter van der Linden's book,
Deep C Secrets, [98]. On page 297 he describes the desirable features of an OO language.

 “... Abstraction is useful in software because it allows the programmer to:

• hide irrelevant detail, and concentrate on essentials.

• present a "black box" interface to the outside world. The interface specifies the valid operations
on the object, but does not indicate how the object will implement them internally.

• break a complicated system down into independent components. This in turn localizes
knowledge, and prevents undisciplined interaction between components.

• reuse and share code.”

 These bullets appear to be very attractive, ones that should relate to economic benefits.
We agree with them in principle, but let's look at each of them more carefully.

• Who decides what's irrelevant detail (and therefore hidden)? An engineer should be able
to uncover the (hidden) algorithms, decide what is wanted, and if it's correct. Material
not wanted should be covered up again. Else features are inherited that are undesirable.

• A black box approach is OK after it is built, and tested. But if one has ever tried to test
(or reuse) a black box that is the least bit complicated, one wants to open it up to
understand it, to reduce the space of possible outcomes (tests) by many dimensions. Else,
one is prone to finding out why things are not working after they are in production. To
quote a "quote of the father of C++ ”, from Deep C Secrets, [98]:

 C makes it easy to shoot yourself in the foot. C++ makes it harder, but when you do,
it blows away your whole leg. - Bjarne Stroustrup

Software Survivors PAGE 4 - 7

• Who determines the architecture of "independent" objects? How is it measured? How
does one see the whole picture? Independence can be accomplished without hiding.

• Reuse is desirable, provided one can see inside the box and determine what is needed.
Sharing black boxes is like groping in the dark. Everything should be open to inspection
to see if it warrants sharing. Else we become overloaded - with unnecessary baggage.

 There are subtle points of confusion here. Specifically, one must be able to differentiate
between hiding irrelevant details, protection from change, and reuse. These are three different
objectives that need not conflict. As we shall see, reuse depends directly upon independence and
understandability, neither of which inhibits hiding irrelevant detail or protection from change.

 Apart from the OO concept, there are many reasons why C-based languages are difficult
to understand. We refer again to van der Linden's book, [98], on the use of C and C++ in a
production environment at SUN, where he questions the placement of the burden of translation.
Should it be on the programmer, or on the language translator? On page 64, he states:

"C's declaration syntax is trivial for a compiler (or a compiler-writer) to process, but hard for the
average programmer. Language designers are only human, and mistakes will be made. For
example, the Ada language reference manual gives an ambiguous grammar for Ada in an appendix
at the back. Ambiguity is a very undesirable property of a programming language grammar, as it
significantly complicates the job of a compiler writer. But the syntax of C declarations is a truly
horrible mess that permeates the use of the entire language. It's no exaggeration to say that C is
significantly and needlessly complicated because of the awkward manner of combining types."

 Neither sound economics nor good science can be cited as the framework for this
movement. When engineers think of comparisons, they think of benchmarks that produce clear-
cut economic measures. Example: Machine X runs my job three times faster than machine Y,
and this saves 20 hours a week. But the software field appears to be void of sound economic
measures or real science (repeatable tests and benchmarks). So what were the underlying
driving forces at work to make a C-based language the programmers’ choice?

 OOP is appealing, intellectually. The fact that OOP productivity claims are not
supported by experiment does not seem to matter. Many software approaches have been fostered
by organizations without hard economic forces driving their research. This results in club-house
or hobby-shop technology that cannot stand up to the test of a real competitive environment.
The commercial market in the U.S. was still dominated by COBOL and FORTRAN in 1995.
Referencing the October 1995 article in Inform, [51], studies by IDC, Gartner Group, and
Dataquest show that COBOL alone still accounted for 80% of all business applications. We do
not have more recent data, but the landscape has been changing rapidly since 1985. More
importantly, the number of articles questioning software productivity is now growing rapidly.

 If the picture were simple, it would have already been sorted out. The shroud of
complexity around C-based OO languages has left management subordinate to the claims of the
programmers. But cracks in the dam are appearing. Large projects are becoming less common.
Software problems have cost top executives their jobs, or even forced a sale of the company. In
the next few sections we attempt to shed more light on why the software problem has become
worse - not better.

Software Survivors PAGE 4 - 8

THE GROWING TECHNOLOGY GAP

 As we described in Chapter 3, during the 1960's the financial industry had to deal with
experienced programmers who insisted that accounting applications could only be written
efficiently in assembly language. The real concern were the high school students who were
cutting the cost to build software using COBOL. Data processing managers had to work hard to
dislodge their assets from the hands of the assembly language programmers. It was clearly a job
security fight.

 The modern version of this problem was highlighted by Paul Strassmann, former
Assistant Secretary of Defense for C3I, at a 1992 Ada Symposium at George Mason University.
There he described the necessary transition of the software industry in his speech "From a Craft
to an Industry." He presented the results of a study on the resistance to change in the mode of
production of software by what he termed the "loner programmers," the people that every
computer installation has come to depend on. He said

"You can easily identify them. ... They are immersed in their craft, but find it difficult to
explain or document it. They usually work late into the night, trying to fix a problem
caused by low quality and frequently repaired incomprehensible software. ... They place
little reliance on assistance from others and most likely disregard orderly documentation
and business practices... The computer code they write is unique, elegant, and usually
incomprehensible to others - which explains why they are highly valued as indispensable
staff."

 As stated above, end users do not really care how software is built. They want systems
that help them perform their tasks. Only software people make a living building software. Users
make their living selecting and using systems that improve their own productivity. They don't
care whether their application is totally in hardware or software. If software is used, they don't
care about the language in which it is written. Just like any buyers with freedom to buy what
they choose, users want high quality systems that are easy to use at the lowest possible price.

 The problem faced by system developers today is one of building user friendly systems
that are difficult to implement due to the complexity of options and wide range of functionality
required. Most of these systems are implemented in software. However, programmers are not
trained to design systems, and are not equipped to flush out user needs. They are trained to write
computer programs. And so software productivity is still, today, the most significant stumbling
block in building complex automated systems.

 As Paul Strassmann said, most automated systems are still built as if programming were
an art or craft. Programmers carve out their pieces of code and hope they can be inherited by the
next generation. Programmers do their own designs, build the software, test it, and even answer
customer questions. In most shops, there is little, if any, cross-checking or management
intervention. In many shops, good programmers are called authors. Their desire to see a higher
level of value placed on their craft presents a dilemma to the average manager of a staff of
programmers when it comes time for salary reviews.

Software Survivors PAGE 4 - 9

WHY IS THE TECHNOLOGY GAP WIDENING - INSTEAD OF SHRINKING?

 One does not have to look hard to find articles describing dramatic reductions in the cost
of computer power. Quoting an article from UPSIDE magazine, [71], "The end-user price per
MIP of computer power has gone from $250,000 in 1980 to $25,000 in 1985 to $2,500 in 1990,
and to $50 in 1995. Today it is more like 50¢. But as computer and semiconductor
manufacturing productivity continues to move ahead by leaps and bounds, and the software
productivity index continues to go lower, the hardware-software technology gap gets wider and
wider.

 In an article in 1989, Business Week [16] reported that "Software is the major stumbling
block. For years programmers have been unable to crank out new packages fast enough for
mainframe customers to get the most from their machines. Now, with multiple mainframes,
dozens of minicomputers, and hundreds of PCs, customers are 'over-mipped.' They have
tremendous computing capacity as measured in MIPS - the power to process one million
instructions per second." "But we don't have the software to fill the MIPS" said Robert C.
Hughes, vice-president for industry marketing at Digital Equipment Corp in that same article.

 The article proceeds with "The key is to get programs that are MIPS suckers." "But
there's a catch: It has been possible to automate the design of increasingly powerful hardware.
Creating software, however, remains a laborious and slow undertaking. And the biggest MIPS
suckers are the hardest to produce."

The Case Against CASE

 In another Business Week article two years later, [17], methods for improving software
productivity were discussed, including computer-aided software engineering (CASE) and OOP.
"For years, the industry bet on CASE tools to automate software development. But a recent
survey by CASE Research Corp. shows that fewer than 35% of CASE customers say such tools
have improved programmer productivity or quality. 'There are a lot of people who haven't made
it work yet,' concedes Mike Waters, general manager of Texas Instruments Inc.'s CASE
division." In that same article, OOP was also described as a possible contender for improving
software productivity. However, the article ended the discussion by stating that "most software
experts warn against relying too heavily on such 'silver bullet' technologies."

Resistance To Innovation

 So where is software technology headed? It appears to be moving backward -- toward
the days of cryptic languages. This is apparently the result of a lack of measurement in
programming languages. People tout Java and C++ as the languages of the future. In fact, C is
almost as old as COBOL, being born as B from the Basic Combined Programming Language
(BCPL) in the late 1960's. So age is not the difference.

 The history of C, see [2] and [3], indicates that the people who invented it wanted a
compiler that was easy to write and could fit in a very small computer. (B was designed to fit
into the PDP-7's 8K word Memory.) It was not designed for ease of understanding. C++ was
born out of a similar notation but enhanced with the theory of Object-Oriented Programming

Software Survivors PAGE 4 - 10

 In the first sentence of the preface of their book, The C PROGRAMMING
LANGUAGE, [56], Kernighan and Ritchie state that "C is a general-purpose programming
language which features economy of expression, ... C is not a 'very high level' language, nor a
'big' one, ..." In the second paragraph of the zeroth chapter (CHAPTER 0: INTRODUCTION), it
states that "C is a relatively 'low level' language."

 Probably more important are the abstract definitions of OOP that take old words that
everyone thought they understood, and use them in a different way. It takes time to fit together
all of the new definitions. For example, what is a protected abstract virtual base pure virtual
private destructor (from van der Linden, [98])? But now you know something that clearly sets
you apart. What it has to do with software productivity, in terms of saving time and money for
your employer, becomes immaterial if it guarantees your job for the next few years.

 The security factor is deeply rooted in basic traits of human nature. One of the strongest
forces affecting the acceptance of new technology is the perception of one's job security. This
creates a very strong inertial factor that resists change.

 It is this gap between perceived job security and real job security, resulting from higher
productivity, that has put the OOP-C technology where it is. But if management starts making
accurate economic comparisons in a fair market environment, the reversal will begin. And it has
started. Since 1994, the market for mainframes has come back to life. Marketeers credit this to
the “UNIX After Market” - after buyers realize that the cost to port their software to UNIX and
C-based languages is greater than the hardware savings gained from UNIX platforms. And it’s
not just the cost of the port, or of building new applications. It is heavily influenced by the cost
of supporting the software over the long term.

Separation of Skills - The Requirement of an Industrial Approach

 We submit that separation of skills is the biggest differentiator between a craft and an
industry. The industrial revolution not only automated many jobs, it took crafts and turned them
into industries. This was most apparent in factories, where different job skills were clearly
classified. One did not have to be a craftsman to participate in the production of goods. One
could look to a career path that moved up the line as one increased architectural or management
skills. But such an environment does not exist in software. And this is what is keeping software
from moving from a craft to an industry.

 There is a lack of production-oriented technology in software to support separation of the
skills. In other words, an environment must exist that supports the separation of skill sets. With
everyone using the same set of tools there are no differences. In every other engineering
discipline, there is a clear separation of designer from technician, architect from builder, etc. So
why not in software? Because there have been no tools to provide this separation.

Software Survivors PAGE 4 - 11

The Gap Between Perceived Job Security And Real Job Security

 In a Software Special Report, [17], Business Week posed the question "Can the U.S. Stay
Ahead in Software?" This article described the growing number of software engineers and
programmers in other countries whose price per hour is less than 1/3 of their equivalent in this
country. Thus, the cost of software development in foreign companies could be much less than
their U.S. counterparts, even if they were not nearly as efficient at it.

In that same article, Lim Joo-Hong, deputy director of research at Singapore's NCB
brought out one of the major factors - "Software only needs people. There is little need for a lot
of other resources." In that same article, Edward Yourdon, publisher of the monthly newsletter
American Programmer in New York warned that cheap labor abroad could begin to make low-
level programming jobs in the U.S. obsolete. He was quoted as saying "The only thing that has
prevented it from becoming a crisis so far is that the software industry is growing so fast that we
haven't seen many jobs taken away." The article further warned "Without such entry-level jobs,
the U.S. won't be able to employ large numbers of computer science graduates, further
discouraging careers in the field."

 Yet, in the U.S., when productivity is an issue, we divide into camps. One camp says
"What should we do to shed fat and cut costs?" Another camp says "What should we do to
produce more with our current resources?" And a third camp starts to form a union to insure
that salaries will not be lowered, younger workers cannot be hired at competitive prices, and
anyone with seniority or longevity can't be laid off.

 The approach to be taken certainly depends upon the market situation. If the market is
stagnant or drying up, we better slim down and get more productive at the same time. If the
market is good and possibly growing, we must become more productive, but investments to get
there can help the bottom line by increasing market share. In neither case does the union
mentality hold hope for the long run. Historically, it constrains management to make decisions
that are not economically sensible. This causes a gap between perceived job security and real
job security. Real job security only improves when an organization becomes more competitive,
i.e., when that organization becomes more productive relative to its competition.

THE NEED FOR - AND INERTIA AGAINST - A NEW TECHNOLOGY

 The Structure of Scientific Revolutions by Thomas Kuhn, [57] is a classic work that
describes the nature of scientific revolutions and corresponding paradigm shifts. History is
replete with major breakthroughs that have been stymied by politics for decades before they
were accepted. Change of any reasonable amount must be justified by a sufficient “quantum
leap” of improvement before it can be accepted. Another work by Clayton Christensen, [29],
The Innovator’s Dilemma, tells about the fall of great companies when significant innovation
comes about, typically by small companies. It is first resisted by the large companies - and their
clients, both having large vested interests in maintaining the status quo. This is termed a
“Disruptive Technology.” It must be worth the upheaval from an entrenched approach and the
corresponding investment in retraining.

Software Survivors PAGE 4 - 12

 Change can be promoted swiftly by the glaring failure of existing approaches. In the
software field, failures are becoming more apparent. The disparity in productivity in the
computer field between hardware and software is an excellent example that is forcing the need
for change. Like the ripples before the major wave, change is preceded by trials that provide
feedback into an approach that fills the real need. And that is what we perceive to be the
situation in the software field today. The early waves have occurred because of the obvious
growing need for change. But the real wave has yet to hit the shore. The old mold is not yet
broken.

The Case for a New Paradigm

 For about 30 years, the Moore’s curve held that the number of transistors on a chip would
double every 18 months, and therefore, so would computer speeds. Then in 1997, Dr. James
Meindl of Georgia Tech predicted it was going to flatten. Anyone buying computers can
validate his prediction. In fact, Intel’s Itanium chip, with its 64 bit address space, is capable of
handling a huge leap in memory, but its internal clock speeds are actually slower. As memory
appears to be headed beyond our dreams, processor speeds are stalling.

 But this problem can be overcome. Computers are being built today with thousands of
processors, and using a single operating system to maintain speed, see [26]. They contain
hundreds of terabytes of memory. Also, the ability to handle the cache coherency problem1 in
these computers appears to be under good hardware control. So things still look rosy for
expansion in the computer field.

 But look again. While hardware engineers produce great feats, tearing down barrier after
barrier, looming problems in software have been hiding behind them. Quoting Marcus Ranum,
[77],

 “...I see that Microsoft, Intel, and AMD have jointly announced a new partnership to help
prevent buffer overflows using hardware controls. In other words, the software quality problem
has gotten so bad that the hardware guys are trying to solve it, too. Never mind that lots of
processor and memory-management units are capable of marking pages as nonexecutable; it just
seems backward to me that we’re trying to solve what is fundamentally a software problem using
hardware. It’s not even a generic software problem; it’s a runtime environment issue that’s
specific to a particular programming language.”

 But Ranum’s article is just one example. There is a large group of people experienced in
both sides of the computer field - hardware and software - saying the same thing. More
importantly, the statistics on productivity show that the software industry has been going
downhill every year. But that is not the worst of it. To take advantage of a large number of
parallel processors requires a new approach to operating systems. And here, it seems that we
can’t even get it right for a single processor.

1 Ensuring that data stored in one processor’s local memory is not “out of sync” with that of another processor.

Software Survivors PAGE 4 - 13

 Recent articles about Microsoft’s problems with its new Vista operating system bear this
out. In the Sept. 2005 Wall Street Journal, Guth, [46], describes Microsoft’s delays in its effort
to come out with Vista, a new version of the Windows operating system. It quotes Microsoft
executives saying that there was no architecture!

 This article was followed up by Cusumano in the ACM, [32], where he talks about the
gridlock occurring on the Vista project, stating:

 “We now know that the chaotic ‘spaghetti’ architecture of Windows ... was one of the major
reasons for this gridlock. Making even small changes in one part of the product led to
unpredictable and destabilizing consequences in other parts since most of the components were
tied together in complex and unpredictable ways.”

 It now appears that we are already into an era where the computer field is constrained by
software problems that present barriers to using new hardware technology. To counter this
problem, we must do a reversal on our approach to developing and supporting software. And
this approach must be based upon a new paradigm that takes full advantage of all that hardware.

 What does it take to break the mold? It requires a thorough cleaning of the conceptual
slate of computer programming paradigms that we follow today. It requires a hard look at the
history of evolution, of how we've moved from writing in ones and zeros to where we are now,
analyzing the initial waves of a revolution. It requires a careful distillation of the changes that
have occurred, the improvements in productivity, and most important, the underlying causes for
these improvements.

 In commercial software, one need not write programs or code for many applications
anymore. Systems have been developed that build user interface panels, and generate code
automatically from input charts. Typical financial reports can be generated using similar
automated systems. One need not be a programmer to use these systems.

 In highly technical fields, e.g., communications or computer engineering, system
engineers typically work to understand user requirements and produce automated system designs
based upon powerful hardware facilities. These engineers would just as soon have the
programming part of the project eliminated. One solution: automate the software development
and support process. But how can we do that? As indicated above, we already have in many
areas. Many of these areas involve Computer-Aided Design (CAD) of very special engineering
functions. In this book, we are seeking a similar path for software. It separates design from
implementation by separating architecture from language. Separate skills are then required to
perform these different types of efforts, and the language is easy for a subject area expert to
understand. And this brings us face-to-face with the real problem.

 As described in Microcosm by George Gilder, [40], human inertia is the major deterrent
to innovation. Some seasoned programmers have characterized the new technology presented
here as “unprofessional.” When asked why they consider it unprofessional, they typically reply,
anyone can do it!

Software Survivors PAGE 4 - 14

 In the chapters that follow, we describe a new paradigm for building software systems. It
allows developers to build models of a system in a simulated environment using graphics and
high level languages. Using this approach they can convert their models directly into actual
system modules and then watch the real thing. It follows the paradigm used for CAD of
hardware systems. It presents a new way to build large complex software systems, allowing one
to build live test drivers in a simulated environment to exercise the actual software modules.

 New students of software immediately relate to the ease of use of this new approach.
They particularly like the ability to quickly build sophisticated graphical representations of
information - something they are otherwise not able to do in today’s classrooms.

Software Survivors PAGE 5 - 1

Chapter 5. Objectives Of A Software Environment

WHAT ARE WE TRYING TO ACHIEVE?

 We know of no successful software application that has not evolved with changes once
put into the hands of its users. If new software works well, then as soon as the users start using
it, new requirements emerge. If the developer does not accommodate the desired changes,
someone else will be waiting in the wings. To survive in this competitive environment, software
product developers must have their next upgrade in the hopper, in parallel with the one just
going out, even though it may be months to another release. Allusions to security and long
lasting do not equate to standing still in a world of economic freedom. In today's competitive
environment, the quest for survival implies constant improvement.

 Lowering the time and cost to develop a product does not necessarily imply that it will
cost more to support. It is the overall life cycle economics that one must be concerned with.
Getting an initial product into the hands of users quickly is a well tested strategy by many
successful software companies. Being able to get a product out fast may also imply that we
have the right tools, and the people that know how to use them. This can actually cut the cost of
both development and support. In fact, software history is filled with the reverse case: many
very costly developments have ended up with software that could not be supported.

Software Survivors PAGE 5 - 2

 It is our thesis that if a software environment does not favor ease of design and rapid
prototyping, it will not support products that survive in the real market. Implying that these
features are incompatible with long-term, high quality software development appears to us as
unjustified as the small memory model. Software is built by people - architects and
implementers. If they are provided with the proper environment, including knowledge of
customer economics, and knowledge of the tools and assets at their disposal, they will make the
best economic decisions.

 We start by considering software properties that correlate to minimizing the time and cost
to build and support complex systems. The definition of these properties has evolved from many
years of empirical evidence that we have accumulated building complex systems and
simulations. The most desirable properties of the modules comprising a software system are:

• Reusability

• Scalability

• Understandability

• Independence

 We seek an environment that ensures these properties are realized in the resulting
software in a way that produces the desired economic benefits. This implies an engineering
approach to the design of a high productivity software development and support environment.

 The concept of reusability has been important to the justification of various OOP
paradigms. This is a very important concept to us, in that reusability generally saves time while
improving quality. However, our definition of reusability is surprisingly different from that used
for OOP. We must understand this difference so we can differentiate our paradigms from those
of OOP.

THE MANY DEFINITIONS OF REUSABILITY

 In the OOP paradigm there should be no need to have programmer-A, who wants to reuse
programmer-B's class (module), look within the module to discover how programmer-B has
implemented the functions in that class. For the purposes of our discussion, a class can be
thought of as a software module.

Inheritance As An Approach To Reuse

 If programmer-A wants to use programmer-B's class, he incorporates it as a subset of the
class he is building. If he wants to change the meaning of a function in the "reused" class, then
he can define the implementation of the named function within the current class and it will
automatically take on the new meaning. However, he will not have access to the functional
implementation of the original class. This inhibits changes by anyone other than the original
author - a protection mechanism.

Software Survivors PAGE 5 - 3

 We quote Kenneth Rubin, [83], in Encapsulating Change:

"By limiting the knowledge of how a particular function is performed to one place, we
promote reusability and shield the system from the effects of change. When change does
occur, its effects can often be limited to the inside of a single message. As long as the
object still behaves outwardly the way it always did, the rest of the system will be
unaffected. Brad Cox put it well in his book, Object Oriented Programming, An
Evolutionary Approach: 'Objects build firewalls around change.' "

Using this approach, software is built having one black box inherit another, and so on. With just
a few layers of inheritance, the unused baggage that must be carried can become excessive. To
alleviate this problem, one may use special linking loader facilities to insure that only those
functions actually used in the program will be linked in.

 The paper by Rosen, [81], provides excellent examples of the problems with inheritance,
challenging basic OOP concepts. He cites the lengthy interchange among programmers on OO
bulletin boards regarding the reusability of classes. Clearly, inheritance has to be convenient,
i.e., it has to save time and money over the life cycle of a piece of software if it is to be a
desirable property. Rosen also points out the relative nature of measures. Almost any high level
language is much better than writing in ones and zeros. Therefore, anyone could say that all
high level languages are good, or at least much better.

 Thus we must qualify the words good or much better relative to a reference frame to
ensure they are meaningful. On this basis, Rosen draws the conclusion that "The popularity that
OOLs (object-oriented languages) have achieved necessarily means their use carries a number of
benefits. Many of these benefits, however, are most noticeable only when compared with older
programming languages such as Pascal or C."

 Rosen’s paper shows how different people within the OOP community look at reuse
differently. He dissects the problem of inheritance as a means for reuse that allows a
programmer to bend the inherited properties within his own class to meet his design criteria. We
fully agree with his conclusions on how this leads to a string of tightly connected dependencies
that are difficult to maintain.

A More Careful Look At Reuse

 We encourage the reader to stand back and observe how the waters are easily made
murky by arguments that are not tied to real economic measures, based upon real software
experiments and their outcomes. This has led to different definitions of reuse that are on
different direction vectors relative to the economics of software life cycles. Specifically,
measures of software economics are not invariant to the hardware environment - the computing
machine itself. The availability of huge amounts of memory at very low costs has changed the
way programmers justify their time. We predict that parallel processing power will provide even
greater dislocations of economic reasoning, once a software environment becomes available that
is as friendly as that of a single processor.

Software Survivors PAGE 5 - 4

 Let's take a practical example of reuse of a complex software module, e.g., one that
manages large databases for direct access. One typically devises a method for rapidly retrieving
keys in main memory that can then be used to retrieve records directly from disk. One prefers
not to start from scratch to write a linked list, or other lookup method to manage the key index.
Typically, one cannot reuse the same module in the sense described in Rosen's paper.

 Most often, 5% to 25% of the design must be changed. Given a good design, it typically
takes much less time to change and test an existing module than it took to build and test that part
of the original module in the first place. Using the modular approach that we prescribe, one
simply copies the old module, and starts making the changes. Even if both modules happen to be
used in the same task, concerns about duplicate code are typically insignificant when compared
to other factors that swamp out the economic effects.

 For example, duplicate code merely means more memory is being used. So what? One
must compare the price of memory to the time it takes to change, test, and support a design so it
can use old code. Many cases that we are familiar with, involving a reasonably large module,
would be sidetracked into becoming a relatively large project, just to figure out how to meet the
requirement without changing the existing module. In fact, the solution could end up convoluted
and hard to understand by anyone other than the original author. This would lead to significant
cost increases in the support years.

 Moreover, it is typically only the instructions that end up in the duplication issue. The
data buffers are usually independent. But, the instruction set is usually small compared to the
database. One merely has to compare instruction swap space to data page space utilization in
most programs to see this.

The Large Memory Model

 If one is concerned about speed, then duplication wins hands down. Trading memory for
speed is what today's large memory model machines are all about. In retrospect, the modular
approach permits one to go down inside a module, pull out the relevant submodules, and create a
new module, an architectural option. It allows the architect to consider more aspects of the
design, create more easily reused submodules, and maintain a good architecture, one that will
support future changes. The architect is the best one to make this decision, on a case-by-case
basis. This normally results in an all-around enhancement when completed.

 We must emphasize that the hardware world has moved to the large memory model today
- leaving the small memory model behind. There was a time when memory designers talked of
the limitations they faced in terms of size, speed, and cost. But today we have it all! It’s big,
fast, and cheap, particularly when compared to software development costs. Writing software to
fit into small areas of memory is a poor use of resources. Trying to manage memory better than
today's virtual memory managers is also a poor trade. In fact, unless you turn off the system
memory manager, it will take your manager, slice it up, swap it and page it back and forth
between the hierarchical hardware memory layers, as it does its own thing.

Software Survivors PAGE 5 - 5

Inheritance Inhibits Ease of Reuse

 Proponents of OOP lead us to believe that “black box” reuse via inheritance is a
discipline to which programmers should adhere. Based upon our experience, this type of
discipline does not correlate to improved software quality or productivity. The problem is this:

• inheritance inhibits both understandability and independence, the two major factors
affecting real reusability.

Rosen's concern with inheritance supports our view. Anything connected to an old module
represents a dependence that is potentially messy. Dependencies must be well understood, else
the new module will be hard to extract and test as well as to maintain.

 As an example, assume that we wish to improve a module. With inheritance, and the
consequent hidden code, we may have little knowledge of the implication of a change. To gain
that knowledge, we may need to see everything connected to that module. This does not inhibit
protection mechanisms that ensure unwanted change will not occur.

 We have no objections to hiding code that we do not wish to see, since it may cloud the
issues of concern. But if we wish to understand what is going on inside a module, we may need
to see it all.

 Inheritance may inhibit independence. If an old module is inherited, the new module
may have dependencies on the inherited module that are invisible to the new module. If we
inherit the new module somewhere else, the problem is compounded, as these hidden
dependencies cascade.

WHAT ARE THE REAL OBJECTIVES?

 We believe one of the major objectives is a open environment, where visibility and
protection are both very high. We fully understand the importance of tightly controlling changes
in a production environment. This involves making decisions based upon business goals as to
what should be changed, deciding on priorities, and managing access to those modules that have
been authorized for change. This must be followed by highly disciplined regression testing,
including controlled changes to, and growth of, the test driver packages.

 To implement the open approach, software modules must be protected from unauthorized
access. But once the access is authorized, those given the responsibility for change must be able
to drill down to any level of detail required to understand the logic. This includes having access
to the complete details of relevant modules that they are not authorized to change. Experience
shows that visibility leads to better solutions, including a potential management decision to
change something not previously authorized. It is common to decide that the real culprit is a
different module that, if changed, makes the problem easier to solve, and solves similar future
problems.

 As another case, one may decide to copy (and rename) a module not authorized for
change. Then that module can be changed to solve the original - as well as other - problems for
different modules. This does not affect the independence or protection from unwanted change of
the original module. Controlling change is a protection issue - not a visibility issue!

Software Survivors PAGE 5 - 6

 Another objective is the ability to isolate problems quickly. One should not have to plow
through layers of modules or code to find out they are irrelevant. This implies the ability to
quickly perceive where the problems are and what must be added or changed. This is an
architectural issue. Experienced hardware designers have learned to inject layers of isolation
between modules to ensure their independence.

 The property of independence is directly applicable to software. This becomes obvious
when one can “see” the architecture. But one must first realize that architecture can not be seen
from the code. This implies that the architecture must be visualized or drawn, an engineering
approach. This also implies that we must have an unambiguous - one-to-one - mapping from the
architecture to the implementation (code), just as we do with drawings in other engineering
disciplines.

The Importance Of Understandability And Independence

 In a production environment, one would not reuse a module without verifying its
operation. This can be done in two ways. One can take a black box approach (OOP) and
validate the input-output relationships. This implies running all tests necessary to learn what
will happen with all possible inputs. But, as illustrated above, inheritance causes the level of
complexity to go up exponentially with the ancestors. Thus the dimensions of the test space can
become enormous quickly as the concatenated sets of black box responses grows, making testing
very difficult.

 Alternatively, one can limit verification tests by having a detailed understanding of the
internal design of a module. This leads to the first most important property from our economic
standpoint - understandability - of the details of a module.

 In the world of computer simulation, where validity is a hard constraint, one could not
sell a model on a "black box" basis. Engineers must be able to easily understand what is inside
the model so they can validate it from a specification standpoint. They want to review
engineering drawings, and read data structures and rule structures, as if they were written
specifications. They want the ability to get in and make changes easily, to suit their own needs.

 Our objective is to provide the same open view in software modules. This in no way
implies lack of protection of the original module. Nor does copying a module imply the creation
of an unnecessary redundancy within a given system. Most of the original module may be used
as a utility, maybe by many other modules where appropriate. We want our development teams
to be concerned about the trade-offs of getting the initial product built - using minimum time and
resources - versus the efficiency of the end product in terms of running times and memory
utilization. Most important, we want our teams to know that if good initial products are built,
they will be reused over and over - provided they can be easily understood, validated, modified,
and supported by other than the original teams that built them.

Software Survivors PAGE 5 - 7

 The fact that a module may depend on many other modules in a tightly coupled manner,
leads to the next most important property - independence. When a module is independent, it has
minimal coupling to other modules. This implies it shares only those attributes required for its
specific function. At this point, we must point out the practical problems versus the theoretical
problems, and take an engineering approach. If everything is working properly, independence
can be ignored. It does not affect the operation. But make a change, or encounter a problem
from a user, and independence leaps to the forefront.

 As indicated above, independence is an architectural design property that cannot be
appreciated unless one can see the architecture. An architecture that provides a high degree of
independence of modules provides for fault isolation, an important property of hardware design.
It also supports understandability, since the scope of concern is limited.

A REVIEW OF SUCCESSFUL ENGINEERING PRACTICES

 When skyscrapers, bridges, and aircraft are built, the probability of failure must be
reduced to extremely small percentages. Architects and designers of these systems must produce
reliable design plans and accurate time estimates to avoid what become highly visible mistakes
or failures. This is generally accomplished by reusing previously proven designs. To lay the
ground work for a new approach to software, we will first review some long-standing
engineering practices that have evolved to protect against project failures. See, for example,
Jesse Poore’s article, [73].

Engineering Drawings

 In electrical, mechanical, aeronautical or architectural engineering environments, the
requirement for design reusability is so obvious that it goes unmentioned. In these
environments, a design, and its corresponding specification documents, are controlled by
engineering drawings. When people buy a design, the most critical piece they buy is the set of
engineering drawings. The drawings graphically depict the architecture. The specifications
provide the details.

 Prior to its automation, engineering drawing was a required course in most engineering
curriculums. It is a discipline for carefully representing complex architectures pictorially. It is
implemented as a formal method of documentation, complete with standards for controlling
multiple sets of drawings, interconnections between drawings, revisions, etc. Drawings provide
for references to more detailed drawings in a controlled hierarchy, as well as sets of carefully
written specifications. The intent of the drawings and specifications is to allow someone other
than the original designer to build to the drawings and specifications.

 The most critical difference between engineering drawings and graphical approaches to
software is that engineering drawings are a precise depiction of the connectivity of the physical
entities being described, with no ambiguities, relative to the desired specification level. If one
reviews engineering drawings of circuits, chips, boards, machines, etc., every icon and
interconnect line represents a physical element.

Software Survivors PAGE 5 - 8

 If one reviews graphical depictions of software, e.g., block diagrams, state diagrams,
bubble charts, structure charts, Booch diagrams, etc. everyone contains layers of abstraction with
ambiguities within the desired specification level, i.e. there is no direct mapping to the elements
of code.

 This suggests that we need an engineering drawing approach to software that eliminates
these ambiguities and maps the elements of a drawing right to the code. The approach that
achieves this objective is derived from the Separation Principle, developed in 1982 by Cave,
[23]. The Separation Principle separates data from instructions, a basic paradigm switch from
programming languages, and particularly from OOP. It provides the framework for drawing
software architectures, automating the design process, and changing the paradigm of
programming as we know it. It provides for visual design reviews of the engineering drawings
that get right to the heart of problems before they get out of control. Engineering design rules
can be checked by a quick visual scan, or even automatically. We know of no other approach
that does this. It is described in detail in the chapters that follow.

Separation Of Architecture From Detailed Implementation

 In hard engineering disciplines, architecture is separated from construction or fabrication.
Engineers design the architecture and then oversee the construction or fabrication process. They
don't bend the metal, solder the joints, or drive the nails. Engineers may not possess these skills,
skills that often require craftsmen that have been trained over a number of years. Masons,
carpenters, plumbers, electricians, sheet rockers, painters, etc. do not meet and decide to build a
building. They are given a detailed set of architectural drawings and specifications to follow.
The architect oversees the construction of his design to make sure that his drawings and
specifications are being properly interpreted and followed.

 There is no such separation of skills in the programming world today, particularly with
OOP. Object Oriented Programmers get together and decide on the objects to be built, and who
should build them. Then they proceed to build them. (A common joke in the industry is that
interfaces are designed by the first programmer that gets there.) It has been said by many people
who lived through the software revolution of the '70s that OOP killed top-down design in one
shot. As a result, it has killed the concept of system architecture as being a separate discipline
from writing code in a programming language, a problem emphasized by Strassmann, [94].

 The approach that we advocate provides the natural separation of skills, between
architecture and detailed implementation, as in other engineering environments. Architects
produce the drawings and top level specifications, people skilled in constructing detailed data
structures and algorithms complete the final product in a somewhat natural language. No one
writes computer code using a typical programming language, e.g., C++ or Java. C and Open-GL
code is generated automatically. By raising the level of understandability and visibility, the
importance of architecture and its effects on reusability become apparent.

Software Survivors PAGE 5 - 9

Designing Reusable Modules

 To design reusable modules, we must decompose the functional parts of a system and
organize them into a convenient framework that provides visibility of architecture and clarity of
detail so that people other than the original designer can easily understand it. In hardware, this is
done by creating a design that breaks the system down into a well structured set of independent
modules, i.e., they can be tested and supported independently from the rest of the system.

 The most important properties of good reusable software modules are the following:

UNDERSTANDABILITY

• Visibility - of the separate functional aspects of each module, the
interdependencies of each, and thus the structure of the system;

• Clarity - of detail, as well as structure, so that they are quickly understood,
revised, and enhanced;

INDEPENDENCE

• Isolation - between the parts to minimize their interdependencies;

• Protection - of modules from being inadvertently changed in a way that
would cause other modules not to operate correctly (regress);

These properties also determine the scalability of a system, i.e., its ability to expand to provide
much wider functionality.

 To achieve these properties, one is faced with the problem of achieving visibility and
clarity while providing isolation and protection. From the OOP perspective, these desires may
appear to conflict with each other. The resulting OOP solution appears to ignore visibility and
clarity. Such a solution fails when one builds very large systems.

 The key facilities required to support the modularity properties are:

• Separation of architecture from detailed implementation.

• Graphical depiction of the architecture

• Languages that support the above two bullets

These are introduced below.

COMPUTER-AIDED DESIGN AT THE SYSTEM LEVEL

 Automation of programming has already been accomplished successfully in the field of
Computer-Aided Design (CAD). In the 1960's, engineers who required complex simulations to
support difficult electronic designs were highly dependent upon programmers to implement the
models and simulations. Today, engineers build very large complex models and run simulations
using CAD systems without anyone writing computer programs.

Software Survivors PAGE 5 - 10

 Using the approach described here, engineers describe the software architecture and
algorithms for complex systems in their own terms, using graphics and natural language. This is
a CAD approach to building software systems, a vision described by Jesse Poore, [73]. An
illustration of this approach is shown in Figure 5-1. It is taken from a product called VisiSoft
that we describe later.

COMPUTER-AIDED
DESIGN
OF THE

ARCHITECTURE
USING GRAPHICS

VSECAD 6/30/04

Others
AUTOMATED

SYSTEM
CONCEPTS/

REQUIREMENTS

DESIGN AND
PROGRAM

IN A
PROGRAMMING

LANGUAGE

IMPLEMENTATION
USING NATURAL

LANGUAGE

IMPLEMENTED
SYSTEM

R

Figure 5-1. Computer-Aided Design (CAD) at the system level.

 For drawings to provide a precise definition of the desired engineering design solution,
they must be free of abstractions or ambiguities at the level of specification required. An
example is the graphical depiction of the logical or electrical design of a system. One sees
various types of gates and flip-flops interconnected with specific wire connections. There are no
abstractions, and therefore no ambiguities, between the design and implementation level. A flip-
flop may be implemented in many ways at the electrical level, and one can argue that the symbol
of a flip-flop represents an abstraction from the detailed electrical design standpoint. However,
at either the electrical level or logical design level, there are no ambiguities.

 In OOP, the design is implemented at the programming language level, with the classes
or objects being defined in the language. There is no architectural view of the structure, no
detailed drawings, only descriptions of functions or messages that are associated with classes of
intentionally hidden code in a language, e.g., C++.

 The same freedom from ambiguity should exist at the architectural design level in
software. It is our assessment that current diagrammatic approaches to depicting software,
including those of the CASE and UML systems, have a layer of abstraction between the top level
design and the detailed implementation (code). This is because of the ambiguity of what the
interconnections depict.

Software Survivors PAGE 5 - 11

 To provide a CAD approach, the interconnection of well specified blocks of code must be
defined precisely by the drawing, without ambiguities between the architecture and the code.
Our intent is to show the reader that we now have the same level of CAD facilities available to
support designers of general software systems as those used for engineering design in other
disciplines. This is CAD at the system level, not just the chip or board level as it currently exists.

Architecture Versus Detailed Implementation

 Engineering CAD systems serve a particular design or implementation purpose using an
integrated set of tools. This is apparent in computer system design where one has different CAD
tools to support logical design, electrical design, chip mask design and printed circuit board
design. These design tools have been integrated to eliminate design ambiguities as one moves
from the logical layer to the electrical layer to the chip and the board. They are used by experts
at the different levels, although the experts at the electrical level generally understand the design
problems at all of the levels.

 Software organizations tend to lack this hierarchy of expertise. There are applications
specific experts, and “systems” experts (OS, communications, etc.). But there is no hierarchy
from the specifications to the implementation of an application. The approach offered here
introduces a precise separation of the design of a system's architectural structure from the
detailed implementation of its elementary modules. This provides a focal point between
architecture and implementation. There is no doubt about who is responsible for what. The
structural architecture requires an expert who knows how to design large complex systems. The
detailed implementer has expertise in implementing modules - more of a coding function.

 This separation provides for management control of the total design through an
architecture environment, and the corresponding engineering drawings that are produced.
Design reviews are at the drawing level. It does not take knowledge of a programming language
to understand whether a design is good or bad. An architect can generally look at the drawings
and determine if the design structure is good, without getting into details of the implementation
of a specific module. We note that, as in engineering, architects generally know both. But
electricians and plumbers, although certified in their skills, are not architects.

Support For The Software Life-Cycle

 Figure 5-2 depicts the typical steps in the life-cycle of a software product. A successful
product gets used for many years. It evolves to meet new user needs during its lifetime. The
figure shows the iterative steps to building and supporting a system. If the design takes this life-
cycle of constant change into account, then the architecture must evolve to support the changes.
As in hardware, this implies breaking the overall system into individual modules within a system
that are maximally independent. The shaded area shows the focus on this type of design. One
must continuously reconsider the overall system architecture as well as the individual module
architectures that implement the evolving design.

Software Survivors PAGE 5 - 12

SYSTEM LIFE CYCLE

PRODUCE NEW SYSTEM
REQUIREMENTS DOCUMENTS

PRODUCE NEW END USER
 PROCEDURES DOCUMENTS

PRODUCE DETAILED
ARCHITECTURAL

DESIGN

IMPLEMENT AND TEST
MODULES

INTEGRATE MODULES
AND TEST SYSTEM

DELIVER / INSTALL
AND SUPPORT
NEW RELEASE

LifeCycle 8/21/06

ARCHITECTURE

IMPLEMENTATION

Figure 5-2. Typical steps in the incremental development of an evolving system.

 To insure reusability of modules and the ease with which a system can be understood,
one must produce an architecture that supports ease of implementation of the attribute and rule
structures of the modules. This is no different from constructing a set of complex buildings in a
real estate project. One would not consider calling in the carpenters, electricians, plumbers, etc.
without a set of architectural drawings that provides these people with all the details needed to
ensure that everything they implement will go together to form a high quality integrated product.

 It is essential that the overall architecture of a system be well designed. For example,
large systems may be split into multiple tasks, each being highly independent pieces that
simplify development and support. Separate tasks may run on separate processors,
communicating via multiple networks. Deciding how to split the system into separate tasks is
clearly an architectural design question. Breaking out the top-level modules of a task into
submodules is also a major architectural issue. This requires that critical interfaces are specified
at the module architecture level.

Software Survivors PAGE 5 - 13

 One must specify, if not design, some of the detailed layers to the level of the data
structures at their interfaces, and specify what rule conditions will be needed, before finalizing
the architectural design. This implies an iterative approach to the design as shown by the arrows
in Figure 5-2. Having an architecture that accommodates change is necessary to accurately
estimate and control a new release.

 As detailed implementation proceeds, and more information is understood about real
system details, one may determine that architectural improvements are needed as certain
modules evolve. As a system starts to produce output results, and one finally faces what is
important, it may be necessary to significantly enhance, or even add, modules in the architecture.

 A system must be designed so that these problems are accounted for at the beginning, not
when someone is expecting final results. We believe that the most significant factor affecting
the cost of structural modification is the manner in which the architecture is designed. It must be
designed so that the inevitable forces of change are easily dealt with, accommodated, and
controlled. This is covered in Chapter 8, “Software Architecture”.

 Our approach is tailored to support the ease of understanding and evaluation of system,
task, and module architectures through the use of engineering drawings. This insures the
development of architectures that permit major changes in task and module structures with
relative ease. To take advantage of this facility, one must apply the appropriate discipline to the
architecture phase of a system. The detailed architecture must be completed first, and a set of
drawings reviewed and approved. The drawings must be inspected to determine if the design
provides for module independence and ease of restructuring.

 Those who have developed multiple successful software products know that the constant
requirement for change is a major factor in the life cycle of complex software systems. For
them, the lesson is obvious. The software survivors will be those with the ability to control
increasing complexity, and this requires the ability to adapt to continual change.

 We agree with the basic premise of DeMarco and Lister in Peopleware, [36]. The
cultural and sociological environment in which creative people must work is important. Their
attitudes must be directed positively toward solving problems that require intensive thought and
concentration. Providing these people with the proper tools and management environment is
critical to maintaining that attitude. And, as Deming implies, happiness (survival) stems from
constant improvement - on all fronts.

 Designers and implementers must understand that their value depends upon economics as
defined by the buyer of the software they produce. This must be perceived from a life cycle
standpoint. Everyone must be well informed about customer desires, satisfactions, and
complaints. The attitude of the designers and implementers toward survival is important. If they
can relate the survival of the software they are building to their own personal value and survival,
then they are in the best position to make the economic decisions on how to do both the
architecture and the implementation.

Software Survivors PAGE 5 - 14

IMPLEMENTING REUSABILITY

 By our measures, reusability of a module is determined by the following factors.

• Range of Functionality

• Scalability

• Understandability

• Independence

 The wider the range of functionality, the more likely that a module can be reused in a
new application. This is obvious from questions like "Does your module contain ... ? If not,
what will it take to incorporate it for my application?"

 Scalability simply implies that the range of functionality is easily expanded. One must
consider this from the standpoint of adding new functions as well as expanding an existing
function.

 A high degree of understandability simply implies that no special knowledge is required
to understand the module description. Anyone with a good knowledge of the particular
application being developed should be able to understand these descriptions. In other words, one
should not have to learn a new language to determine whether a module is valid and desired.
One should only need to know what the module is supposed to do functionally.

 Independence is determined by the ease with which one can pull out an old module and
replace it by a new one, or test it independently in a separate test jig. This, in turn, is determined
by the amount of connectivity that the module has with other modules in the system, and can be
determined by the number of interconnections between modules as shown on the engineering
drawings. This is hardly different from the measure of independence of a hardware module.

Productivity

 From the above, we conclude that productivity depends upon understandability and
independence. We have drawn an illustration of these two factors, postulating their relation to
productivity in Figure 5-3 below.

IN
DE

PE
ND

EN
CE

UNDERSTANDABILITYPRODVECT 9/20/04

PRODUCTIVITY

Figure 5-3. Relationships among productivity, independence, and understandability.

Software Survivors PAGE 5 - 15

 Clearly, there are a number of additional factors that correlate to productivity, and also to
independence and understandability. The purpose of the illustration is to show simply that
productivity relates to the components of independence and understandability. We admit that
assigning quantitative values will depend on many things, and may be difficult to measure. But
we must begin the measurement process.

 Looking at the above figure, one can perceive understandability as being measured in
man-hours for someone, other than the original author, to understand and change a given module
in the support mode. One can perceive independence as being measured in man-hours to
independently test the changes to that module. Productivity is measured in man-hours to
complete a change to a module, i.e., to modify and test it. The time to change the module will
depend upon its independence as well as its understandability, and this is where orthogonality
must be considered. We advocate experiments that would further quantify these properties, and
believe such research efforts would result in very important contributions to a real science of
software engineering.

 As we will see in later chapters, using the VisiSoft environment, we can get a
quantitative measure of independence in terms of a connectivity matrix, i.e., a measure of what
processes (instructions) share what resources (data). We can also take economic measures of the
time it takes to independently test modules with different levels of connectivity, in isolated test
jigs. Understandability could be measured along the lines of Fitzsimmons and Love, [38], and
Ledgard et al, [59]. All we are trying to accomplish here is to articulate the hypothesis that
productivity increases directly with increased independence and understandability, and to
suggest approaches to the scientific experiments required to establish its validity.

THE NEED FOR AN ARCHITECTURE ENVIRONMENT

 OOP does not have a true architecture environment. Everything is done inside the
programming language. Although Rational Rose and Borland offer an environment, they are
built around C++ where architectural design functions are performed inside the language. This
assertion will be made clear in the next few chapters.

Achieving Scalability Via Hierarchies

 As indicated in Chapter 2, scalability is a measure of software size that can be achieved
under full control. It also determines the ease with which a software product can continue to
grow - under control. Scalability is a major driving force in promoting good architecture. The
reasons stem from basic principles of controlling complex systems and organizations,
particularly those that are growing and changing.

 The military provides an excellent example of the problem of an organization
maintaining control of its assets under extreme change - even near chaos. It is well known that
such systems are maintained and changed using hierarchies of control. In the military, this is
known as the “chain of command.” It is highly organized for quick decisions and rapid
responses. It is not a bureaucracy (they can be flat organizations). Hierarchies are also key to
controlling the design and manufacture of complex engineering systems. This is most obvious in
the aerospace industry for the construction of large jet liners.

Software Survivors PAGE 5 - 16

 Using hierarchies to achieve scalability is also obvious in software, once the paradigms
are in place to observe them. Unfortunately, in the current software field, hierarchies appear to
be an anathema. In fact, they are a critical characteristic of complex data structures, complex
rule structures, and complex architectures that are scalable. This will be apparent in later
chapters.

Graphical Depiction Of The Architecture

 Our approach draws on experience with hardware modularity and the use of engineering
drawings to provide visibility of the design hierarchy. This includes a measure of module
independence that ties directly to the time and cost to test, support, and reuse a module. This
requires that the architecture be precisely defined by the drawings, with no ambiguities. It
requires a clear focal point as to what is architecture and what is implementation.

 To accomplish this requires that we have graphical visibility another layer down, to the
interconnection of data and instructions. This can only be accomplished if we can review a one-
to-one mapping of each, implying data and instructions must be distinct, separate elements on a
visual diagram.

Separation Of Data From Instructions

 Figure 5-4 contains the layout for one of IBM’s PowerPC RISC chips. It is
representative of today's modern machine designs. There are separate Instruction Cache and
Data Cache, Instruction Tags and Data Tags, Instruction Memory Management and Data
Memory Management, etc. The same instruction sets can act on different data sets. So, when a
compiler generates assembly language, and the assembler generates machine code, data is
separated from instructions for management inside the machine on a very general and
dynamically natural basis.

 Understanding the internal processes of a computer helps us to take advantage of the
technology. For example, data gets operated upon by instructions. Instructions are fetched from
memory and typically cause the values of the data portions of memory to change. We may add
one memory area to another memory area, putting the result back into one or another memory
area. It may get copied from one area, possibly transformed using registers and the
arithmetic/logical operation units, and the result put into the same or another memory area. Data
does not flow from one spot to another. It gets transformed as a function of time. If X is a
generalized “data vector,” then one can write X(T+1) = A*X(T) where A is a generalized
transformation on the data vector of interest. If one considers external inputs as U(T), then one
has X(T+1) = A*X(T) + B*U(T), a well-known general dynamic operational form.

 Taking this concept one step further, consider that a data vector is a subset of the total
data set (memory area) available to a task. If X is the data vector available to a particular
process (set of instructions) within the task, then X(T) is the state of that data vector before it
executes, and X(T+1) is the state of that data vector after it executes. The operator A represents
the transformation on that data vector as process A executes between time T and T+1.

Software Survivors PAGE 5 - 17

Reprinted with permission from /AIXtra, IBM’s Magazine for AIX Professionals.

Figure 5-4. The IBM PowerPC 604 RISC chip.

 We now define generalized data vectors as Resources that may contain strings of
characters or words as well as numbers. Processes transform resources from state to state. We
call this a generalized state space.

Software Survivors PAGE 5 - 18

A CAD APPROACH TO SOFTWARE

 Figure 5-5 illustrates a CAD concept applied to software. This figure illustrates module
hierarchies, with some modules covered - others showing details. Modules are uncovered with a
mouse click. At the detailed level, small ovals represent hierarchical data structures (resources)
and the small rectangles represent hierarchical rule structures (processes). To have access to the
resources, processes must be connected by a line. Note that some resources are shared, having
connections to more than one process. Others are dedicated to a particular process. Colors
indicate type of module. The module shown in the figure is a library module, called from other
modules.

UD

UD

FPPS 05/02/04

PROPAGATION_PREDICTION

PROPAGATION_PREDICTION

Figure 5-5. Illustration of primitive data elements connected to primitive instruction elements.

 This approach requires a complete paradigm shift from current computer programming
methods. It provides a one-to-one mapping from the architecture to the primitive language
elements with no ambiguities regarding how they are connected. In Chapter 6, we will show that
this paradigm is derived directly from that used for representing general dynamic systems in
control system engineering. We shall also describe the profound implications that this approach
has on the separation of architecture from language, and the ability to insure that only the
architects can change the architecture; implementers (coders) cannot.

Software Survivors PAGE 5 - 19

 This approach was driven by the need to develop large scale simulations of
communication and control systems, simulations that must run very fast - on parallel processors
under a single operating system. This led to a breakthrough - now called the “separation
principle” - that separates data from instructions. Conceived in 1982 by Cave, [55], this
approach allows one to track software module independence, and automatically allocate
processors to processes at run-time on a large parallel processor. Module independence is
determined by the number of external connections between a particular module and other
modules in the system. This can be determined by visual inspection of the drawing.

 The separation principle provides the basis for engineering drawings of software, with a
one-to-one mapping from the drawings to the code, a true form of software architecture. As in
other fields, architecture is much more graphical than algebraic or textual. Whether designing
machines, ships, or buildings, architects produce drawings. These drawings are not
“approximate” or suggestive, but precise engineering specifications used directly in production.
Until now, drawings of software were abstractions to aid in design, but not of much use in the
actual production or support mode. Just as important are the separate languages that define the
data and instructions. They are read easily by non-programmers, a requirement for subject area
experts validating complex models.

 This CAD environment has evolved over hundreds of successful software and simulation
projects, and is now a fully integrated product for developing software. Prior to this CAD
approach, software architecture did not exist, an observation that is immediately apparent upon
seeing it. After using it, one quickly draws the analogy between current programming
approaches, and architects in other fields trying to produce designs without drawings. It is
readily apparent that one cannot determine the independence of software modules without the
ability so see a picture of the architecture. The recent articles about Microsoft’s problems with
its new Vista operating system bear this out, [32], [46].

Architecture Versus Flow Charts

 In Chapter 3 we noted the introduction of flow charts during the era when programmers
wrote in machine code or assembly language. This was because the statements on the flow chart
were more readable. In particular, instructions that transferred control took time to understand.
Furthermore, a single flow chart element typically represented multiple instructions. A single
box may have had an equation in it, and a test and transfer diamond could split in three
directions. However, as FORTRAN and COBOL appeared, flow charts became cumbersome
compared to the code because the statements were more easily read and understood. A good
language covered as much on a line as did an element on the chart, and took a lot less paper.

 The disadvantages of flow charting became more pronounced with languages having
more readable names and good control structures, eliminating the use of the GOTO. This did not
stop people from wanting flow charts, and programs appeared that created flow charts from
COBOL code. The classic joke was that flow charts were created automatically and attached to
documentation - but no one ever looked at them. Productivity was clearly improved using a
good language instead of diagrams of what the language was saying. Flow charts diagram the
language inside a process, not the architecture as described here.

Software Survivors PAGE 5 - 20

Generalized Data Vectors And Transformations

 Our use of the term drawing in conjunction with architecture has nothing to do with flow
charting (or similarly state diagrams). Flow charting represents the flow of control in a routine
or program. Most software people who have worked on large complex data systems for a long
period of time will quickly point out that it is the data that drives complexity. The manner in
which one breaks up the database, comprised of all of the elements used to make decisions as
well as used in operations, is key to the architecture. Flow of control follows.

 As described above, using state space equations in engineering (or the equivalent),
systems are represented as transformations that take place at a point in time. If the
transformations are properly designed, then the changes unfold in time as desired. The systems
are not represented in terms of a flow diagram. The are represented in terms of a state vector and
transformations on that state vector. The architectural approach defined here is basically the
same, except that we have extended the concept of a state vector to a generalized state vector (a
resource) where symbols and words are not restricted to numbers, and transformations
(processes) are not restricted to mathematical operations. These are implemented using data
structures and rule structures respectively.

The Drawing - Language Breakpoint

 There is clearly a transition point between language and drawings. Where should that
point lie? We offer the following generalizations. Drawings will be used where they improve
productivity over language. Language will be used when it improves productivity over
drawings. We note that productivity as used in this book is defined in Chapter 2, being
measured using loaded costs and life cycle time measures in a competitive product environment.

 In the building industry example, architects provide sets of written specifications with
their drawings. The drawings are the top level control system. They reference the specifications
for more details. So just as productivity suffers using all language, it would also suffer using all
drawings.

 We have described the productivity advantages of flow charts when writing in machine
code or assembler, and the loss of those advantages when higher level languages were
introduced. This was particularly true with the advent of COBOL, with its understandable
names and dramatically improved control structures. This is indicative of a breakpoint between
language and drawing.

 A flow chart could apply to the language inside a process as defined above. But, as
indicated, flow charts stopped being used when good languages were developed. With more
understandable names, good control structures, and no GOTOs, flow of control is best
represented using language statements, as opposed to diagrams.

 But flow charts are a totally different concept than the drawings described here. The
architectural breakup of a system’s total database - and the transformations on subsets of that
database - are best represented using drawings that cover a hierarchy of modules within the
architecture. As we shall see, this also supports a top-down design approach.

Software Survivors PAGE 5 - 21

A LANGUAGE ENVIRONMENT TO SUPPORT THE NEW PARADIGM

 We must now consider a language environment that supports the other new paradigm -
separation of architecture from implementation. As mentioned above, this can only be
accomplished by the separation of data from instructions. This is accomplished with another
significant paradigm shift. Instead of a single language, there are three: one to describe data
structures (data), one to describe rule structures (instructions), and one to specify controls and
interfaces for tasks that represent the combination of modules in a “executable program”. This
allows designers to focus on the features of each language to ensure clarity of detail, and
eliminate the need to learn esoteric programming or control languages. As derived in
Fitzsimmons and Love, [38], and suggested in Ledgard et al, [59], this implies that they must
read like a natural language. The use of a separate general language for control, instead of
special control languages (e.g., scripts, JCL, etc.), provides for independence from the hardware
platform and operating system, allowing one to easily move software from platform to platform,
e.g., from Windows to Linux.

 By natural language we imply a language that is easily understood by anyone who can
read a book and understands the subject area. One should not need to learn an esoteric language.
To do this, ambiguities must be qualifiable by the context of the statement, alleviating the reader
from having to parse special “mechanical language” qualification structures. Of course, using a
less restrictive language shifts the burden of qualification in the translation process from the
human to the computer. This implies language translators that are extremely complex. If
designed and used properly, a good language provides redundancy, a significant property of the
English language. Specifically, it raises the probability of quickly transferring the meaning to
the reader, increasing productivity.

Software Survivors PAGE 5 - 22

Part 2

A New Technology

for

Software Development

Software Survival Page 6 - 1

Chapter 6. Evolution Of A New Technology

THE EARLY DAYS

 The technical backgrounds of the VisiSoft developers were the creation of Computer-
Aided Design (CAD) products for electronic circuit design in the 1960s. In the early 1960s,
engineers typically went to the computer center to have programmers build computer simulations
to test their designs. In many cases, engineers completed the design and tested their circuits in
the laboratory before the simulations were completed. This was due to the level of complexity of
the modeling, software design, implementation, and test effort required to build a sufficiently
accurate simulation.

 The process of developing circuit simulation software was apparently esoteric for the
programmers and took much too long. The results were also unreliable. As a result, engineers
started to design their own CAD packages. They determined that they could automate the
process, ensure more design reliability, and simplify the user interface at the same time. To
them, computer programming was simply a means to an end. Their approach was to eliminate as
much of it as possible so they could quickly create simulations to solve their design problems.
Their goal was a significant improvement in productivity in a world of growing complexity.

Software Survival Page 6 - 2

 Today, designers using CAD packages no longer interface with programmers. They
interface directly with CAD systems. Engineering drawings of their circuits are built using
simple graphical inputs to the CAD system. The drawing is translated automatically into
simulation software and also serves as the principle documentation of the design. What once
took many months of work is now done in hours.

 In 1968, the creators of VisiSoft developed the first worst case circuit design /
optimization software package, the Constrained Optimal Design (COD) system, [22]. Instead of
analyzing a postulated design, the total design problem was defined in this CAD system. The
computer posed the designs, thousands of times a second, and picked out the best solution.

 In the 1970s, these creators also developed one of the first graphical interfaces to their
CAD package for electronic circuit design. It allowed engineers to pull up drawings of standard
circuits, modify a few components graphically, store a new circuit drawing, and call on the
optimization process to design it. Almost everything was done interactively through an easy-to-
use graphical interface.

 In the late 1970s these same creators developed a CAD system for modeling business
markets and predicting demand for products. Through the early 1980s, this package - the
General Stochastic Modeling (GSM) system - was sold to large industrial organizations to
support complex market modeling.

EVOLUTION OF A SOFTWARE DEVELOPMENT TECHNOLOGY

the General Simulation System

 In the early 1980s, the same creators moved to solving engineering design problems for
advanced wireless communication systems. When describing the complex decision processes
used in communication and control systems, it was very difficult to use a mathematical
framework. Modelers wanted to be able to insert IF ... THEN ... ELSE ... conditional statements
anywhere in a model - easily. This led to the creation of a new CAD product for discrete event
simulation in 1982. Instead of building a simulation language, they created the General
Simulation System (GSS) that provides the user with a total environment.

 Another requirement for this system was to allow engineers to describe their models in a
hierarchy, similar to the design of other engineering systems (computers, power distribution
systems, aeronautical systems, etc.). It was determined that complex decision rules and
algorithms had to be expressed in a readable natural language that engineers designing these
systems could easily understand. The intent was to avoid the use of esoteric programming
constructs. This would ensure understandability of the models, so that an engineer without a
programming background could validate the models.

 More important than language was the lack of speed and scalability of discrete event
simulation packages at the time. These deficiencies were the principal force in developing GSS.
Users complained that existing systems could not support more than 30 to 50 complex entities in
a simulation without running into executable size limits. More importantly, as entities were
added, simulation running times went up exponentially. Because of these size and speed
limitations, engineers went back to writing complex simulations in FORTRAN.

Software Survival Page 6 - 3

 Even with FORTRAN, running times were on the order of 5 to 7 days to run a 2 hour
scenario for a large communication system of 300 or more entities. As a result, running time
became a major design constraint for GSS. It was determined that many simulations would have
to be run on a parallel processor. It was decided that GSS must run very fast and be highly
scalable, whether or not simulations were run on a parallel processor.

Independence - The Parallel Processor Requirement

 The parallel processor requirement implies being able to allocate processors to processes
(groups of instructions) that can run in parallel. Being able to determine which processes can run
in parallel requires knowledge of the independence of the processes. Independence is
determined by the data shared between processes. If two processes share data, they cannot run
concurrently, i.e., they are not independent. Independence is an important property in most
scientific disciplines, and it is equally important in software.

Separation Of Data From Instructions

 In 1982 it was determined by Cave, [23], that to create a map of shared data (also called a
process connectivity matrix), data and instructions must reside in separate elements. This
phenomenon has since been called the separation principle, [55]. In the remainder of this book,
we implicitly make the case that this principle provides the keystone to software engineering. As
a result of this determination, GSS was designed so that:

• Data is stored in Resources that contain hierarchical data structures.

• Instructions are grouped into hierarchical rule structures called Processes.

 Examples of a GSS resource and process are shown in Figures 6-1 and 6-2. Note that the
resource (data structure) language contains attribute types that support the readability of the
process (rule structure) language.

 The separation of data from instructions came to provide enormous benefits that are not
immediately apparent. First is the ability to concentrate on creating separate languages that are
more natural - one for describing hierarchical data structures, and one for describing hierarchical
rule structures. The construction of these correspondingly more complex translators is
accommodated easily because they are implemented separately.

 Hierarchical data structures are directly translatable into data records for files, or message
structures for communications. This is because - What You See Is What You Get - in memory.
There is no “padding for word boundaries,” another unnecessary language constraint removed by
today’s computers. Memory is organized in exact accordance with the data structure created by
the designer, and documented in the data description language. This allows one to move huge
character strings into a highly structured set of fields that act as a template over the memory,
saving much time as well as simplifying the code.

Software Survival Page 6 - 4

05/10/91 G S S RESOURCE REPORT USER-ID: PSI
RESOURCE NAME: SUBSCRIBER ATTRIBUTES
USING PROCESSES: PLACE CALL

TOTAL SUBSCRIBERS INTEGER INITIAL VALUE 0
SUBSCRIBER COUNT INTEGER

SUBSCRIBER_PARAMETERS QUANTITY(200)
 1 OFFICE INDEX
 1 CALLERS_PLAN STATUS PLACE_NEW_CALL
 RETRY_CALL
 1 SUBSCRIBER TYPE STATUS DATA
 VOICE
 1 SUBSCRIBER STATUS STATUS BUSY
 FREE

CURRENT_CALL_PARAMETERS
 1 SOURCE INDEX
 1 DESTINATION INDEX
 1 SUBSCRIBER INDEX INITIAL_VALUE 0
 1 OFFICE_NUMBER INDEX
 1 CALL TIME REAL
 1 CALL_DURATION REAL
 1 SIGNAL_TO_SUBSCRIBER STATUS BUSY
 CONNECTED
 1 PHONE NUMBER STATUS UNKNOWN
 FOUND
 1 CONNECTION_ACTION STATUS DISCONNECT
 CONNECT
CALL_ATTRIBUTES
 1 CALL_INTERGEN_TIME REAL INITIAL_VALUE 12 ***MINUTES
 1 AVERAGE_CALL_DURATION REAL INITIAL_VALUE 4 ***MINUTES
 1 VARIANCE REAL INITIAL VALUE 1 ***MINUTES
 1 RETRY_INTERGEN_TIME REAL INITIAL VALUE 4 ***MINUTES

Figure 6-1. GSS Resource - SUBSCRIBER_ATTRIBUTES.

 The instructions consist of natural language statements that are grouped into “rules”. The
rules follow the concept of one-in-one-out control structures, precisely as defined by Harlen
Mills, [66], but never available until now (with the exception of COBOL that had deficiencies in
this regard). This makes it easy to build more complex rules that are readily understood by
anyone who knows the application, Detailed algorithms are understood easily, independent of
the original author. Both resources and processes can be fairly large while maintaining tight
control over the software. This provides for huge increases in speed as well as scalability.

Software Survival Page 6 - 5

05/06/91 G S S PROCESS RULES USER ID: PSI
PROCESS NAME: PLACE CALL TIME UNITS: MINUTES
RESOURCES: SUBSCRIBER ATTRIBUTES INDICES:SOURCE
 SUBSCRIBER PBX INTERFACE DESTINATION

PLACE CALL
 IF SUBSCRIBER STATUS(SOURCE) IS FREE
 EXECUTE ATTEMPT CALL
 ELSE EXECUTE RETRY LATER.

ATTEMPT CALL
 IF CALLERS PLAN(SOURCE) IS PLACE NEW CALL
 SET PHONE NUMBER TO UNKNOWN
 EXECUTE LOOK UP NUMBER UNTIL PHONE NUMBER IS FOUND.
 EXECUTE MAKE CALL

LOOK UP NUMBER
 DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1
 IF OFFICE(DESTINATION) NOT EQUAL TO OFFICE(SOURCE)
 SET PHONE NUMBER TO FOUND.

MAKE CALL
 CALL CONNECT_SUBSCRIBER USING SOURCE
 SET SUBSCRIBER STATUS(SOURCE) TO BUSY
 SET SUBSCRIBER SIGNAL TO PLACE CALL
 SCHEDULE RECEIVE SUBSCRIBER INPUT NOW
 USING SOURCE, DESTINATION

RETRY LATER
 SCHEDULE PLACE CALL IN EXPON(RETRY INTERGEN TIME)
 USING SOURCE, DESTINATION

Figure 6-2. GSS Process - PLACE_CALL.

 After using this new approach, it became apparent that the major benefit resulting from
the separation of data from instructions was the ability to provide engineering drawings of the
software, with a one-to-one mapping from the drawing to the code. This is illustrated in
Figure 6-3. Resources, such as SUBSCRIBER_ATTRIBUTES in Figure 6-1, are shown as
ovals. Processes, such as PLACE_CALL in Figure 6-2, are shown as rectangles. Lines must be
drawn to connect a process to a resource, implying that, without a connect line, the instructions
in that process have no connection to the data. An elementary model or module, e.g.,
SUBSCRIBER in this case, is a blue outlined box containing interconnected resources and
processes. Hierarchical modules, such as OFFICE contain elementary or other hierarchical
modules.

 Getting to a fully interactive graphical system to support all of the features and functions
that can be brought to bear took years to evolve. We will skip that history here, focusing on the
top level features. For example, double clicking on resource or process icons brings up an editor,
allowing one to change the code as illustrated in Figure 6-4. There is no other way to build or
access the code except through the drawings. Architects create the drawings. Implementers
(coders) may or may not have access to change the architecture. Using GSS, large scale
simulations are now developed using a fully integrated engineering drawing facility.

Software Survival Page 6 - 6

Figure 6-3. Engineering drawings of software.

Figure 6-4. Editing resources and processes directly from the drawing.

Software Survival Page 6 - 7

Independence From The Operating System As Well As The Hardware Platform

 The nature of the environment in which GSS was developed was driven by clients who
were buying large scale simulations for analysis and design of complex communications and
control systems. In the early 1980s, this required use of DEC VAX machines running under the
VMS operating system. To understand what was happening while simulations were running
required an advanced graphical facility - the Run-Time Graphics (RTG) system - for
visualization. RTG ran on the Silicon Graphics (SGI) workstation under IRIX - SGI’s version of
UNIX. It was built using the first version of Open-GL. Users could interact graphically with the
simulation using RTG on the SGI machine which was networked to the VAX where the GSS
simulations were running. Interactive graphics became very important to the clients, and they
bought both platforms to get what they wanted.

 About the mid-1980s, IBM came out with the RS-6000, which contained SGI’s chips on
fast graphics boards, and ran Open-GL on AIX, IBM’s version of UNIX. At the same time,
clients were moving away from VMS to UNIX. More importantly, GSS and RTG were selected
“Best-Of-Breed” by IBM who paid to have these systems ported to the RS-6000. This port to the
UNIX environment also put the total package on the SGI work-stations.

 As the port to UNIX was being completed, Intel was dramatically increasing the power of
its PC chips. At the same time, vendors were making fast graphics boards, and commercial
versions of UNIX were becoming more adaptable to the PCs. GSS and RTG were soon running
on SCO-UNIX on PCs with special graphics boards and corresponding graphics accelerator
software. Then came SOLARIS on Sun workstations and finally Windows NT, 2000, and XP on
PCs. The platform prices were dropping rapidly.

The Third Language

 What came out of this experience was the need to be independent of both the platform
and the operating system (OS). This led to a software requirement to isolate the operating
system dependencies, including platform differences. This requirement was already being
satisfied by the CAD approach being used to support multiple simulation runs, optimization, and
graphics. These CAD features were supported by a third language that eliminated the need to
write control scripts or JCL. It translated user-friendly database descriptions, graphical
requirements, and multiple run requirements - including initialization - into special routines that
were compiled and linked at run time as well as the control scripts for a particular platform and
OS.

 This third language - the Control Specification language - is illustrated in Figure 6-5. It
provided many features to support simulation and optimization, database handling, graphics, and
interactive control. It eliminated the need for “JCL” or “scripts”, providing a development
environment that is independent of the OS or hardware platform. Each task or simulation has its
own control specification that is the same for every platform or operating system. Once GSS and
RTG are up on a platform, one can move large complex simulations with graphics to that
platform without change (the only thing that changes is run-time speed). This is a substantial
factor in productivity improvement.

Software Survival Page 6 - 8

05/06/91 G S S CONTROL SPECIFICATION USER ID: PSI
CONTROL SPECIFICATION NAME: TELEPHONE_NETWORK

CONTROL SECTION
 TITLE, SIMULATE TELEPHONE SYSTEM GRAPHICALLY
 SIMULATE

LIBRARY SECTION
 BACKGROUND

GRAPHICS SECTION
 ACTIVATE
 WORLD_SPACE LOWER_LEFT = (0, 0), UPPER_RIGHT = (1280, 1024)
 BACKGROUND_COLOR = DARK_BLUE
 INITIAL_WINDOW LOWER_LEFT = (-100, -100), WIDTH = 1280
 ICON OFFICE_OUTLINE = OFFICE, SCALE(1.0, 1.0)
 ICON MAN = MAN SCALE(1.0, 1.0)
 ICON PHONE = PHONE, SCALE(1.0, 1.0)
 ICON TERMINAL = TERMINAL, SCALE(1.0, 1.0)
 ICON PBX = PBX, SCALE(1.0, 1.0)
 ICON SWITCH = SWITCH, SCALE(1.0, 1.0)

 INST COMPLETED_CALLS = THERMOMETER_VERTICAL,
 LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE
 INST BUSY_CALLS = THERMOMETER_VERTICAL,
 LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE

 LINE PBX_TRUNK_LINE = COLOR LIME_GREEN, THICKNESS 3
 LINE PHONE_LINE = COLOR LIME_GREEN, THICKNESS 3

 OVERLAY 1 = DRAW_OFFICES IN PHONE BACKGRND
 AT 0,0, SCALE 1, 1, MENU OFFICES
 COLOR BACK_RED

 RTG_EVENT_HANDLER INTERACTIVE_SCENARIO

DATABASE INPUTS
 ASSIGN SFI NEW_DATA.SFI TO READ_SCENARIO_DATA

MODEL SECTION
 SCENARIO_CONTROL
 INSTRUMENT

Figure 6-5. GSS Process - PLACE_CALL.

 The areas addressed by the Control Specification language are enumerated below.

• Automatic Database Handling

• Interactive Run-Time Graphics

• Interactive Real-Time Control

• Library Controls

• Multi-Simulation Runs

• Optimization

Software Survival Page 6 - 9

 These facilities are built into the control specification using a language that is quite
simple, being structured into sections for each of the control statements to be used. A control
specification can be six lines or two pages depending upon the number of files and graphical
facilities specified for a simulation or task. Most important, the control specification language,
along with the resource and process languages ensure that all software built by a modeler or
system developer is independent of the platform and OS. All dependencies are taken care of by
the language translators. The control specification language is discussed in Chapter 13.

Requirements For Interactive Graphics

 As applications become very complex, it is difficult to know what is going on at run-time
without a graphical picture. Equally important is the ability to interact with an application
graphically. For example, to be able to change the course of the simulation, interactively while it
is running, is extremely productive. These needs sparked the concurrent development of the
Run-Time Graphics (RTG) system.

 RTG supports complex mapping functions, e.g., terrain, bodies of water, foliage, road
networks, etc. In addition, large numbers of icons representing moving platforms with radios
and sensors can be displayed. Examples of the use of RTG for visualization are illustrated in
Figures 6-6a & b respectively. In the early years, Silicon Graphics (SGI) workstations were used
to support the complex graphical interfaces, tied to VAX computers running the simulations.
Today, the GSS system and the RTG system still run as separate tasks, but typically on the same
computer (PCs, Laptops). But they don’t have to. In fact, multiple GSS simulations or VSE
tasks can be running on separate machines with multiple interactive RTG sessions on the same or
different machines.

An Easy To Use Graphics Language

 RTG makes it relatively easy for engineers with little programming experience to provide
visualizations of dynamic motion in 3D. This is because the complex transformations required
to determine the relative positions and orientation angles between icons representing moving
platforms are done automatically by the system. To use this facility, the modeler uses special
RTG extensions to the resource, process, and control specification languages. These extensions
provide for the insertion, update, and removal of icons, lines, and instruments.

 They also provide for handling interactive inputs using various panels and buttons. These
facilities will be described in a later chapter. The graphics extensions and library facilities for
background overlays and foreground plots and diagrams have evolved and grown since the early
1980s. Many new features, such as hierarchical icons, were developed in the mid-1990s to
support engineering drawings of the architecture.

Software Survival Page 6 - 10

Figure 6-6a. An illustration of RTG graphics.

Figure 6-6b. Zoom in, double click on an icon, and up pops a panel.

BACKGROUND ADD TO PROBLEM LIST

PS-129500-SX

Power Sub-Station Type 5

Software Survival Page 6 - 11

Scalability - Building The World’s Largest Simulation Of A Communication System

 As GSS evolved, problems encountered by others, e.g., scaling up complex simulations,
disappeared. Using GSS, the numbers of entities and the complexity of the different entity types,
appeared to grow without limitation. We attribute this to the properties of Independence in
model architecture and Understandability in both the languages and the architecture. We
consider these two properties to be the most important contributors to productivity.

The Software Productivity Paradox

 As the client base grew, and larger simulations were developed, additional features and
functions were desired - in fact required - to continue the growth of the simulation business. The
problem was, the underpinnings of this great simulation environment were built using standard
software approaches. As the GSS CAD product grew, putting VSI far ahead in the market, it
became impossible to maintain the underlying software, that in which GSS and RTG were
written. Product expansion was delayed while many man-months were spent trying to fix
existing bugs.

VSI was faced with a software productivity paradox. We had the world’s best
environment for building complex simulations, but this great simulation environment was built
using a classic software environment. Behind the scenes, programmers were faced with the same
software nightmares as everyone else.

Solution To The Software Nightmare

 In 1990, a decision was made to embark on the development of a second very similar
product, the Visual Software Environment (VSE). VSE was also to be used to build itself as
well as GSS and RTG. The justification for VSE was simple: rebuild GSS into a software
environment that supported the growth of functionality wanted by its users with the same
productivity levels afforded for modeling and simulation.

 Because VSI’s existing GSS system already had everything needed to build general
software, one could envision translating the existing code into GSS. However, translating the
code was not an option. There was no architecture! And, there was no way to view and assess
an architecture for the existing code, even though pain had been taken to organize it into what
was thought to be a good approach. It quickly became apparent that, as more functionality was
added, the original “architecture” could not hold up under the strain of increasing complexity.
More importantly, the system became virtually impossible to change. This is a common
software problem that is not readily apparent without being able to visualize and create good
architectures. For the first time, an architecture had to be generated for GSS.

 The first pieces of software to be rebuilt were the Resource Translator and the Process
Translator. As the architectures for these pieces of software evolved, it became apparent that a
totally different approach to translation was needed. This new approach involved building and
sorting tables in a sequence of independent passes. Many utility modules were created along
with managers of the many different databases necessary to support the very complex translation
process.

Software Survival Page 6 - 12

 The architecture created using the engineering drawings rendered both VSE and GSS
easily upgradeable and supportable. Today, after many upgrades, those architectures are still
easy to understand and new features and functions are easy to insert. Most importantly, the
architecture itself is easy to change on an incremental basis, i.e., it is easy to take a piece of the
architecture and improve it to take on more functionality in a specific area without affecting the
rest of the architecture. This is because of the independence of modules, apparent from the
visualization of the architecture. In fact, there is effectively one architecture, since the
differences between VSE and GSS are almost trivial.

Rebuilding RTG - The Solution To The Visual Development Environment

 Having VSE made building software, and reusability of complex modules much easier.
This was accomplished without the fully integrated CAD graphical interface shown previously in
Figures 6-3 and 6-4. Although third party CAD products were used to produce the engineering
drawings prior to 2000, they were never fully integrated into the system. Worse, three different
vendor products were used. This is because - one by one - each vendor had the same software
problems as GSS, and (all three) went out of the business. Up until the year 2001, the drawings
were effectively done off line.

 Starting in 1996, RTG was redesigned and rebuilt to support the advanced graphical
features needed to implement a fully integrated, interactive CAD drawing environment. To do
this properly required the ability to support hierarchical modules that could be disconnected,
moved and reconnected differently. It required being able to pop the cover off of an icon, and
zoom in to see another layer of hierarchy underneath. This facility is illustrated in Figure 6-7.

 To provide a usable hierarchical icon facility, one has to be able to uncover an icon and
see the connection lines outside the icon as well as those going into the icon. This requires
special transformations to ensure matching the “wires”. The prior version of RTG was designed
around a pixel space, forcing the user to implement higher order transformations involving
hierarchies of icons. The new version of RTG built all of these transformations into the system,
so the modeler or software developer did not have to build and test very complex software to
develop sophisticated graphics.

 In addition, the new RTG provided for pin connections and pin labels, so that lines could
be drawn by users to interconnect icons, while the developer received all the information needed
to process the behind-the scenes database of interconnections. All of this made it relatively easy
to build the CAD front end for visualization of the software architecture.

 To be independent of the platform and operating system, the code generators produce
plain vanilla C and the latest version of Open-GL. All of the graphics are directly transportable
among many platforms and operating systems, including all Windows, Linux and Unix platforms

Software Survival Page 6 - 13

HIERICON 02/11/06

Pop the cover
and

zoom in

Pop the cover
and

zoom in

NETWORK 2

NODE
C2

NODE
C7

NODE
T6

NODE
C4

NODE
C5

NODE
T1

NODE
C3

SEN
1

NCS
7

SEN
6

SEN
5

SEN
4

SEN
3

SEN
2

NODE C7

SEN 3

SES
3

PS
3

L31

L32

T31

T32

T33

WORKING WITH
HIERARCHICAL ICONS

Figure 6-7. An illustration of hierarchical icons in RTG.

 Two additional facilities are provided with RTG. One is an Icon Library Manager (ILM).
The ILM provides users with the ability to draw complex icons to be used by RTG. These icons
are stored in libraries that can be copied and shared among users and applications. They are
independent of the platform and operating system.

 The second is the Panel Library Manager (PLM). The PLM makes it easy to build
panels - the equivalent of X-Windows Motif or Windows dialog boxes - as shown in
Figure 6-6b. However, VisiSoft panels are not dependent upon the platform or operating system.
More importantly, the applications interface is easy to use compared to any of the competitive
products.

Software Survival Page 6 - 14

The Tools To Build A Fully Integrated Visual Development Environment

 In 2000, ten years after embarking on the development of VSE, and four years after the
new design of RTG, the tools were in place to build a complete Visual development
Environment. Note: this was eighteen years after embarking on the initial development of GSS.
The directors agreed to finance the development of a prototype to see what it would take, and
how it would be received. Because of all the prior experience, this effort came together very
fast. By early 2001, an in-house graphical interface for building software as well as simulations
was in use.

 Figure 6-3 shows the Visual Development Environment (VDE) “window” that is used to
build software or simulations. Knowing either GSS or VSE implies knowing the other except for
a minor difference. Models built in GSS can be directly transportable into software modules in
VSE. Using a GSS simulation for designing and testing software modules provides an ideal
environment, requiring no changes to move back and forth to VSE.

 Figure 6-4 provides an illustration of two edit sessions open simultaneously. The one on
the left is a resource and the one on the right is a process. During a typical session, many edit
sessions are open simultaneously, including that of a control specification.

 Figure 6-8 illustrates a plot of an engineering drawing that is a small part of a very
complex piece of software. Note that all of the change control associated with hardware
drawings exists on the software drawing. This includes references to higher level drawings that
use the modules in the lower level drawing, module changes and change control authorizations.
In addition, by double clicking on a module - at any level - one opens an editor to the
documentation for that module.

 In addition to modules and tasks are containers. Containers can contain multiple
drawings to support export of complete systems from one platform for import to another. When
a drawing or container is exported, all of the documentation goes along with the architecture and
source code for the resources, processes and control specifications. These can be imported on a
different platform with a different operating system (e.g., Windows XP to Linux or Unix),
prepared, and running in a few minutes.

BACK ON THE STREET AGAIN

 By early 2003, equipped with a totally new product, one that is easily enhanced and
refined, VSI was converting all of its simulations into the new environment. In addition, many
of the design and corresponding coding rules that could not be enforced without this visual
environment were injected. This further improved productivity. No one could build code
without first building an architecture. Productivity soared!

Software Survival Page 6 - 15

Figure 6-8. An example of an engineering drawing.

Software Survival Page 6 - 16

Software Survival Page 7 - 1

Chapter 7. A Technical Overview Of VisiSoft®

 As illustrated in the figure above, VisiSoft consists of three systems:

• the Visual Software Environment (VSE) for developing and running software

• the General Simulation System (GSS), for developing and running simulations

• the Run-Time Graphics (RTG) system that provides a graphical interface for
developing and supporting both software and simulation products

Software Survival Page 7 - 2

 These systems are supported by the following subsystems:

• the Visual Development Environment (VDE) provides the graphical CAD
architectural visualization facility for both VSE and GSS

• the Run-Time System (RTS) that supports software tasks and simulations during
run-time

• the Icon Library Manager (ILM) for building and managing large libraries of
icons to support RTG

• the Panel Library Manager (PLM) for building and managing large libraries of
panels to support RTG

 Together, these components provide advanced graphical interfaces to develop, support,
and interact with complex software and simulation systems. All of these components have been
developed and are supported using VisiSoft.

Building Applications

 When a developer builds a software product using VisiSoft, an abstracted architecture of
that software product can be characterized as shown in Figure 7-1. This illustrates critical
facilities available to a developer building and supporting a software product. These facilities
are most valuable when the software being produced must run on different platforms. It is these
types of facilities (there are others) that make the differences in the hardware and OS platforms
transparent to both the developer and the end user.

Figure 7-1. An abstracted software architecture.

Software Survival Page 7 - 3

 The resulting layers of insulation from hardware and OS platform differences are
illustrated from a different perspective in Figure 7-2. With these facilities, end users can work
with multiple interactive graphical workstations, databases, and communications networks
without changing the software. From a productivity perspective, the developer is also insulated
from platform differences.

COMPUTER HARDWARE

OPERATING SYSTEM

APPLICATION
TASK-1

COMMUNICATIONS
TASK

APPLICATION
TASK-N

DATABASE

TERMINAL

DATABASE

DATABASE

VISISOFT RUN-TIME

INTERACTIVE
TERMINAL

COMMUNICATIONS
CHANNEL

PARADIGM 2 04/08/05

Figure 7-2. Layers of insulation from hardware and OS differences.

Multi-Tasking On Multiple Processors

 Taking a slightly deeper look, products can be developed that use multiple platforms
simultaneously. The only constraint is that these platforms are connected using IP network
interfaces, e.g., the Internet. Interprocessor resources are used to automatically handle the
communications channel protocols. Developers simply put data into and take data out of these
interprocessor resources while issuing channel read and write statements.

 Applications on a single processor may contain multiple tasks that are running
concurrently. (These are equivalent to UNIX processes.) Tasks can communicate by sharing
memory directly. This is the fastest way to communicate, and in VisiSoft it is easy. One simply
uses Intertask resources, moving data in and out directly. Using the facilities described above,
one can feel comfortable writing applications that use multiple tasks on multiple processors with
a day or two of training.

Software Survival Page 7 - 4

 Facilities exist for running large scale discrete event simulations very efficiently on
multiple processors. These facilities include provisions for automatic cross-processor
scheduling, time-synchronization, and interprocessor resource coherency management. The
scheduling and memory management software running behind the scenes alleviates the modeler
from any concerns about otherwise formidable software problems. Developers can focus on
solving end user application problems.

ARCHITECTURAL FACILITIES

 In the next two Chapters we will be describing the VisiSoft architectural features and
approaches to building architectures that support reusability and scalability. An overview of
these facilities is provided in Figure 7-3 below.

SLSBOKLT\TELEXMPL 8/27/97

PREDICT ION SYSTEMS, IN C.CON TRACT: DAAB07-90-D -A044
DR
CH K
ENG

NEXT HIGHER ASSY.

14 :22:41

REVISION S
DATE PROC ESS/RESOU RCEM ODEL DESC RIPTION SAR

8 7 6 5 4 3 12

A
B

C
D

8 7 6 5 4 3 12

TASK

VSE RESOURCE: TRADE_DATA
SAMPLE DATA
 1 DAILY_QUANTITY(5)
 2 DAY_CODE CHAR 1
 ALIAS HOLIDAY VALUE 'H'
 2 OPENING_PRICE REAL
 2 CLOSING_PRICE REAL
 2 LOW_PRICE REAL
 2 HIGH_PRICE REAL
 2 AVERAGE REAL
 2 VOLUME INTEGER
 2 OPEN_INTEREST INTEGER
 1 WEEKLY
 2 DAY_OF OPEN CHAR 1
 2 DAY_OF CLOSE CHAR 2
 2 OPENING_PRICE REAL
 2 CLOSING_PRICE REAL
 2 LOW_PRICE REAL
 2 HIGH_PRICE REAL
 2 AVERAGE REAL
 2 VOLUME REAL

RESOURCE

VSE PROCESS: COMPUTE_TRADING_SUMMARY

PROCESS_TRADING_INPUTS
 MOVE DATABASE_RECORD SAMPLE_DATA TO
 TRADE_DATA SAMPLE_DATA
 MOVE 1.E9 TO WEEKLY_LOW-PRICE
 MOVE 0 TO UPPER_LIMIT
 WEEKLY_AVERAGE
 WEEKLY_VOLUME
 DAY_COUNT
 SET WEEKLY_TRADING TO NOT_STARTED
 EXECUTE PROCESS_DAILY_TRADING
 INCREMENTING DAY_NUM TO 5
 EXECUTE COMPUTE_SUMMARY_DATA

PROCESS_DAILY_TRADING
 IF DAY_OF _WEEK (DAY_NUM) IS NOT A WEEK_DAY
 OR DAY_CODE (DAY_NUM) IS A HOLIDAY
 EXECUTE NO_TRADES_TODAY
 EXIT THIS RULE.
 INCREMENT DAY_COUNT

PROCESS

VSE CONTROL SPEC: TRADE_TASK

CONTROL SECTION
 TITLE, TRADE_TASK
 LEAD_PROCESS IS TRADING_TEST_DRIVER

END

TASK CONTROL
SPECIFICATION

TRADE_TASK

TEST_DRIVER WEEKLY_TRADING_SUMMARY

MODULE
WEEKLY_TRADING_SUMMARY

COMPUTE_
TRADING_
SUMMARY

REPORT_
RECORD

REPORT_
FORMAT

TRADE_
DATA

DATABASE_
RECORD

REPORT

REPORT
DBMS

ControlSpec 07/07/06

Figure 7-3. TASK architecture illustration.

Software Survival Page 7 - 5

Tasks/Simulations

 Using VisiSoft, applications are broken into tasks. Tasks are defined by Task Control
Specifications and the modules that comprise the task. In the case of a simulation, the
Simulation Control Specification defines the simulation task that is comprised of simulation
models and software modules. Tasks are represented by a red border on the drawings.

Modules/Models

 Referring to Figure 7-4, software modules (simulation models) are of two types,
elementary and hierarchical. Elementary modules contain resources and processes. Hierarchical
modules can contain both elementary modules and other hierarchical modules. Modules are
represented by a blue border on the drawings.

Utilities

 Utilities are software modules that are used by two or more processes contained in one
or more separate software modules. Utilities may appear in more than one drawing in the same
user directory. They must be connected to the modules that use them using a connector.
Although the architecture and source code may appear and be changed in more than one drawing
in a user directory, there is only one instance in that directory. Utility changes in one drawing
automatically appear in the other drawings in that directory. Utilities are represented by a green
border on the drawings as shown in Figure 7-4.

Library Modules

 Library modules are utilities that are shared by different user directories across different
platforms. The drawing of a library only appears in the user directory where the library is
maintained, providing a high degree of protection from unwanted modification. Library modules
must share data with the modules that use them using aliased resources with connectors. Aliased
resources are templates for data shared by the calling process. The using module must have
shared as resources that provide the data used by the aliased resources in the library module.

 Libraries may contain multiple library modules inside library archive files. These
modules are automatically added to the library archive file when the library module is prepared.
Library modules for the same library may reside in different directories as long as the most
recent version of the library archive file resides in the directory in which the library module is
being prepared. Libraries are represented by a dark gold border on the drawings.

Software Survival Page 7 - 6

Fi
gu

re
 7

-4
.

Ill
us

tra
tio

n
of

 a
 so

ftw
ar

e
en

gi
ne

er
iin

g
dr

aw
in

g.

PR
OP

AG
AT

IO
N_

PR
ED

IC
TI

ON

U
D

U
D

FP
PS

 0
5/

24
/0

5

PR
O

PA
G

A
TIO

N
_P

RE
D

IC
TIO

N

P
AT

H
_L

O
S

S
_U

TI
LI

TI
E

S

Software Survival Page 7 - 7

Engineering Models

 To ensure that user requirements are met, engineers build mock-ups or models. These
models can contain simulated controls and meters or displays, so that the user can "try out" the
user interfaces in a simulated environment to insure that what is going to be built is what is
wanted. Computer simulation is used heavily in the engineering field, with detailed models
being used to check out designs before one commits to costly fabrication and testing processes.

 In the case of communication system design, e.g., design of switches, digital radios,
routers, etc., complex algorithms are embedded in simulations of their environments so their
designs can be tested and optimized before they are implemented in software. But, there is no
reason to rewrite these algorithms in a programming language. They can be directly translated
from models in the simulation to final software code, reference Maslo [64]. If there is a problem
with the algorithm, the situation can be replicated in a simulated environment, fixed, and tested.
The new code can then be regenerated automatically for the production environment.

Engineering Drawings -- Of Software

 An illustration of a wave propagation model (a relatively small drawing by VisiSoft
standards) is provided in Figure 7-4. This is a library module, depicted by the dark gold color of
the boundary. It also contains utility modules (green boundaries) as well as standard modules
(blue boundaries), all visibly identified by their color.

 After some experience with this system, one can look at a drawing and recognize the
architectures used for different modules. This is because there are many standard architectures
used to support categories of functions. As one evolves from the world of programming in a
language into design of the software using engineering drawings, one quickly recognizes that:

the design of the architecture is much more important than the code.

This is true from both an understandability and independence standpoint. These concepts, and
the corresponding approach that has evolved for building software architectures, will be covered
in later chapters and supported with examples.

Engineering Specifications And Documentation

 To support the continued enhancement and refinement of a system design, one wants to
understand the underlying rationale as design decisions are made. This is typically recorded in
engineering notebooks or other external documents. These documents normally contain different
design considerations and comparisons, details of trial designs, laboratory test results, field test
results, theoretical or comparative references, etc. Complex user interfaces can be specified in
detail by writing a user's manual so the end user can review and envision what the system will
do. User’s manuals can be developed with the aid of an interactive simulation, using models of
what the user will have as an interface. Screen shots can be taken from a running simulation of
the proposed system.

Software Survival Page 7 - 8

LANGUAGE FEATURES

 In subsequent chapters we will describe the language features of VisiSoft. In general,
one cannot write code without building an architecture. It is uncommon to give less senior
people the responsibility to create or even change architectures. It typically takes a much higher
degree of experience to create or change an architecture. Once an architecture exists, code can
be entered by double clicking on the element of interest to open the editor. When the editor is
shut down, the code is saved and the management system updates the state of the element.
Colored bars inside resources and processes indicate whether the element is prepared (green), in
error (red), or changed but prepared (black).

Resource Language

 The resource language is tailored to describing data as hierarchical structures, for
example, those used to represent messages sent to or received from communications channels,
records that are read from or written to databases, and internal memory shared between
processes. Large multi-dimensional tables can be built that contain complex data structures.

 An important feature is “What You See Is What You Get” in memory. This allows for
large data blocks to be moved as a character string into memory blocks that are defined by
detailed data structures. There is no “word boundary alignment” performed. Numbers may
appear anywhere in a data structure. This provides for fast movement of large complex data
structures.

 The resource language is designed to support a process language that makes it easy for
humans to write easily understandable code. This implies data types that make conditional
statements easy to read. It also inhibits testing and movement of data at run time that do not fit
specific requirements. These are checked at time of translation, significantly reducing the
probability of bugs.

 There is no global data. All resources are accessed by pointer (automatically).

Process Language

 The process language is designed to maximize understandability. This is particularly true
for conditional statements. Anyone familiar with the application being implemented, should be
able to understand algorithms that are logically complex without the added burden of learning
another language. This property is particularly important in modeling and simulation where
validation of models is a critical aspect of a project, and typically requires engineering personnel
not experienced in programming to review the code.

 Having a readable language makes it much easier to understand the logic and avoid
logical errors that are generally difficult to find. It provides the important benefit of allowing
subject area experts write code directly.

Software Survival Page 7 - 9

Control Specification Language

 The control specification language is designed to support a highly structured specification
that contains lists of specified elements, e.g., icons, lines, instruments, databases, etc. It provides
for enumerating the properties of these elements, e.g., colors, numbers, etc. It is a very simple
language that eliminates the need for scripts or JCL to run a complex task.

GRAPHICAL FEATURES

 Built-in graphical facilities remove the burden of writing complex graphics code. One
need not learn a graphics language to build superior 2D and 3D graphics. The Run-Time
Graphics (RTG) system provides additional statements that go into resources, processes, and
control specifications. These statements control the various graphical elements available to a
user. These elements include panels, icons, lines, instruments, plots, legends, etc.

 Because panels and icons are potentially complex graphical elements, they are created
and maintained using the Panel Library Manager (PLM) and the Icon Library Manager (ILM).
These managers provide drawing boards for the user to graphically create complex panels and
icons with ease. The libraries of elements can be shared easily between users on different
platforms or operating systems using built-in export and import facilities. A large number of
graphics libraries already exist to provide support for most graphics applications.

 RTG supports complex geo-physical mapping functions, e.g., terrain, bodies of water,
foliage, road networks, etc. In addition, large numbers of icons representing moving platforms
with radios and sensors can be displayed. Examples of the RTG window for 2D and 3D are
illustrated in Figures 7-5a & b respectively. In the early years, Silicon Graphics (SGI)
workstations were used to support the complex graphical interfaces, tied to VAX computers
running the simulations. Today, the GSS system and the RTG system still run as separate tasks,
but typically on the same computer (e.g., PCs and Laptops). But they don’t have to. In fact,
multiple GSS simulations or VSE tasks can be running on separate machines with multiple
interactive RTG sessions on the same or different machines.

 Software for graphical depiction of motion, particularly in 3D, can be extremely
complex. Moving platforms, e.g., aircraft, require six degrees of freedom to define their position
and orientation. When communicating, the position and direction of antennas on platforms are
required to determine an accurate estimate of the antenna gains between transmitter and receiver.
Being able to see the relative orientations of multiple platforms provides a rapid means for
verifying and validating complex models.

Software Survival Page 7 - 10

Figure 7-5a. An illustration of the RTG graphics window in 2D.

Figure 7-5b. An illustration of the RTG graphics window in 3D.

Software Survival Page 7 - 11

Constrained Nonlinear Optimization

 A significant feature of GSS is the built-in optimization facilities used to design complex
algorithms or system parameters, and optimize model parameters to maximize prediction
accuracy. The optimization methods have been derived from those used for design of highly
nonlinear systems. It provides for nonlinear constraints, both inequality and equality, as well as
nonlinear optimization criteria.

 To use the optimization facility, one need not formulate the problem mathematically.
One only has to provide numbers for the constraint values and the optimization criteria, as well
as ranges on the unknown parameters. Models can contain decision processes based upon non-
numeric states as well as mathematical models. Solutions do not depend upon model
formulation.

Parallel processing

 With the flattening of Moore’s curve, and no recuperation in sight, the only way to
achieve faster run times is to resort to parallel processors running together to speed up a single
task. However, except for very special problems, parallel processing has been practically
unusable ever since it was first considered. VisiSoft has the facilities to make it just as easy to
build models and modules to run efficiently on parallel processors as it is to build them for a
single processor. If the architecture is designed using good standards for producing independent
model instances, the number of processors used should not change the architecture or code.

Software Survival Page 7 - 12

Software Survival Page 8 - 1

Chapter 8. Software Architecture

DEVELOPING ARCHITECTURES

 Most readers will relate to the above drawing. As in other fields, architecture is much
more graphical than algebraic or textual. Whether designing machines, ships, buildings, or
computers, architects produce drawings. These drawings are not “approximate” or just
suggestive, but rather precise engineering specifications that are used directly in production.

 To facilitate the graphical approach, CAD tools are used extensively. The time to
produce and reproduce drawings has been cut dramatically since the days of drawing each line
by hand. Reuse of drawing parts is common. They are copied and modified easily.

 But today these drawings can be converted to XML, a representation suitable for
computer processing. An experienced XML programmer can create an architecture and make
changes without ever looking at the drawing. Is the use of drawings a legacy approach?

 In the business environment of architects, eliminating the use of drawings would be
ridiculous. One would not consider creating or even changing a drawing in a language like
XML. XML is a standard for storing and exchanging files; it is of no use in design.

 Now let’s consider software. Drawing tools are not used for designing software
architectures. Instead, Programmers pride themselves in their ability to understand esoteric
languages, and to create and maintain software directly in these languages. More importantly,
until VisiSoft, there have not been any drawing tools available that precisely represent a software
design. Having used VisiSoft, the above architect example is not an absurd parallel.

Software Survival Page 8 - 2

ARCHITECTURE - A NEW SOFTWARE CONCEPT

 As described in the prior chapters, VisiSoft is a Computer-Aided Design (CAD) tool that
provides a precise visualization of the architecture of a software system. The engineering
approach provides a one-to-one mapping from the top level architecture to the code. Using
VisiSoft’s graphical CAD front-end, one can drill down from the top system level drawing to the
details of the code, with no abstractions in between. Interconnections are as meaningful at all
levels of a drawing as they are in electronic circuit design, logical design, or machine design.
The VisiSoft CAD environment is derived from the same concepts used by chip manufacturers
for designing hardware.

 Using VisiSoft, decomposition of the architecture and composition of the detailed design
is accomplished using graphical symbols that directly represent the software. With this
approach, it quickly becomes apparent that architecture is the most important part of software
design. Having used this system, one could not imagine working without drawings. One also
observes that software architecture is meaningless without the totally new paradigms that
VisiSoft provides. In software design courses using VisiSoft, architecture is taught first - before
language or coding facilities are described. With this approach it becomes clear that architecture
has the most effect on productivity, especially in the support phase of a product.

USE OF ENGINEERING DRAWINGS

 Although written documentation is important, in practice, engineering drawings are the
essential tools to support the planning, review, and assessment process needed to control a
project. This is because of the requirement to develop and modify the structure of modules as
the design unfolds.

 Engineering drawings provide the means for creating and improving the structure of
software. This is because given the proper CAD tools, these drawings can be modified easily to
implement structural improvements. Also, the best structure for a complex set of modules
cannot be known until most of the design has been completed and carefully reviewed with the
software team. Only after understanding all of the facilities that must be built into a module, and
how those facilities interact, can the developers decide on the best architecture for a module.
This implies that a module may be built initially using an inadequate structure before one can see
how to improve that structure.

Visualization Of The Properties Of Independence

 Geometry and algebra each play important roles in engineering. Theoretically, one could
do away with the images provided by geometry. In practice, those who can use geometry have a
significant advantage for many problems. Figure 8-2 illustrates a model developed without
engineering drawings. As is typical in conventional software, data is shared everywhere, with no
visible check on independence. Figure 8-3 is the same application developed using VisiSoft.
Needless to say which one is easier to understand and change - thanks to the independence
properties.

Software Survival Page 8 - 3

TE
LE

PH
O

N
E_

N
ET

W
O

R
K

N
ET

W
O

R
K

_
D

A
TA

SC
EN

AR
IO

_C
O

N
TR

O
L

 G

E
T_

 T
R

U
N

K_
C

A
P

AC
IT

Y

 R

E
AD

_
S

C
E

N
AR

IO
_

 D

A
TA

IN
IT

IA
LI

ZE
_

S
C

E
N

AR
IO

IN
TE

R
A

C
TI

V
E

_

S
C

EN
AR

IO

S
C

E
N

AR
IO

_
C

O
N

TR
O

L

O
FF

IC
E

PB
X

IN

S
TA

LL

P

BX

U
PD

A
TE

_

 P
B

X

R

EC
E

IV
E

_
S

U
B

S
C

R
IB

ER
_

IN
P

U
T

R
EC

E
IV

E
_

S
W

IT
C

H
_

R
ES

P
O

N
SE

P
BX

_
S

U
B

S
C

R
IB

ER
_

IN
TE

R
FA

C
E

P
BX

_
S

YM
BO

LS

P
BX

_
FA

C
IL

IT
IE

S

P
BX

_
S

W
IT

C
H

_
IN

TE
R

FA
C

E

B
U

IL
D

_O
FF

IC
E

B
U

IL
D

_
O

FF
IC

E
O

FF
IC

E
_

FA
C

IL
IT

IE
S

SU
B

SC
R

IB
ER

IN
S

ER
T_

S
U

B
S

C
R

IB
ER

_
TE

R
M

IN
A

TE
_

C
A

LL

P
LA

C
E_

 C
AL

L

C
O

LO
R

_
S

U
B

S
C

R
IB

ER
_

R
EC

E
IV

E
_

 P

B
X_

R
ES

P
O

N
SE

S
U

B
S

C
R

IB
ER

_
A

TT
R

IB
U

TE
S

S
U

B
S

C
R

IB
ER

_
S

YM
BO

LS

S
U

B
S

C
R

IB
ER

_
P

BX
_

IN
TE

R
FA

C
E

P
ER

FO
R

M
A

N
C

E
_

M
EA

SU
R

E
S

SW
IT

C
H

 I
N

ST
A

LL
_

 S
W

IT
C

H
_

E
Q

U
IP

M
EN

T

R
EC

E
IV

E
_

 P

B
X_

 S
IG

N
A

L

 S
W

IT
C

H
_

R
ES

P
O

N
SE

 S
W

IT
C

H
_

FA
C

IL
IT

IE
S

C
O

N
N

E
C

T_

 C
A

LL

C
O

LO
R

_
TR

U
N

KS

C

O
LO

R
_

TE
R

M
IN

A
LS

 S
W

IT
C

H
_

C
O

N
TR

O
LS

D
IS

C
O

N
N

E
C

T_

 C

A
LL

IN
ST

R
U

M
EN

T

 IN
S

ER
T_

IN
ST

R
U

M
E

N
T

G
R

A
PH

IC
S

_
IN

ST
R

U
M

E
N

T

 U
P

D
AT

E_
P

ER
FO

R
M

A
N

C
E

_

 M
E

AS
U

R
ES

Fi
gu

re
 8

-2
.

Te
le

ph
on

e
ne

tw
or

k
m

od
el

 -
a

pr
e-

dr
aw

in
g

ve
rs

io
n.

TE
LE

X
M

PP
 0

4/
16

/1
1

Software Survival Page 8 - 4

N
ET

W
O

R
K

_
D

A
TA

SC
EN

A
R

IO
_C

O
N

TR
O

L

 G
E

T_
 T

R
U

N
K

_
C

A
PA

C
IT

Y

 R

EA
D

_
S

C
EN

A
R

IO
_

 D

AT
A

IN
IT

IA
LI

ZE
_

S
C

EN
A

R
IO

IN
TE

R
AC

TI
V

E
_

SC

E
N

A
R

IO

S
C

EN
A

R
IO

_
C

O
N

TR
O

L

 IN

SE
R

T_
IN

S
TR

U
M

E
N

T
G

R
A

P
H

IC
S

_
IN

S
TR

U
M

E
N

T

 U
PD

A
TE

_
P

ER
FO

R
M

AN
C

E
_

 M

E
A

SU
R

E
S

SF
I

O
FF

IC
E

PB
X

IN

ST
AL

L

PB

X

U
P

D
AT

E
_

 P

B
X

R

EC
E

IV
E_

S
U

BS
C

R
IB

E
R

_

IN

P
U

T

R
E

C
EI

V
E_

S
W

IT
C

H
_

R
E

SP
O

N
S

E

P
BX

_
S

U
BS

C
R

IB
E

R
_

IN
TE

R
FA

C
E

P
BX

_
S

YM
B

O
LS

P
BX

_
FA

C
IL

IT
IE

S

P
BX

_
S

W
IT

C
H

_
IN

TE
R

FA
C

E

SU
B

SC
R

IB
ER

IN
S

E
R

T_
S

U
BS

C
R

IB
E

R
_

TE
R

M
IN

A
TE

_

C

AL
L

P
LA

C
E

_
 C

AL
L

C
O

LO
R

_
S

U
BS

C
R

IB
E

R
_

R
E

C
EI

V
E_

 P

B
X_

R
E

SP
O

N
S

E

S
U

BS
C

R
IB

E
R

_
A

TT
R

IB
U

TE
S

S
U

BS
C

R
IB

E
R

_
S

YM
B

O
LS

S
U

BS
C

R
IB

E
R

_
P

BX
_

IN
TE

R
FA

C
E

P
ER

FO
R

M
AN

C
E

_
M

EA
S

U
R

ES

SW
IT

C
H

 I
N

ST
AL

L_
 S

W
IT

C
H

_
E

Q
U

IP
M

E
N

T

R
E

C
EI

V
E_

 P

B
X_

 S
IG

N
AL

 S
W

IT
C

H
_

R
E

SP
O

N
S

E

 S
W

IT
C

H
_

FA
C

IL
IT

IE
S

C
O

N
N

E
C

T_

 C
AL

L

C
O

LO
R

_
TR

U
N

K
S

C

O
LO

R
_

TE
R

M
IN

A
LS

 S
W

IT
C

H
_

C
O

N
TR

O
LS

D
IS

C
O

N
N

EC
T_

 C
A

LL

B
U

IL
D

_O
FF

IC
E

B
U

IL
D

_
O

FF
IC

E
O

FF
IC

E_
FA

C
IL

IT
IE

S

TE
LE

PH
O

N
E_

N
ET

W
O

R
K

TE
LE

X
M

PP
 0

8/
23

/1
0

IN
ST

R
U

M
EN

T

Fi
gu

re
 8

-3
.

IN
TE

R
_O

FF
IC

E_
N

ET
W

O
R

K
 M

od
el

 u
si

ng
 R

TG
.

Software Survival Page 8 - 5

SOFTWARE ARCHITECTURE

 An overview of the VisiSoft approach to software architecture is provided below. Just as
with any other architecture, one must account for all of the facets of the problem. Software
architectures must support the user environment as well as the development and support
environment. Although most of our focus is on development and support, the user environments
will be discussed where appropriate.

 We start by defining the components of a physical architecture. Refer to Figure 8-4.

COMPUTERS

DIRECTORY
HIERARCHIES

DRAWING
HIERARCHIES

PHYSICAL ARCHITECTURE

System & Architecture 7/14/06

Figure 8-4. VisiSoft view of the physical architectural components.

Run-Time Software Systems

 Using VisiSoft, a run-time software system may span one or more computers, typically
using communication links when more than one computer is used. A system may span different
platforms and operating systems.

 On a given computer, multiple executable tasks may reside in one or more directories.
When one task starts another task, the second task becomes part of an executable task hierarchy.
When tasks are started by separate user actions, they are independent. During execution, tasks
that reside on the same computer may attach to multiple shared memory segments as part of a
task hierarchy. Independent tasks attach to global memory segments. Because of the ease with
which multiple tasks can share memory directly in VisiSoft, threads (p-threads) are used only in
a parallel processor environment running under a single OS.

Software Survival Page 8 - 6

Development Environment Components

 Multiple computers are typically used during a software development. System
components may be exported from one platform (e.g., Linux) and imported to another platform
(e.g., Windows). From a developers perspective, the development environment is the same on
every platform. Each platform contains the following facilities:

• VisiSoft User (Developer) Directories - On a given computer, one can assign
multiple VisiSoft User Directories to house one or all of the components of a
system. Different versions of the same component may reside in different user
directories.

• Drawings - One or more drawings may be contained in a user directory. A drawing
may contain a single task or module. Each of these may contain one or more
modules in a hierarchy. To create or modify components, one must create a new
drawing or modify an existing drawing. Drawings may be deleted without deleting
the components in that drawing. Components may be deleted from a drawing or
from the user directory, in which case they are deleted from all drawings.

• Containers - Containers are used to export and import drawings, so multiple
drawings may exist in a container. Drawings cannot be modified in a container. It is
common practice to store all of the drawings in a user directory in one or more
containers. A directory can be backed up completely at any time simply by
exporting one or two containers.

ARCHITECTURAL COMPONENTS

 The basic architectural components of a software system are shown in Figure 8-5. They
have been introduced in prior chapters. These are resources, processes, modules, and tasks.
Their architectural properties are described below.

Tasks

 Tasks are executable modules at run-time. The VisiSoft logical system hierarchy
illustrated in Figure 8-5 contains 4 tasks. Architecturally, a task can start one or more tasks, and
a task can invoke one or more modules by starting a process. Modules within a task drawing
may be elementary or hierarchical. There is no limit on the hierarchy. However, a task
containing 8 levels of hierarchy is a huge piece of software (on the order of 1M lines of code).
The modules in a task need not reside in the task drawing.

Hierarchical Modules

 Figure 8-6 contains an illustration of a relatively complex module hierarchy. At the
bottom of the hierarchy, Drawing Level 1, are elementary modules. Hierarchical modules are
illustrated in Drawing Levels 2 and 3. It is not unusual for complex systems to take up to nine or
ten levels of drawings. At this level of complexity, one can expect to be over 1M lines of code.

Software Survival Page 8 - 7

SYSTEM

TASK
HIERARCHIES

LOGICAL SYSTEM HIERARCHY

HIERARCHICAL
MODULES

VSE / GSS
MODULE
HIERARCHY

ELEMENTARY
MODULES

PROCESSES

RESOURCES

System & Architecture 9/27/06

Figure 8-5. Overview of the VisiSoft logical system hierarchy.

Elementary Modules

 The module hierarchy in Figure 8-6 is apparent, down to the elementary modules that
contain resources (ovals - representing data structures) and processes (rectangles - representing
rule structures). Connections are designed at the elementary level to maximize independence
between hierarchical modules. This allows true reuse of modules.

System Decomposition And Module Composition

 The decomposition of a system into a hierarchy of modules takes considerable experience
in the particular application being developed as well as in software architecture. We note that,
from a VisiSoft standpoint, complex applications include language translators and operating
systems. The grouping of resources and processes into elementary modules is an important
architectural design function. All resources and processes must lie within an elementary module
boundary. This implies selection of the module that will contain the interface resource between
two modules. Those responsible for that module have implicit control over that interface.

Software Survival Page 8 - 8

HIERARCHICAL MODULES

HIERARCHICAL AND
ELEMENTARY MODULES

MODHIERV 08/22/06

HIERARCHICAL MODULES

Drawing Level 1

Drawing Level 2

Drawing Level 3

LAYER 1LAYER 2

LAYER 3

LAYER 2

LAYER 3

LAYER 4

LAYER 3

LAYER 4

LAYER 5

Figure 8-6. Illustration of a VisiSoft model hierarchy.

Software Survival Page 8 - 9

 Most importantly, architectures need not be poured into concrete. On the contrary, using
VisiSoft, they are easy to change. This is because the processes, resources and connection lines
are moved easily from one module to another. So if one decides to move an interface resource
from one module to another, it is a simple but very visible drawing change that confers control of
the interface to the other module.

Categories Of Modules

 There are three categories of modules in VisiSoft. These categories provide different
levels of protection with regard to change. Both elementary and hierarchical modules can reside
within each category. Modules of any category can only appear once in a drawing. The rules for
these categories are described below with examples in Figure 8-7.

• Modules - have a blue border. These are the basic building blocks in a task. In
VisiSoft, modules can be decomposed hierarchically, i.e., they can contain
submodules and sub-submodules, etc. Modules can only appear in a single
drawing in a user directory, and are meant to be unique, i.e., not reused, across
directories.

• Utility Modules - have a green border. These are modules that are reused by

processes in the same directory, and can appear in more than one drawing. They
are typically used to manage separate databases or perform utility type functions.
The green color flags them for change protection. If they are changed to
accommodate a given process, that change must be compatible with the other
processes that use them.

• Library Modules - have a gold border. These are utility modules that can be

shared from different directories and different computers. They are stored as
object modules in an object library file. The source only appears in the directory
where they are maintained. Processes in a library module are called from an
application using their process name, module name, and library name. Since each
of these names must be unique within the next level of hierarchy, there can be no
duplicate names when linking to library modules in VisiSoft.

The functions of a VisiSoft library module can be upgraded while at the same
time preserving the original module in the library for prior users. Users can call
the new function using the same process name within the same library by using
the new module name. VisiSoft has a large set of libraries that support various
applications, including 3D graphics, that are shared easily.

VisiSoft libraries have been designed to be controlled separately under special
protection mechanisms. But given access to a library directory, the responsible
person sees everything that is needed to allow for ease of changes and testing.
Library directories typically contain regression test drivers and data sets to ensure
changes meet all prior, as well as new requirements.

Software Survival Page 8 - 10

 The top level module in Figure 8-7 is a library module. It contains modules and utility
modules that are immediately identified by the color of their border. Libraries may contain a
virtually unlimited number of modules, and individual library modules can be huge hierarchies.
The library module shown in Figure 8-7 performs electromagnetic wave loss propagation
predictions between two antennas using detailed terrain, foliage, and building data. An example
of a medium size task architecture is shown in Figure 8-8. Being a model of a communication
system, this architecture has some special properties that will be described in Chapter 9.

Figure 8-7. Example of a library module with utility modules.

Software Survival Page 8 - 11

Fi
gu

re
 8

-8
. E

ng
in

ee
rin

g
dr

aw
in

g
of

 so
ftw

ar
e

Software Survival Page 8 - 12

ARCHITECTUAL DESIGN FOR REUSABILITY

 In a production environment, many opportunities arise to enhance a module in its original
form, or reuse a module in another system. Anyone who has completed a successful project for
one client should be aware of the desire to reuse as much of the prior design with new or existing
clients. This typically requires changes or additions to the prior design to incorporate new
requirements.

 We want to highlight those factors that are major contributors to reusability when
building a task of the size shown in Figure 8-8 or larger. There is always room for improvement,
but this is a good architecture. Telling people that modules should be built to ensure a wide
range of functionality, to be easily understood, and to be independent is one thing. Getting a
team of developers to carry this out is another. If they have not enjoyed the fruits of having done
it before, it will be difficult for them to relate to it! So how does one do this? There are design
rules that, when followed, can ensure that module understandability and independence are
maximized. Practical experience has shown that certain elements are essential. These are
described below.

 The competitive environment will eventually dictate that developers who are most
productive across the total life cycle will be the survivors. Successful developers know that their
products are in the support mode typically for more than 80% of their life cycle. Thus good
software architectures must be designed to allow developers to generate new reliable releases
quickly.

 If most of a software group’s time is spent updating an existing system in the support
mode, then this is a critical area to analyze to increase productivity. Support includes adding
new facilities as well as modifying a growing set of existing facilities. Not only do these
facilities grow in number, but they also grow in complexity as more options are added. This is
like adding more rooms onto a building. At some point, one must consider the development of a
new architecture, else the structure of the old architecture becomes too weak or burdened to
support the new facilities. Sticking with an old architecture makes adding new facilities more
difficult as a system grows. So how does one develop a good architecture in the first place?

APPROACH TO SOFTWARE ARCHITECTURE

 Figure 8-9 below depicts the system life cycle with the detailed architectural design in a
blue box. We will define this design process and the results that it must produce. Our long term
objective is to define this process in sufficient detail to evolve automation that supports the steps
required to complete the design of an architecture.

A Framework For Describing The Architectural Design Process

 To accomplish our objective of creating architectures, we must have a framework that
affords a sufficiently detailed definition of the process. As before, we will borrow from the
mathematics of control theory, using our generalized state-space framework. We will be
decomposing the user’s functional requirements into a detailed software architecture using
hierarchical modules, resources and processes from the VisiSoft version of this framework.

Software Survival Page 8 - 13

PRODUCE SYSTEM
REQUIREMENTS DOCUMENT

PRODUCE DETAILED
 END USER FUNCTIONS &

 PROCEDURES DOCUMENT

PRODUCE DETAILED
ARCHITECTURAL

DESIGN

IMPLEMENT AND TEST
MODULES

INTEGRATE MODULES
AND TEST SYSTEM

DELIVER / INSTALL
AND SUPPORT

SYSTEM

DEVSTEPS 9/26/05

ARCHITECTURE

IMPLEMENTATION

THE SYSTEM LIFE-CYCLE

Figure 8-9. Role of detailed architectural design within the system life cycle.

 This will be approached as transformations on different substate spaces as well as
transformations between substate spaces. Our goal is to produce a hierarchical software
architecture, down to the resource and process level, such that there are minimal architectural
changes during the coding implementation phase.

The State-Space Framework

 The state space framework is a mathematical framework for solving the most general
problems in dynamical systems, see [39], [84], or [104]. When providing frameworks for
solving such problems, one must ensure completeness and consistency so solutions converge to
the expected answer, unambiguously, depending upon their inputs. When developing GSS, the
state space framework was used as the basis for ensuring these properties. This was because
GSS is a discrete event simulation environment, where flow of control is dependent upon a very
large set of event strings that in turn depend upon a huge state space. Although sequences of
events are deterministic, they are virtually unpredictable.

Software Survival Page 8 - 14

 The direct mapping of GSS resources into state subvectors and processes into state space
transformations made this analogy trivial. The only difference is that GSS state vectors contain
non-numeric data in the form of character strings, and the transformations on these vectors
permit other than mathematical operations. However, since they are all resolved at the bit level
inside a computer, one can show that these operations can all be reduced to the equivalent of
mathematical operators on numbers. Therefore, properties of transformations using the state
space framework can be applied to those used in GSS.

 The state space framework was used to derive fast and efficient approaches to solving
circuit design problems in the 1960s, see [47] and [48]. These approaches were implemented in
CAD software packages used by engineers for simulation and design optimization of complex
electrical networks. When designing this type of software to achieve speed in the multiple
simulation optimization process, one is concerned with selection of the best set of state variables
for solving the problem, and the grouping of these state variables to minimize the complexity of
the transformation.

 Selection of the “best” set of state variables equates to choosing the best coordinate
system for doing transformations. For example, if one is investigating the dynamics of motion
on a sphere, problems are likely solved with much less algebra, and therefore faster, in spherical
coordinates. This can be measured using the sum of the products of operations and instruction
speeds.

 Given the best set of state variables, one may further reduce operation counts by
effectively diagonalizing the large matrices that must be inverted to solve the problem. This can
be done by interchanging rows and columns of the matrix and corresponding vectors to produce
submatrices that are maximally independent. This is known as the optimal ordering problem.
This also simplifies the transformations by reducing the weighted operation counts.

 Mapping this into the software architecture problem, selection of the best set of state
variables is equivalent to choosing the attributes used to represent the states of a system so as to
maximize simplicity of the resulting transformation. Optimal ordering is equivalent to grouping
these states in a way the further simplifies the transformations. To translate these rules into those
for software architectures, a complex transformation may require multiple resources and
processes. Selection of the states that represent the software functions, and grouping them into
different resources will serve to simplify the processes used to do the transformations.
Simplification can be considered from two standpoints: (1) speed of operations, and (2) module
understandability and independence. The approach to circuit design achieved both.

Software Survival Page 8 - 15

Software Architecture Development Steps

 We now want to translate these concepts into steps for designing software architectures.
Figure 8-10 is an expansion of Figure 8-9. The software architecture development process has
been broken into 5 steps. These steps are described below.

PRODUCE SYSTEM
REQUIREMENTS DOCUMENT

PRODUCE DETAILED
SOFTWARE FUNCTION

SPECIFICATIONS

MAP DATA STRUCTURES
INTO INDIVIDUAL

SOFTWARE FUNCTIONS

MAP DATA STRUCTURES
ACROSS

SOFTWARE FUNCTIONS

REMAP DATA STRUCTURES
TO MAXIMIZE INDEPENDENCE

OF SOFTWARE FUNCTIONS

PRODUCE DETAILED
SOFTWARE ARCHITECTURE

PRODUCE DETAILED
 END USER FUNCTIONS &

 PROCEDURES DOCUMENT

DEVSTEPS 9/26/05

1

2

3

4

5

Figure 8-10. Breakout of the detailed architectural design process.

Software Survival Page 8 - 16

Step 1 - Produce Detailed Software Function Specifications

 Determine the generic software functions that are required to perform the end user
required functions. Describe these as transformations of state. This implies describing the
functional states of the system, and the transformations on those states. In this step we are
describing the transformational requirements, and grouping them into an initial set of modules.

Step 2 - Map Data Structures Into Individual Software Functions

 Select coordinate systems and states for implementing the software transformations for
each function. Map these coordinate systems and states into data structures that support the
functional transformations. Assign these data structures to resources and the transformations to
processes within modules for each function.

Step 3 - Map Data Structures Across Software Functions

 On a module-by-module basis, determine the coordinate transformations required
between functions and map the states required to support these coordinate transformations into
data structures within resources. Map these transformations into processes. The more complex
coordinate transformations may be best put into separate modules.

Step 4 - Re-Map Data Structures To Maximize Software Module Independence

 On a hierarchical module basis, review the combination of coordinate systems and states
(resources), and the transformations (processes) and determine the best breakout of coordinate
systems and states into resources for implementing the transformations. This requires
minimizing the resources shared between modules to maximize module independence. This
implies shifting data structures from one resource to another, possibly removing some resources
and creating new ones. This also requires corresponding changes to the transformations assigned
to processes. This implies shifting rules from one process to another, possibly removing some
processes and creating new ones.

Step 5 - Produce Detailed Software Architecture

 Complete the detailed software architecture by connecting all of the modules. This
implies connecting those processes in a module to the resources they share between modules.
One may have to iterate between steps 4 and 5 as the architecture becomes more transparent.

 The above set of steps represent a great simplification of a complex process. In the next
chapter we will provide more insight into approaches to this process. In addition, we will
describe utility modules and library modules and how they can be used to further simplify
system architectures by removing reusable modules from the main architecture so they can be
implemented and tested separately.

Software Survival Page 8 - 17

ARCHITECTUAL RESTRUCTURING

 When users start to use a new system, they immediately see improvements that they
would like incorporated into the system. This typically evolves into a life cycle that generates
new releases of a product on the order of once or more a year. A good software developer can
anticipate many of the potential improvements that customers will want in the future. However,
one cannot anticipate unknown desires that turn into requirements. Thus one must be prepared to
build architectures that can grow or even be totally revised to meet unknown future
requirements.

 Chapter 5 described a flexible software life cycle. The arrows in Figures 8-9 and 8-10
illustrate feedback loops that provide for anything to be changed at any time. As soon as one
phase is completed and the next phase is launched, one learns about additional features that must
be incorporated to improve the system. Flexibility implies that the architecture is designed for
ease of change at any level. The ability to do this depends upon the understandability and
independence of both the architectural design and the components contained in that architecture.

Mapping Architectural Restructuring Onto The Life-Cycle

 Experience has shown that, for complex systems, designers should allow for three
restructurings of the architecture during its initial development, and possibly more during
support. The reason for these restructurings is because the initial architecture is normally
designed without the benefit of detailed knowledge of what the structure must support. Only
after going into the additional layers of coding implementation, based upon an initial structure,
does one learn about all of the pieces of information to be used and how they must fit together.
After one has done this, the first restructuring is likely to be significant. Restructuring will allow
the design team to move quickly and easily accommodate the remainder of the design and
development effort.

 The second restructuring is usually similar to the first, but not as significant. The third is
usually represented by a sequence of much smaller improvements to the structure over time. The
exception is when levels of module detail have changed significantly since the first restructuring.

 Experience has also shown that, having restructured as indicated above, complex
modules can be finished, verified, and validated with relative ease. This is because the new
structure allows the rest of the information to be added in a much more logical way - increasing
understandability and independence. This restructuring does not cost time on a project.
Experience shows it clearly saves time, particularly when time is most precious - nearing a
scheduled release date.

 Figure 8-11 shows the effects on a project when restructuring is imposed, compared to
the normal project when it is not. When complex models are not restructured, it becomes much
more difficult to add additional elements without disturbing large segments of the total module.

Software Survival Page 8 - 18

DEVELOPING A GOOD DESIGN STRUCTURE
CUTS TIME & COST OF PROJECT COMPLETION

100 % COMPLETION

NORMAL PROJECT

SECOND RESTRUCTURING

FIRST RESTRUCTURING

PROJTIME 1/26/06 TIME TO COMPLETION

PERCENT
PROJECT

COMPLETION

THIRD RESTRUCTURING

Figure 8-11. The effects of restructuring on project completion times.

Software Survival Page 9 - 1

Chapter 9. Architectural Design

ARCHITECTURAL DESIGN RULES

 Perhaps the greatest benefit of the VisiSoft approach is that the architecture of a complex
system can be viewed graphically, and thus studied and improved. Much like looking at the
architecture of a house, aircraft, or electronic device, we can view the architecture of a system
without being overwhelmed in the detailed design of a particular element. This amounts to
hiding the details, e.g., the numerous design parameters, until one wants to see them. In
software, this implies not getting into the code. Conversely, if one wants to view the details,
they are easily available.

 Conversely, the hierarchical architecture hides unwanted details, e.g., numerous design
parameters, until one wants to see them. Most importantly, one does not have to read code to
figure out architectural details. Finally, if one wants to view the details of the code, it is directly
available.

 By following architectural rules, software modules can be designed to be independent
and easily recognized by others. This cuts the time and cost to build, test, validate, change,
expand, and reuse these modules in other tasks or simulations. A sampling of rules is provided
below. These rules are generally easy to follow and verify, simply by reviewing the engineering
drawings.

Software Survival Page 9 - 2

Some Basic Rules

 Ensuring independence and understandability at different levels of an architecture is an
important part of ensuring reusability. This requires understanding what is meant by
independence at different levels. The following are the principles behind this concept.

• Independence and understandability of an elementary module allows it to be copied and
reused, with modifications, in another part of the drawing or in another drawing.

• Independence of a higher level module provides for ease of reuse in different drawings
or in different directories for different projects.

 The following are basic design rules that, when followed, can ensure that module
understandability and independence are maximized. For example, we want to ensure the
following.

• Resources shared between two processes contain only those attributes that are shared by
those processes.

• Attributes used by only one process are placed into a resource dedicated to that process.

These rules maximize understandability and independence at the elementary module level. They
are time-saving practices that are easy to follow. Even the following simple rules help.

• Do not reuse working variables by more than one process.

• Use separate working variables for different functions, each using meaningful names,
even within a single process.

These rules add significant improvements to the understandability and independence of
elementary modules. Additional rules are provided in the following sections.

Limiting The Number Of Elements Within A Module

 An elementary module may have only one or two elements, e.g., a resource and process,
although this does not occur often. However, when a process or module starts to expand in size
as more detail is added, one must consider breaking it into separate processes or submodules for
clarity of understanding. Three to five elements allow a module to be easily understood. Unless
the structure is very symmetrical, and therefore still understandable, one should limit the number
of elements of a module to ten.

Software Survival Page 9 - 3

Limiting Interfaces To Two Interconnect Lines

 As shown in Figure 9-1, modules can be connected via many interfaces. For example,
module M2 is connected to modules M1, M3, and M5 via three two-line interfaces. M3 is
connected to module M2, M6, and M4 via three two-line interfaces. However, at every interface
there are no more than two lines interconnecting any modules. Often, one line will connect to a
resource for input data, and the other line to a resource for output data.

M1 M2 M3 M4

M5 M6

MODULEINTERFACE 3/2/04

Figure 9-1 Module Interconnection scheme.

 Limiting the interconnections between modules to no more than two lines at any interface
is the most important way to achieve module independence. It allows one to easily make a copy
of the module and connect it to other modules in other drawings.

BASIC ARCHITECTURES

Simple Architecture 1 - Elementary Design

 Figure 9-2 illustrates the most basic architecture of a task. In this case, the task, C_S_1,
contains a single module, M_1. The module, M_1, contains one resource R_1 and one process
P_1. To indicate the use of interactive DISPLAY and ACCEPT statements, a computer terminal
is attached to the process. The computer terminal icon is for documentation purposes only.

M_1

P_1

R_1

C_S_1

ARCHITECTURES_1 04/22/04

Figure 9-2. The most basic architecture of a task.

Software Survival Page 9 - 4

Simple Architecture 2 - Two Modules

 Figure 9-3 illustrates a task with a simple two module architecture. From the nature of
the architecture, M_1 is the main control module, and M_2 is a subordinate module. The
implication is that P_11 calls P_21.

C_S_1

ARCHITECTURES_1 04/22/04

M_1

P_11

R_12

R_11

M_2

P_21

R_21

Figure 9-3. A basic two module architecture of a simulation or task.

 Note that both processes have a dedicated resource (P_11 has R_11 and P_21 has R_21).
This is based upon the principle that a process generally has a need for attributes that are not
shared with any other process. The rule to be followed is that, unless attributes (data) must be
shared for functional purposes, do not share them. Use a dedicated resource to house those
attributes, even for a single attribute. When memory was expensive, programmers learned to
share work variables. This is prone to misunderstandings and bugs. Today, memory is cheap.
Time is very expensive.

 When one process calls or schedules another process, these processes generally share
data. If resource (R_12) contains only the data shared between these processes, this maximizes
independence and understandability. If a module boundary is crossed, the resource should be
placed inside the controlling module.

 When an experienced architect looks at this drawing, the above principles are expected to
be followed.

Software Survival Page 9 - 5

Use Of Terminals

In conventional engineering drawings, terminals are used to connect lines between
drawings, or to simplify a single drawing. Rather than have a long line connecting elements
across a drawing, one that may interfere with many other lines, a label is created at each element
to denote the connecting line. Figure 9-4 illustrates this convention.

R1

T2

P1

T4

T1 T3

INPUT

OUTPUT

T6

T8

T5 T7

INPUT

OUTPUT

ARCHITECTURES_2 07/12/06

Figure 9-4. Use of labeled terminals.

 Looking at Figure 9-5, we note the following conventions. Information and control
inputs generally come in on the left and top (T1,T2, T5, and T6) and outputs generally go out on
the right and bottom (T3, T4, T7 and T8) for both processes and resources. Here, if P1 is called,
the resources it shares with the caller are considered inputs to P1, and those resources would be
attached at T1 or T2. If P1 calls another process, then resources it shares with the called process
are considered outputs of P1, and those resources would generally be attached at T3 and T4.

 Looking at R1, T5 and T6 are typically tied to processes that call others tied to T7 and
T8, where the calling process is providing inputs to R1 to share with the called processes. This
does not prohibit data from being shared in both directions, where one need only consider the
direction of control.

Software Survival Page 9 - 6

Architecture 3

 Figure 9-5 illustrates the architecture of a higher level module M_A that may be used by
another module at an even higher level. Module M_A contains four submodules, M_1, M_2,
M_3, and M_4. Rather than packing all of these resources and processes into one module, it
makes sense to break up the functions so that they can be isolated and therefore treated
independently. This is the job of the architect. Specifically, modules M_2, M_3, and M_4 can
be dealt with on a reasonably independent basis from the rest of the module.

 The connector to A indicates that a resource in the higher level module contains data that
is used and modified by M_A.

ARCHITECTURES_1 02/19/06

M_1

R_12_B

P_12

R_11_12

P_11 R_11

R_12

R_12_A

M_3

P_31

R_31

M_4

P_41

R_41

M_2

P_21

R_21

M_A

A

Figure 9-5. Architecture of a higher level module.

Software Survival Page 9 - 7

ADDING SHARED ALIAS RESOURCES TO GAIN INDEPENDENCE

 Sometimes it appears difficult to limit the interconnections between modules to just two
interconnect lines. This problem typically occurs when a resource in one module is to be shared
with more than two processes in another module. Figure 9-6 provides an example of this case,
where MODULE_1 calls four processes in MODULE_2, while sharing a single resource with
those processes.

ISOLATE 09/09/06

SUBSCRIBER_
VOICE_
INPUT

SUBSCRIBER_
DATA_

OUTPUT

SUBSCRIBER_
DATA_
INPUT

SUBSCRIBER_
VOICE_
OUTPUT

MODULE_2
ATM_

VOICE_
RECVR_

ATM_
DATA_

RECVR_

ATM_
VOICE_
XMTR_

ATM_
DATA_
XMTR_

ATM_
OUTPUT_

INTERFACE

MODULE_1

SUBSCRIBER_
ATM_
XMITR

A DCB

Figure 9-6. Example of not limiting the interconnections between modules.

 This problem can be solved by adding a SHARED ALIAS resource in MODULE_2, as
shown in Figure 9-8. The SHARED ALIAS resource (denoted by the red outline) is ATM_
SUBSCRIBER_INTERFACE and is connected to the four processes in MODULE_2. When the
process in MODULE_1 calls any of the processes in MODULE_2, it uses the memory of
resource SUBSCRIBER_ATM_INTERFACE, now a SHARED AS resource, as shown in
Figure 9-7.

 The SHARED ALIAS resource does not use separate memory, but points to the memory
in the SHARED AS resource SUBSCRIBER_ATM_INTERFACE. The “pointer” is implicit in
the architecture and not of concern in the language. The data structure within the SHARED
ALIAS resource acts as a template that is overlaid on top of the memory defined by the
SHARED AS resource.

Software Survival Page 9 - 8

ISOLATE 10/23/10

ATM_
OUTPUT_

INTERFACE

MODULE_1

SUBSCRIBER_
VOICE_
INPUT

SUBSCRIBER_
DATA_

OUTPUT

SUBSCRIBER_
DATA_
INPUT

SUBSCRIBER_
VOICE_
OUTPUT

SUBSCRIBER_
ATM_

INTRFACE

MODULE_2

ATM_
VOICE_
RECVR

ATM_
SUBSCRIBER_

INTERFACE

ATM_
DATA_
RECVR

ATM_
VOICE_
XMTR

ATM_
DATA_
XMTR

A DCB

AIA

AIA

Figure 9-7. Example of how a SHARED ALIAS resource reduces the interconnections.

 At first, this architecture may appear to carry unwarranted overhead. However, it is the
facility needed to ensure independence between modules, and requires no additional memory. It
occurs in many design situations. It is particularly useful when designing Utility and Library
Modules as defined below.

SHARING RESOURCES WITH INDEPENDENT UTILITIES

 Frequently, as indicated above, more than one module must perform the same or very
similar functions. Rather than repeat the code, the desired function may be put into a single
module. More generally, when two or more processes in different modules call the same process
sharing similar data structures, it is best to create an independent utility. This is done by putting
the shared data into a SHARED AS resource associated with each calling process, and creating a
Utility module with a SHARED ALIAS resource.

 This requirement is illustrated in Figure 9-8. MODULE_1 and MODULE_2 each want
UTILITY_6 to perform a function using their own resources, SHARED_AS_M1 and
SHARED_AS_M1 respectively. Instead of sharing both resources directly, UTILITY_6 shares
them using SHARED_ALIAS_U6.

Software Survival Page 9 - 9

ISOLATE 10/25/10

SHARED_AS
_U7

SHARED_
ALIAS_U6

UTILITY_6

PROCESS_U6

PROCESS_M1

MODULE_1

SHARED_AS
_M1

6

PROCESS_M2

MODULE_2

SHARED_AS
_M2

6

6

7 8

SHARED_AS
_U8

Figure 9-8. Example of using aliased resources to create independent utilities.

 Thus when MODULE_1 calls upon UTILITY_6 to perform the function,
SHARED_AS_M1 is used. When MODULE_2 calls upon UTILITY_6, SHARED_AS_M2 is
used. If UTILITY_6 is memory-less, no logic is required to distinguish between the two callers
and their needs. Also, no direct connect lines may be drawn to a Utility module. Utilities must
be connected to other modules via connectors.

 Figure 9-8 illustrates an additional facility in VSE and GSS. This is the ability to chain
utility or library modules. Resources SHARED_AS_U7 and SHARED_AS_U8 can act as
SHARED AS resources when attached to other Utility or Library modules.

Software Survival Page 9 - 10

BUILDING PROTECTED DATABASE UTILITIES

 Figure 9-9 illustrates an architecture for a Utility (green border) that takes in an input file
and provides access to a database that may be available to multiple modules. This architecture
provides for reading FILE_I. Since the file is an input file, it is shown on the left side of the
module. Process PI controls access to the database, initializing the database that is stored in
RIDB.

MI

A

RI

PIPFIRFI RIDB

RCI

FILE_I

ARCHITECTURES_2 01/25/06

Figure 9-9. Architecture for an input file handler utility.

 Process PI is called from above to retrieve data from the database. The first time it is
called, PI calls PFI to read the file and load the database. PFI reads records from the file, loading
the database into RIDB. When all of the records are read, PFI sets the END_OF_FILE status
and any other return codes and returns control to PI. PI then performs retrievals requested from
above. If the request coming into PI from above is to update the database, PI performs this
update to RIDB. When the task is completed, PI may be called from above to write the updated
database to the FILE_I (if desired) and close it.

 RFI contains data structures representing the records read from the file. RCI is used to
hold control attributes used by PF1. RI is a template that holds control and database information
stored in the module above.

Figure 9-10 illustrates an architecture for a database handler utility that can store an
output file. This architecture provides for writing FILE_O when PO is called from above to do
so. Since the file is an output file, it is shown on the right side of the module.

MO

A

RO

PO RFORODB PFO

RCO

FILE_O

ARCHITECTURES_2 01/25/06

Figure 9-10. Architecture for an output file handler utility.

Software Survival Page 9 - 11

BUILDING INPUT-OUTPUT FILE HANDLERS

 Figure 9-11 illustrates an architecture for reading and writing Standard File Interface
(SFI) files. The SFI standard was created by GSS users in the 1980s. SFI files are text files
whose data records follow similar formats. They also contain predefined header records to
describe the format of the fields in the data record. Software is automatically generated to read
and write SFI files based upon the header information. This allows the file to be connected
directly to a process that reads or writes the file automatically when called. Fields in the data
record that are specified by the header records must have a match with those in resources that are
connected to the calling process. These fields are automatically updated when reading an SFI
file. Users can create SFI formats that are easily read from - or read into - spread sheets,
statistical packages, etc., that use simple delimiters between fields.

MIO

A

RIO

PIOPFI RFI

FILE_I

ARCHITECTURES_1 04/29/04

PFORFO

FILE_O

Figure 9-11. Architecture for a file handler utility.

 The architecture in Figure 9-11 provides for reading FILE_I into a SHARED AS resource
in the calling process using RIO as the SHARED ALIAS template and then writing that database
to FILE_O. Process PIO controls the module, initializing the database that’s stored in the
SHARED AS resource that’s connected to RIO and the calling process. PIO can create a copy of
the file when required by calling the process PFO to write the database to FILE_O. The calling
module then performs database retrievals and updates directly to RIO.

 In general, process PIO is called from above to retrieve the database from FILE_I or store
it in FILE_O. The first time it is called, PIO calls PFI to read the entire FILE_I. PIO calls PFI
once for each record and loads the information from RFI into the database in RIO. PFI reads
records off the file into RFI. When all of the records are read, PFI sets the END_OF_FILE status
and any other return codes required for PIO to send back to the calling module. The calling
module then performs retrievals directly from its own SHARED AS resource.

 When the task is completed, PIO is called from above to write the updated database to
file FILE_O and close it. To write FILE_O, PIO moves data records from RIO to RFO and calls
PFO to write the file for each record.

Software Survival Page 9 - 12

STANDARD LIST UTILITY ARCHITECTURES

 Figure 9-12 illustrates examples of standard architectures for list utilities that are quite
common in database work. These particular architectures are used to manage different types of
lists or databases that support different pieces of complex software.

 The CAD system described here contains a GENERAL library of modules that can be
used to perform various standard software functions. These are described in the General Library
document, reference [79]. Examples of popular library modules are those for managing static
and dynamic (linked) lists, e.g., those shown in Figure 9-12. Management of linked lists can be
somewhat complex for large applications where they may be required in many different parts of
an application. In this case, one can build utility modules to use the list management library
modules. Once one has a utility built, one can easily modify the module, process, and resource
names, and put the new utility module into a different piece of software. One can then proceed
to tailor the code where necessary to achieve the new functionality. Most of the code changes
are required to match record layouts in the lists (databases). The rules are usually unchanged,
except for some of the data names. The logic is generally bug-free on the first implementation.

 Probably the most important concept to be derived from this is that there are standard
architectures that are recognizable directly from their drawings. Once one gets to work with
these different architectures, it is clear how they can be permuted to do different functions very
easily. This is because the common functionality has a corresponding common picture
(architecture or sub-architecture).

 Without visualization of these architectures, this would be intractable. Imagine that your
eyes were only limited to reading text, and could not recognize pictures. Or if the pictures were
gross abstractions of the functionality (e.g. a box without any processes or resources inside) so
that the picture does not tell very much about what is inside. That is a major difference between
this CAD approach and other software approaches, except for those based upon flow-charts. But
as the logic gets complex, flow charts expand in size, typically covering many sheets of paper,
becoming hard to follow. A good language can easily reveal complex algorithms on one or two
pages that may take five or ten pages of flow charts.

Software Survival Page 9 - 13

USER_LIST_UTILITIES

STATIC_LIST_UTIL

STATIC_
LIST_
MGR

STATIC_
LIST_

INTERFACE

STATIC_
LIST

SL

LIM

DYNAMIC_LIST_UTIL

DYNAMIC_
LIST_
MGR

DYNAMIC_
LIST_

INTERFACE

DYNAMIC__
INDEX_

INTERFACE

DYNAMIC_
LIST

DL

LIST_INDEX 11/08/10

LINKLIST

LIST_INDEX_
MANAGER

INDEX_
MANAGER_
INTERFACE

LIM

SV

SAVED_LIST_UTIL

SAVED_
LIST_
MGR

SAVED
LIST_

INTERFACE

SAVED_
LIST

INPUT_
LIST

OUTPUT_
LIST

INPUT
LIST

DATABASE

OUTPUT
LIST

DATABASE

STORED_LIST_UTIL

STORED_
LIST_
MGR

STORED
LIST_

INTERFACE

STORED_
LIST

ST

INPUT_
LIST

INPUT
LIST

DATABASE

IN[PUT_
LIST_MGR

Figure 9-12. A few examples of list management utility architectures common in VSE.

Software Survival Page 9 - 14

BUILDING PANEL ARCHITECTURES

 Using this CAD system, interactive panels are built using the Panel Library Manager
(PLM). One must first create a panel resource. Then one can select this resource and bring up
the PLM drawing board to create a new panel or modify an existing panel, e.g. RESOURCE_
PANEL shown in Figure 9-13. When the panel is completed and saved, the panel resource is
populated automatically with data structures produced by the panel drawing board. This panel
resource is then available to processes that are connected to it architecturally. At run time, these
processes can put information into, and get information from panel fields within the data
structure.

Figure 9-13. Creating a Panel Resource Type.

BUILDING PANEL HANDLERS

 One of the many features of the CAD system is the ability to create panels such as that
shown in Figure 9-13 using a graphical environment. At run-time, users may enter data, choose
selections and review outputs using a large number of built-in features. The panel shown in
Figure 9-13 happens to be used to create a resource that provides the interface between all of the
panel fields and the task that is being created to use a (different) panel. These resources are
special panel resources that appear in the architecture with their names in red. Our interest here
is the architecture for multiple panels, not the panels themselves.

 Figure 9-14 illustrates an example of an architecture for handling multiple panels. This
architecture is much better because the process PANEL_CONTROL becomes very complex if
the panels themselves have any degree of complexity.

Software Survival Page 9 - 15

PANEL_
CONTROL

TOP_
CONTROLS

PANEL_
RES_1

PANEL_
RES_3

PANEL_
RES_2

ARCHITECTURES_2 11/26/04

PANEL_HANDLER

Figure 9-14. Poor architecture for handling multiple panels.

 When taking in input data from multiple panels, managing which panel is open and on
top should be separated from accepting and editing data from the individual panels. Figure 9-15
provides an example of an improved architecture for accomplishing this.

ARCHITECTURES_2 11/26/04

P_2

PANEL_2

P_3

PANEL_3

P_1

PANEL_1

PANEL_
RES_1

PANEL_
RES_3

PANEL_
RES_2

PANEL_HANDLER

PANEL_
CONTROL

TOP_
CONTROLS

PANEL_
INTERFC_1

PANEL_
INTERFC_3

PANEL_
INTERFC_2

Figure 9-15. Improved architecture for handling multiple panels.

 Figure 9-16 provides the best example of an architecture for handling more complex
panels. It is recommended that the architecture used for P_3 be considered for all panels. The
resources used in this architecture each serve a different purpose.

Software Survival Page 9 - 16

ARCHITECTURES_2 11/26/04

P_2

PANEL_2

P_3

PANEL_3

P_1

PANEL_1

PANEL_
RES_1

PANEL_
RES_3

PANEL_
RES_2

PANEL_HANDLER

PANEL_
CONTROL

TOP_
CONTROLS

PANEL_
INTERFC_1

PANEL_
INTERFC_3

PANEL_
INTERFC_2

PANEL_
INT_1

PANEL_
INT_3

PANEL_
INT_2

PANEL_
CONTROL_3

PI3

PI3

PI2PI1

PI2PI1

Figure 9-16. Best architectures for complex panels.

 PANEL_INT_3 serves as the interface to the calling process and allows the panel to be
tested using a test driver independent of the system or simulation in which it resides.
PANEL_CONTROL_3 provides for internal work or control attributes used to control the logic
fielding the panel inputs and responses. PANEL_RES_3 is the panel resource itself.

ARCHITECTURES FOR TESTING LIBRARY MODULES

 Architectures for testing library modules can be simplified by following the procedures
offered below when building the modules. Figure 9-17 illustrates a module POINT_AND_
VECTOR_TESTS that is contained in the GENERAL library. This library module contains
three utility modules that are used for determining the relative positions of points, lines, and
vectors in space. Because these utilities contain complex heuristic algorithms, they require tests
using substantial databases to ensure all possible situations are covered. When testing complex
library modules in a production environment, one may run many tests before certifying a module
for production release.

 A test driver for the utilities in this library module is shown in Figure 9-18. Because
library modules are prepared as object files (in this case it is the GENERAL.a library), having
copies of the utility modules available inside the test driver task eliminates having to go back and
forth from the test driver to the library to make the changes. As utilities, they can be put into
more than one drawing in a the library directory. Changing a utility on any of the drawings
changes it everywhere. So when the utilities are finally corrected in the test driver in
Figure 9-18, one goes into the library drawing and prepares the library module for a final test.

Software Survival Page 9 - 17

Figure 9-17. Library modules under test.

Figure 9-18. Test driver for library modules.

Software Survival Page 9 - 18

 Having generated a new corrected version of the library, an example of a call statement
inside the test driver is shown below.

 CALL INSIDE_OUTSIDE_TEST IN POINT_AND_VECTOR_TESTS IN GENERAL
 USING IN_OUT_INTERFACE

To invoke the test procedure described above, one merely has to put comments into this call
statement to call the utility modules inside the test driver as shown below.

 CALL INSIDE_OUTSIDE_TEST *** IN POINT_AND_VECTOR_TESTS IN GENERAL
 *** USING IN_OUT_INTERFACE

After testing is complete, and the library module is prepared, then the comments are removed
and the actual library module is called as a final test.

PUTTING RESOURCES ON THE TRANSMITTER SIDE

 When designing systems where information is moved between modules, the resource
containing the data to be transmitted across the boundary (e.g., RS1) is best placed inside the
sender module with the process that receives it (e.g., PR2) inside the receiver module. This
approach is illustrated in Figure 9-19 below.

M1

PS1 RS1

RS2 PS2

M2

PR2 RR2

RR1 PR1

MODULE INTERFACE 11/08/10

Figure 9-19 Module Interconnection scheme.

 The reasons for this approach are many-fold. First, when designing communications
systems, information is transmitted between two boxes as shown. For asynchronous
transmission, the transmitter puts the information to be transmitted into a buffer in the
transmitter, and sends a control signal to the receiver to sense the information and copy it into the
receiver. This is accomplished by having the transmitter schedule the receiver module to copy
the data after it is put into the transmitter resource shared with the receiver.

 For synchronous communications, the transmitter schedules itself to put the information
into the buffer at specified clock times, and the receiver schedules itself to sample the
transmitter's buffer in between those clock times.

Software Survival Page 9 - 19

ARCHITECTURAL SPACING

 There are many disciplines in which engineering drawings are used to represent a design.
House architectures, machine drawings, and chip layouts are examples of drawings that are to
scale. We are only concerned with drawings that are not to scale, e.g., electronic circuit designs
and logical designs. In both cases, engineers typically follow standards for production drawings.
This is because large systems cannot be represented with a single drawing. It is not unusual to
have ten or more drawings to cover the components of a production system. Thus, the drawings
must match to be read easily, and engineers are known for their adherence to these standards.
This has nothing to do with style. It has to do with clear representations of the design.

 Good architects joke about the different approaches to spacing between modules and
elements within a module. In fact they have been given names, e.g., Texas - wide open spaces,
and China - crunched up. Is one way better than another? Are there benefits of spreading things
out versus crunching them up? The answer is definitely yes. Good spacing practices assist
understandability and ease of architectural change.

 When working with very large complex drawings, one can distinguish between good and
bad practices. For example, a technician creating the drawing on a graphics screen may want to
crunch everything up to fit as much on the screen as possible. This minimizes the number of
drawings. But engineers reading these drawings may have difficulties discerning where one
module ends and another begins, especially if they are not familiar with the design.

 In fact there have been studies relating productivity to pixel counts or size of the drawing
one can fit on a screen. The more pixels one has, the more one can see on the screen with the
same degree of clarity. Productivity has been shown to increase with pixel count.

 In addition, having visited aircraft manufacturing plants, one sees huge drawings
wrapped around the walls, with moving step ladders to view the drawings. Large complex
designs can never be put onto a single screen. So crunching things up is not the answer. What is
important is the ability to easily pan and zoom on a large drawing, and to easily break a large
design into multiple drawings. A large design will naturally have independent parts, else it is a
poor design.

Changing An Architecture

 Even more important is the time expended when one wants to make an architectural
change. If the drawing is crunched, it becomes a large task to make some room, just to be able to
move module boundaries - to create some additional space inside for one or more new elements.

 To save time changing a module whose architecture is crunched, one starts looking for
ways to not change the architecture. This problem is typically solved by adding code to existing
resources and processes. These elements start to take on additional functions that make them
difficult to understand. When additional functions are best put in separate resources and
processes, or even separate modules, one is faced with changing the architecture. Having space
to start with is extremely helpful, and will likely make the difference between creating an
improved versus degraded architecture.

Software Survival Page 9 - 20

Software Survival Page 10 - 1

Chapter 10. Language Concepts

 This chapter and the following three chapters address the language issues in VisiSoft. In
this chapter we look at concepts behind the languages, with special attention to two key issues:

• Support for the architecture

• Understandability of the code

We must also consider:

• Speed of execution.

• Independence of sections of code (within a process)

 Speed affects productivity in the run time environment. It is especially important in more
advanced applications, for example large scale simulations, graphics, and particularly complex
algorithms. The independence criterion allows us to read one section of code without regard to
another section of code.

Software Survival Page 10 - 2

Language Support For The Architecture

 Software has always been built by programmers. These are the people who generally sit
at computer terminals and write the programs (code) that make computers do what they do. But
this is like thinking of house-builders - people who get together and build a house. In fact, long
ago, this is the way houses were actually built. There were no architects, masons, carpenters,
plumbers, electricians, sheet-rockers, etc.

 Why do we have these separate professions and fields of skill today? It is much more
productive. The old adage “Jack of all trades, master of none” applies. In fact, it also applies to
software. As we have seen in the prior chapters, architecture plays a vital role in structuring and
supporting large scale systems. The skill set required for designing architectures is far greater
than that for writing code. An architect designing a house must specify how the different
components must fit together. This requires a knowledge of the tools and materials that can be
used by those who will implement the architecture. Likewise, the software architect must know
the approaches that programmers can take to write the code, selecting those as appropriate for the
design. An example is where to use a utility module or a library module.

 To support the architectural approach used in VisiSoft requires three separate languages.
Data cannot be declared in the process language, instructions cannot be declared in the resource
language, and neither can be declared in the control specification language. This is another
major paradigm shift. Having three separate languages has allowed the language designers to
focus on the role of each. The result is that the languages are a major factor contributing to
higher productivity in general, as well as the architectural properties of the system.

Understandability Of The Code

 It is our belief that one should not require a programming background or a degree in
Computer Science to be able to read and understand complex algorithm descriptions. We know
this is possible from our experience with VisiSoft. One may not know the syntax required to
write a program, but one only needs the appropriate subject area expertise to read and understand
what the algorithms are supposed to accomplish.

 Conventional programming languages encourage minimum keystrokes and terse
(economy of) expressions. One may have to read a line of code multiple times to figure out what
it means. This is the opposite of reading prose, where good authors take pain to ensure the
reader can quickly capture the ideas. If one cannot read fast, one may lose the “train of thought.”
This does not help an author trying to sell books.

 Furthermore, when we read prose, upper and lower case are used to provide more
information. This information comes from redundancy, a remarkable trait of the English
language, a language that has survived and is used more than any other. It has become the
language of international trade. One of the reasons is its understandability. Much of this is due
to its redundancy. Grammatically, articles, such as “the”, “a”, etc. help to ensure that the reader
understands what the writer meant. They could be dropped and one could still derive the
meaning. So why use them? - To make the sentence more understandable.

Software Survival Page 10 - 3

 Although understandability was considered very important to programming back in the
1960s, today it represents a vast change, one that can open up the software environment to a
much wider degree of professionals. The VisiSoft departure - to emphasize readability and
understandability - has great benefits for the person reviewing the algorithms. VisiSoft has put
understandability as far more important than the brevity of source code.

 Our approach to various language issues is based upon arguments from the earliest days
of programming onward, having learned and used many different programming languages. The
resulting conclusions are often significantly different from C based languages, including C++ and
Java, the only languages taught in most universities today. Moreover, it is our contention that
one should not require a course in a language to be able to read and understand an algorithm, as
is often required with languages like C++ and JAVA. This allows subject area experts to
validate a model, or verify that what is built is what is needed. Most important, the VisiSoft
approach has been evolving in a production environment since 1982, with many changes and
refinements, specifically to accomplish the speed and productivity goals.

Speed Of Execution

 Speed affects productivity in the run time environment. It is especially important in more
advanced applications, for example large-scale simulations, graphics, and particularly complex
algorithms. So what effect does language have on speed of execution? It can be significant. A
typical response by an experienced programmer seeing VisiSoft code for the first time is that the
language must be very inefficient - implying that it must run slow. After clocking large
algorithms, one is surprised at the speed improvements. Two contributing factors are (1) the
ability to easily describe large hierarchical data structures, and (2) the ability to move large
strings of bytes into a data structure that contains a large number of different field layouts -
without concern for word-boundary alignment. These facilities support handling large records
from files or complex message structures very rapidly.

Independence

 The conscious separation of data from instructions in VisiSoft has provided significant
benefits. First and foremost, it allows one to capitalize on the concept of independence. The
independence criterion allows us to read one section of code without regard to another section of
code.

 Properties of independence have guided software development in the past. Early on,
engineers who were designing large CAD systems in FORTRAN tried to achieve module
independence in software for the same reasons they did in hardware - to minimize the effects
that design changes in one part of the system would have on the other parts. This was
accomplished by minimizing the number of modules (subroutines) that shared the same labeled
common blocks (data). The approach is illustrated in Figure 10-1. The independence properties
could be determined visually by looking at the matrix of modules that used labeled common.
The more sparse the matrix, the greater the independence.

Software Survival Page 10 - 4

 This was not a new concept for engineers. They had learned it in Linear System Theory.
The more sparse the matrix that represents the system (of equations), the more independent the
variables, and the more simple the transformations.

 Also on these projects, unlabeled common was never used. Its use was considered a bad
practice since it tended to be global, and destroyed independence. Good practices were those
that minimized the creation of bugs, especially in the support phase when new features and
functions were being added by new programmers.

 Less experienced programmers put everything into unlabeled common. One change
affected all modules. They also used argument lists. These proved to cause problems in the
support phase, since all calling routines had to specify every argument in the proper order. By
using labeled common, one only need refer to the name of the common block.

MODULES

LA
B

EL
ED

C
O

M
M

O
N

C
O

N
TR

O
LS

R
AN

D
M

X

M
O

D
E

LC

M
O

D
E

LD

TI
TL

E

D
ES

C
R

B
X

PR
IN

TX

IN
PU

TX

IO
C

TR
L

PR
C

TR
L

D
IR

EC
T

SA
M

P
LE

ST
R

SR
S

FS
N

AM
E

MAIN

CONTRL

GUIDE

SIMUL8

RANDOM

DSCRIB

PRINT

MODEL8

PRINT

DEBUG

GETSMM

PUTSAM

GINPUT

COVAR
LABELED_COMMON 1/31/06

X XXX XXXX

X

X

XX

X XX

X

X XX X

X X XX

XX

X XX

X XX X XXX

X

X

X

XX X XX X

X XX X
X XXX X

X XX X

XX

X XX X X

X

Figure 10-1. A module independence matrix for FORTRAN.

 Some of these engineers ended up writing business programs in COBOL, and carried
over the same separation and independence principles using very similar matrices. However, it
was much easier because of the inherent separation of data structure statements from procedure
statements in a program or subroutine in COBOL. In both COBOL and later versions of
FORTRAN, one could use INCLUDE statements in the subroutines by naming the INCLUDE
files containing the detailed data structures.

Software Survival Page 10 - 5

THE THREE VisiSoft LANGUAGES

 As mentioned earlier, the VisiSoft environment has three separate languages:

• Separation of data from instructions is accomplished by describing all data in a resource
language and describing all instructions in a process language.

• Independence from the platform and operating system is accomplished by defining
system aspects using a control specification language.

Resources, processes, and control specifications are prepared (translated) separately.

Benefits Of Separate Resource, Process, and Control Languages

 Although this may appear unusual, the benefits of having separate languages quickly
become apparent. Conventional programming languages generally combine the specification of
data with the procedural language statements. As a result, data definition takes a back seat to the
procedure logic that tends to overwhelm thoughts of data organization. Programmers rarely get
to appreciate the fact that logical procedures can be greatly simplified by using well-organized
data structures.

 Having a separate language and visual container for defining data elevates the importance
of building structures that are well thought out in advance, not something that is invented “on the
fly” - as needed. Structuring becomes second nature when one has a language that makes it easy
to define and easy to use. This is the antithesis of other languages. One must use VisiSoft to
understand these benefits, because they are otherwise nonexistent, and therefore hard to fathom.

 Processes also benefit from having the data elements they use defined in a visibly
connected resource. It is not unusual to have three or four windows open to see the resources as
well as the process being created or changed. More importantly, good data structures simplify
the procedural statements that use them, and are a major factor in understandability of complex
conditional situations.

 The control specification language eliminates the need for OS level scripts to assign files
and run a program. Everything runs under the VisiSoft environment or as a separate executable
(that can invoke other executables) on any operating system. This provides platform and OS
level independence.

The Benefits Of Separating Data From Instructions

 In VisiSoft, modules can be readily designed to be independent. By limiting access to
specified data structures, a module will achieve true independence. Data structures are defined
in resources. Instructions are grouped into sets of rules defined as processes. The
interconnection of processes and resources is done while creating the engineering drawing of a
module’s architecture, where lines connecting processes to resources determine what processes
have access to which resources. Modules can be connected to each other by connecting a
process in one module to a resource in another. Independence of modules can be inspected,
visually, simply by looking at the number of lines connecting them.

Software Survival Page 10 - 6

 This also allows one to decompose a database into separate data structures. Resources
and processes can be grouped into elementary modules. Elementary modules can be grouped
into hierarchical modules. This is illustrated in the prior chapters. Resources, processes and
control specifications can be edited directly from the engineering drawing.

 As indicated above, the separation of data from instructions allows two separate
translators: one for data structures, and one for rule structures. This separation provides a natural
language for describing the rules. Language design is not aimed at economy of expression
(minimum keystrokes to enter lines of code), or ease of writing the “compiler”. Instead,
language design is aimed squarely at ease of understanding by other than the original author - the
property of understandability.

 To make the rules readable requires that the data structures and corresponding typing be
defined to support ease of understanding the rules. This is most important when trying to
understand conditional statements. For example, consider the following statements:

IF A(1) == ","
Versus,

IF FIRST_CHARACTER IS A COMMA

If one does not know the C language, one may be hard pressed to understand the first statement,
while the second statement is obvious to anyone who knows English.

 As will be apparent from this and the next three chapters, the three languages are a
significant departure from the terse languages designed to make compilers small and simple to
write. Having three separate translators eases the burden of individual translator design, but that
is not the driving force. The driving force is understandability.

SOME REFLECTIONS ON CONVENTIONAL LANGUAGES

 The programming world went through a period of enlightenment in the late 1960s and
1970s. During that period, many papers were written on the benefits of top down design,
structured programming, one in-one out control structures, and data organized into hierarchical
structures by name - specifying the type after each name. These were important revelations.
Unfortunately, there were no general-purpose languages that supported the concepts professed to
improve software development.

 COBOL had already implemented many of the desired features with its paragraph
orientation and its record structures facility. But the implementation of these features left much
to be desired. Scientists could not effectively use COBOL and academics shunned it since it did
not support scientific applications. COBOL also took programming to a vocational level, cutting
salaries by a factor of two, causing a dislocation in programmer employment. PL1 implemented
some of the features of COBOL, but was really a scientific language.

Software Survival Page 10 - 7

 An even greater impact was created with the huge expenditures by AT&T to get into the
computer business. Billions of dollars were spent promoting UNIX, and C went along for the
ride. With Bell Laboratories dominating the IEEE and other software journals, the end result has
been the huge promotion of C. Although COBOL and FORTRAN are still used in the inner
circles of commercial and scientific programming, everything else is written in C and its
derivatives - C++ and Java. Most academic environments require no other languages.

 The authors have listened to many complaints from older programmers, with experience
in many languages, regarding Computer Science graduates having no knowledge of languages
other than C and its derivatives. These graduates lack the knowledge of languages that were
much better designed and much more productive. There are sufficient articles now being
published on the lack of a real engineering discipline in software. We believe there is a
renaissance on the immediate horizon. We hope we can contribute to it with this book.

The Quagmire Of Scope In Conventional Languages

 In conventional languages, data and instructions are grouped together into blocks,
functions, or classes, variables can be declared within nested constructs. With two blocks we
can have a scenario as follows:

Int A,B,C
 . . .

 String C,D,E
 . . .

 Here it is easy to see that the variable C in the inner block is a string, not an integer. This
brings up the twin issues of visibility and scope. In simple terms, when we see a name in a
program, we want to find the declaration that defines its properties. The region of text over
which a declaration applies is its “scope”.

 Scope is a pervasive issue in programming languages. It is interesting intellectually, and
convincing in certain ways. Our first problem with scope comes with the complexity of the
scope rules themselves. The above scenario greatly oversimplifies the practical effects of scope
rules in the context of all language features.

 A parameter of a function has a scope that is local to the function, thus hiding outer
occurrences of the same name. Functions may also introduce local variables. Both of these
cases are similar to the simple block structure above.

 C++ and Java both allow inheritance. In this way, a “base” class can have a “derived”
class. The derived class retains properties (functions and variables) from the base class. Classes
can have public, protected, or private elements, and this itself adds a different kind of scope rule.

 A derived class begins with an access specifier, which controls the visibility of the base
class variables within the derived class. The derived class can have a public, protected, or
private access specifier. The individual elements within the derived class can be either public,
protected, or private. This gives rise to different combinations.

Software Survival Page 10 - 8

 For example, if the access specifier is public, a public member of the base class is visible
in the derived class, but a private member of the base class is not. There is definitely a logic
here, although keeping track of these rules in practice can be difficult, and reach to a high mental
overload for the program reader.

 C++ also allows one to name a sequence of declarations; this sequence is called a
"namespace" and can be referenced elsewhere in the program. Continuing on deeper into scope
issues would bring us to an almost endless tour-de-force in complexity. This makes for great
academic exercises, but is clearly at odds with productivity.

The Scope Productivity Problem

 The productivity problem is this. One is revising a piece of code, and encounters a name.
What does the name refer to?

 In theory, this is easy. We look up the hierarchy of structures and namespaces for the
declaration of the name. Note that the name may be externally defined, either through import or
a visible namespace. Sounds easy, but not so.

 Practically, the problem runs more like this. The name itself will have some semantic
content. Let us say the name is "SP_DeblockWord". We need to find out some detail about
this name to understand the meaning of the program text. Where is the information we need, i.e.,
where is the declaration?

 Our "program" is, say, 120,000 lines, our module is, say, 2,000 lines. Questions:

• Is it a method or function, or a variable?

• Is it an integer? Or is it a pointer to an integer? Or an array or structure?

• Does sp stand for saved pointer

• Is Deblock to be read as a verb, "to de-block" or as an adjective, short for “deblocking”?

To continue interpreting the code we are revising, we need this information. It is not obvious
where the declarations is, and the region of text where it might be is quite large. The practical
result? The declaration of SP_DeblockWord is lost somewhere in our program.

 There may be a hundred names or more. We may need to look up many of them in order
to proceed at all. A huge impediment to going forward.

Software Survival Page 10 - 9

THE VisiSoft SOLUTION TO SCOPE AND VISIBILITY

 Using VisiSoft, the solution to the scope issue is based upon the requirement that:

 A name used in a process must be defined in a resource directly connected to the process.

That's it! The resource contains the declaration of the name. Pictorially, we have

PROCESS RESOURCE

RULE_1
 .
 .
 .

RULE_N
 .
 .
 SP_DEBLOCKWORD

 .
 .
SP_DEBLOCKWORD CHAR 20

 The readability and understandability of this one simple rule affords the clarity of detail
needed to support easy maintenance, implying improved productivity. There are two significant
factors in achieving this. The first is that

• The connection of a process to a resource is directly visible in the architecture.

The second is that

• All possible places to look for a name are directly visible from the architecture itself.

 There is no need to worry about scope, local vs global, or different rules for visibility. In
fact, data is never global in VisiSoft. Processes can only share data as specified at the
architecture level. Independence of a design is directly determined by the way processes share
resources. In VisiSoft, we see who shares what data on the engineering drawings. It is not
hidden within the language level. If we want to hide complex modules so as to not be distracted,
we can cover them up. But if we want to drill down to understand them in detail - we can do so,
easily!

 When programmers first look at VisiSoft, they typically have the misperception that data
is always global. This also causes them to conclude that data cannot be passed by "pointer."
Actually, the converse is true. Data that is shared between processes at the architectural level is
always accessed via pointer. Passing by value is extremely inefficient. If a designer in VisiSoft
desires to make a copy of data to protect the original, he simply moves a copy of it to another
structure.

Software Survival Page 10 - 10

A NATURAL NOTATION FOR PROGRAMMING

 To appreciate the elegance of the notational approach in VisiSoft, we first briefly review
conventional approaches to notation.

Current Notation

 Since the advent of ALGOL in the academic world and C in the UNIX world, specialized
notation has been a part of almost every programming language, especially those featuring
lexical scope and object-oriented features. This terse approach to notation carries over to almost
all programming languages. Thus C++, Java, C#, Perl, etc. have a terse style. For example:

C++
do {
 position = to_lower(page).find(href, position);
 if (position != string::npos) {
 int link_beg = page.find("\"", position);
 int link_end = page.find("\"", link_beg + 1);
 string link;
 int index = 0;
 link.resize(link_end - link_beg - 1);
 for (int i = link_beg + 1; i < link_end; i++)
 link[index++] = page[i];
 . . .

Java
public void actionPerformed(ActionEvent e) {
 if (e.getSource() == BtnShowResult) {
 // checking for erroneous input, begin
 String InputString = TxtFldPhNo.getText();
 char InputArray[] = InputString.toCharArray();

 if (InputArray.length != PHNO_MAX_SIZE) {
 JOptionPane.showMessageDialog(null,
 "Length not equal to "
 + PHNO_MAX_SIZE,"Invalid length",
 JOptionPane.PLAIN_MESSAGE);
 return;
 . . .

PHP
echo "<table border='1' cellpadding='2' cellspacing='0'
width='400'
 align='center' id='MyApplication1'><tr>";

For a programmer reading pages and pages of C++ or JAVA code, one’s mind must always be
parsing the text in order to get to the deeper semantic issues that underlie the particular
application.

Software Survival Page 10 - 11

 Anyone who has read the history of C, e.g., [56], [63], knows that the two major factors
affecting the design were (1) the compiler had to be easy to write, with a terse (easy to parse)
syntax being justified by economy of expression, and (2) the compiler had to fit into the very
small memory of a PDP-11 computer. This was because the project was not really supported by
the management at Bell Labs at that time. What the authors accomplished in the face of daunting
constraints on their computer environment is worthy of being acclaimed as a great feat.
However, it is our view that the resulting notations are also daunting to use, minimizing
characters used (not necessarily time to type), and fit only for those desiring artificial job
security. This style of programming hardly fits what would be considered intuitive to the
average engineer.

The New Notation

 VisiSoft adheres to this basic concept:

• The notation reflects familiar natural language constructs and minimizes specialized
notations.

As a result, the mental overhead of parsing the VisiSoft syntax is greatly reduced. This is
because the language is context oriented. This puts the burden on the translator, which takes
effectively nine passes to generate code. But large pieces of software are translated with the
blink of an eye. The labor has been put into the translator in order to make it easy for the
software developer.

 Moreover, in VisiSoft, many issues are resolved so that the awkward behavior of
traditional languages is no longer an issue. The result is a significant improvement in
understandability of the resulting code.

 We start with the most simple VisiSoft assignment statements:

INCREMENT DAY COUNT BY 7 (or DAY COUNT = DAY COUNT + 7)

DECREMENT TOTAL LOSS BY GROUND_LOSS

ADD 100.3 TO TOTAL LOSS(LINK_POINTER)

SET AIRCRAFT STATE TO ON_THE_GROUND

PERCENT BUSY = (TOTAL BUSY CALLS * 100)/TOTAL CALLS

Although not earthshaking, the style of arithmetic reflects ordinary usage, i.e., anyone can read
and understand it - without knowing a programming language. In fact, VisiSoft arithmetic is
virtually identical to FORTRAN, including embedded complex arithmetic. This puts
programmers concerned with their professional status and corresponding job security ill at ease.

Software Survival Page 10 - 12

 For control structures, an issue discussed in a separate chapter, we also get a clean
simplicity of style:

IF CALL_TYPE IS LOCAL
 INCREMENT TOTAL LOCAL CALLS.

IF OUTGOING LINE IS NOT BUSY
 EXECUTE CONNECT CALL.

EXECUTE NEXT CALL 5 TIMES

EXECUTE READ MESSAGE UNTIL LEAD CHARACTER IS A DELIMITER

READ EXTERNAL FILE
 AT END EXECUTE SYNTAX CHECK

IF UPDATED_ADDRESS_FILE EXISTS
AND UPDATED_ADDRESS_FILE IS NOT EMPTY
 ASSIGN UPDATED_ADDRESS_FILE TO OUTPUT_FILE_RESOURCE.

 The general direction of the syntax will become more evident in the examples that
follow. The three most important factors in developing the VisiSoft syntax were:

understandability, understandability, and understandability !

USE OF UPPER CASE - LOWER CASE

 One can notice that the examples of VisiSoft given here use entirely uppercase letters.
This is deliberate and, in fact, required. Why? What are the motivations for using lower as well
as upper case? In prose, one starts the next sentence immediately after the prior, as opposed to
putting each in a separate paragraph as we do with code? Therefore, to flag where a new
sentence starts, one uses capital letters. But why in a programming language?

Solving The Great Library Mystery - Using Upper And Lower Case

 A major motivator for lower and upper case in programming stems from large library
systems. Working with X-Windows, one quickly understands why the library routines all have
long names, with upper case - lower case, that are almost impossible to type correctly the first
time. It is to help ensure that one links to the correct library routine. X-Windows libraries
contain hundreds of C functions, and each of these must have a unique name. This is because, if
one writes a program in C or one of its derivatives, one must be concerned that functions
contained in two or more linked libraries may have the same name. When this happens, it is not
discovered until run time - when odd things start to happen - the result of linking to the wrong
routine. Current linking conventions, being the mystery that they are, link to routines with the
same name, but in different libraries, in what appears to be a random order.

Software Survival Page 10 - 13

 VisiSoft provides a library facility that guarantees uniqueness at link time. This is
accomplished by requiring that all library functions within a library module have unique names,
and that all library modules within a library have unique names. The user must name the library
and the module as well as the function. This hierarchical uniqueness capability, built into the
VisiSoft library facilities, is a major feature, eliminating the need for long unique library function
names.

Prose vs. Programs

 It is well known, and can be proved experimentally, that reading text is easier when the
font uses proportional spacing and both upper and lowercase are used. That is, conventional text
is most readable when we use both upper and lowercase in a proportional font.

 Fixed width fonts (e.g. Courier, Courier New) are normally used for computer programs.
Our contention is that programs are not like text, but rather like mathematics or tables. Fixed
width fonts ensure alignment of code, making it easier to read. Using a proportional font makes
good layout difficult, and therefore difficult to read.

 Consider the proportional code

char c1;
c1 = GetChoice() ;
switch (c1)
 {case 'a', case 'A': ProcessOptionA(); break;
 case 'i', case 'I': ProcessOptionI(); break;
 case 'w', case 'W': ProcessOptionW(); break;

 default: cout << "Not a valid choice\n";
 }

With a fixed width font we have:

char c1;
c1 = GetChoice();
switch (c1) {
 case 'a', case 'A': ProcessOptionA(); break;
 case 'i', case 'I': ProcessOptionI(); break;
 case 'w', case 'W': ProcessOptionW(); break;

 default: cout << "Not a valid choice\n";
 }

Software Survival Page 10 - 14

 Conventional programming languages make things even more difficult when we start
using mixed upper and lowercases. It is not uncommon to see requirements, for example, that

constants be written with all uppercase,
class and type names start with an initial capital letter, and
variable names start with a non-capital letter.

These kinds of conventions can be extended to different special cases, where the use of
capitalization becomes significant as far as interpreting what a name actually means, for example

public class ConsumeAlert extends Thread {
 private JTextArea output;
 private HoldAlertSynchronized cHold;
 private JTextField fireL[], intruderL[], commonL;
 public boolean Terminate = false;
 public ConsumeAlert(HoldAlertSynchronized h, JTextArea o,
 JTextField FireL[], JTextField IntruderL[],
 JTextField CommonL) {

This puts a strain on both the readability and modifiability of the resulting module. Somehow,
important properties are supposed to be conveyed by the use of capitalization. Such conventions
are difficult for both the learner and the reader. To compound matters, compound names make
use of capitalization to separate words. This also sets up another series of conventions that may
or may not be followed.

The Upper Case Approach

 This leads us to the VisiSoft convention, where the names are all uppercase. Compound
names are separated by an underscore. The resulting programs are eminently easy to read. This
convention is both easy to learn, understandable, and clearly more productive.

 Programs are not stories that are only read by the reader. They are modified by the next
programmer who has to add new functions and features to a product in the support phase. To do
this, one must use existing attribute names as well as add new ones. This implies that one must
ensure that old names are not reused improperly. When looking at long names with upper and
lower case, it is difficult to remember what is upper case and what is lower case. Anyone who
has worked with X-Windows understands this as the library management problem - addressed
above.

 Programs are thus more like tables. Tables use monospace fonts, and capitalization is not
an issue. Programs also contain mechanical algorithms - a cross between an algebraic statement
and a logical statement. They are supposed to convey a clear statement, not subject to
interpretation. But they contain more than mathematical statements. They have complex IF ...
THEN ... ELSE ... statements imbedded, that may represent very complex logic, logic that would
take huge logical expressions if represented in a basic language for logic.

Software Survival Page 11 - 1

Chapter 11 Data Structures

GENERAL HIERARCHICAL STRUCTURES

 Architectural decomposition of a complex system requires an effective breakout of the
states and transformations comprising the system. Just as we can deal more economically with
organizations that have a hierarchical structure, we can deal better with applications whose
software is organized in a hierarchical form. Complex system states are generally defined as
hierarchical structures in an engineering description; it's the natural way to organize systems with
a high degree of complexity. Similarly for software, the set of states and substates is most
usefully represented in terms of complex hierarchies of attributes.

 The use of hierarchies in VisiSoft languages is most apparent in the structure of
resources. An example of VisiSoft hierarchical data structures is shown in Figure 11-1,
illustrating code from a “resource”. A “resource” is a collection of data descriptions organized
hierarchically. These generalized hierarchical data structures support the direct representation of
a physical system's natural hierarchy. By using level numbers, the syntax of the resource
language encourages the grouping and structuring of data.

Software Survival Page 11 - 2

RESOURCE NAME: TRANSCEIVER

TRANSCEIVER INSTANCES
 1 TRANSMITTER INDEX
 1 RECEIVER INDEX

GENERAL PARAMETERS
 1 TRANSMITTER POWER REAL INITIAL VALUE 100
 1 RECEIVER THRESHOLD REAL

RADIO QUANTITY(500)
 1 TRANSCEIVER STATUS TRANSMITTING
 RECEIVING
 IDLE
 OFF
 1 LOCATION
 2 X POSITION REAL
 2 Y POSITION REAL
 2 ELEVATION REAL
 1 ANTENNA HEIGHT REAL
 1 ANTENNA GAIN REAL

RECEIVER_CONNECTIVITY VECTOR QUANTITY(500)
 1 POWER AT RECEIVER REAL
 1 TOTAL_NOISE_POWER REAL
 1 CONNECTIVITY MATRIX QUANTITY(500)
 2 PROPAGATION LOSSES
 3 TERRAIN LOSS REAL
 3 FOLIAGE LOSS REAL
 3 TOTAL LOSS REAL
 2 SIGNAL POWER REAL
 2 SIGNAL TO NOISE RATIO REAL
 2 LINK DELAY REAL
 2 LINK STATUS GOOD
 FAIR
 POOR

TRANSCEIVER RULES
 1 TRANSCEIVER PROCESS RULES TRANSMISSION
 RECEPTION
 TURN ON TRANSCEIVER
 TURN OFF TRANSCEIVER

07/13/06

Figure 11-1. Example of a hierarchical attribute structure of a Resource.

 The resource TRANSCEIVER itself is a hierarchical data structure that can be moved as
a single entity with one instruction. As a simple experiment, try writing the equivalent of
TRANSCEIVER in C or C++. Then try using TOTAL_LOSS in an arithmetic statement.

Software Survival Page 11 - 3

SIMPLE STRUCTURES

 For declarative aspects of the resource language, consider the VisiSoft resource of
Figure 11-2. Here the basic structure of a text message is given along with two specific message
formats that define their content. Level numbers indicate structure. Fields within a field are
given greater level numbers, for example HEADER under FORMAT_A contains three fields:

 PRIORITY ORIGIN DESTINATION

RESOURCE NAME: MESSAGE FORMATS

MESSAGE
 1 SYNC CODE CHARACTER 6
 ALIAS VALID VALUE '101010',
 '010101'
 1 TYPE STATUS FORMAT A
 FORMAT B
 1 CONTENT CHARACTER 46

FORMAT A REDEFINES MESSAGE
 1 PAD CHARACTER 14
 1 HEADER
 2 PRIORITY STATUS FLASH
 IMMEDIATE
 ROUTINE
 2 ORIGIN INDEX
 2 DESTINATION INDEX
 ALIAS BROADCAST VALUE 0
 1 BODY
 2 LENGTH INTEGER
 1 TRAILER
 2 MESSAGE NUMBER INTEGER
 2 TIME SENT REAL
 2 TIME RECEIVED REAL
 2 ACKNOWLEDGMENT STATUS RECEIVED
 NOT RECEIVED
 2 LAST SYMBOL CHARACTER 2
 ALIAS TERMINATOR VALUE '\\', '//', '<<','>>'

FORMAT B REDEFINES MESSAGE
 1 PAD CHARACTER 14
 1 HEADER
 2 SOURCE INDEX
 2 SINK INDEX
 1 BODY
 2 CONTENTS CHARACTER 42

7/13/06

Figure 11-2 Code from a VisiSoft “resource”

Software Survival Page 11 - 4

 The basic message contains 60 characters, 14 in the header and 46 in the body. An input
message field defined simply as 60 characters (CHARACTER 60) can be moved directly to the
top level attribute MESSAGE. The 60 character block is moved into memory directly. The
FORMAT_A and FORMAT_B structures are templates that overlay the memory. This example
cannot be replicated in C. Because the numeric fields do not reside on word boundaries, the
compiler puts padding into the structure automatically. So C programmers typically move the
individual fields, unless they have control over the organization of records being read off a
database. But this is impractical, since a database administrator should not care about the
quirkiness of a particular language. More importantly, C programmers looking at VisiSoft code
typically remark that it looks “very inefficient”. By actual tests, one can gain an order of
magnitude in speed when reading records from commercial databases using VisiSoft directly into
a template of multiple fields.

 If one tries to translate the structure in Figure 11-1 to C, one immediately realizes why
such data structures are not used. If that is not convincing, try using one of the lowest level
fields - the ones of interest - in a process statement. For example, in C, TIME_RECEIVED
becomes

MESSAGE FORMATS.FORMAT A.TRAILER.TIME_RECEIVED

MOVING DATA

 VisiSoft resource structures are independent of the word length of a particular machine.
Most of today's machines have 4 byte words, but some designs have larger words (the CRAY has
8 byte words, the NEXT machine has 36 bit words). In VisiSoft, the developer can lay out a
very complex hierarchical attribute structure that is convenient to describe the module without
worrying about word boundary alignment as in typical programming languages. Machine words
have no meaning in VisiSoft. What you see (in your attribute structure) is what you get (in
memory), independent of the machine you are using!

 The MOVE statement is used to move data or assign values to variables. The format of
the value is adjusted to fit the receiving field. For example,

 MOVE ATTENUATION FACTOR TO STORED NUMBER

where
 ATTENUATION FACTOR is REAL
 STORED NUMBER is DECIMAL 9(2).9(3)

will result in

 Attribute Before move After move
 ATTENUATION FACTOR 3.276000E-1 3.276000E-1
 STORED NUMBER undefined 00.327

Software Survival Page 11 - 5

 When the receiving area of a MOVE statement is a numeric value or a decimal value,

• Decimal points will be aligned and digits of the sending number will be truncated at
either end, as required by the size of the receiving area.

• When a numeric value is moved to a DECIMAL area, zeros are changed to spaces
when zero suppression (Z) is specified.

• When the receiving area of a MOVE statement is a CHARACTER value, data is
aligned on the left and is either truncated at the right or filled with spaces to match
the size of the receiving area.

As a result, formatting data becomes especially easy, and done in a way that is easy to
understand.

Hierarchical Group Moves

 The MOVE statement is particularly useful when assigning values to a structure, which
may contain a mixture of attribute types.

 A move in which one or both of the sending and receiving attributes are group attributes
is called a group move. A group move is treated as a data move, without consideration for the
elementary attributes contained within either the sending or receiving attributes. It is also
possible to specify an entire resource as the sending or receiving area of a group move.

 The ability to move a complete hierarchical structure, or any substructure within a
hierarchy with a simple MOVE statement is most important in modeling the flow of information
in a system. A good example is moving messages or message elements around in a
communication system. These group moves are executed very easily, since one need only refer
to the attribute name of the highest level group to be moved, and not worry about its size or
structure. The modeler need only insure that the receiving structure is organized in a way that
receives the data being moved into it. This ability to do hierarchical structure moves is key to
the machine independent properties of the VisiSoft language.

Software Survival Page 11 - 6

SIMPLIFIED NAMING

 VisiSoft has a generous facility for naming, allowing simpler, more understandable code.
We begin with a brief review of conventional practices in other languages.

 Most languages have some kind of facility for record structures. For example, in C++ we
may have the following:

struct Message {
 char A [message_size];
 int first;
 int last;
};

or
class Message {public:
 char A [message_size];
 int first;
 int last;
};

In either case we can declare an object of this particular structure as follows:

Message My_Message;

To reference a component of a structure, we refer to the name of the structured object followed
by the name of its component, for example,

 My_Message.first

 In general, a class of structure will have components, some of which may in turn be other
structures. For any practical problem with interesting data, complex data structures are common.
This gives rise to a sequence of names to refer to a component of a structure, as in

 Name1.Name2.Name3.Item

 With object-oriented approaches, access to a component of a structure is sometimes done
with a method call rather than a direct reference to an individual data item, for example,

 N = SystemParams.getDefault().getMemorySize();

Again we may have a cascade of names in order to designate a particular item of data in a
structure. In larger programs, this nesting of structures may be several levels deep, with the
result that many references become long and complex. Lengthy references to items in a data
structure result from the requirement that all of the ancestors be referenced, from the outer level,
in order to refer to the item.

Software Survival Page 11 - 7

 In particular, having defined a hierarchical structure in C, C++, or Java, one must qualify
each attribute (data item) with all of the names up the hierarchical chain, independent of whether
that name is unique. For example, when using an attribute at three levels down in a structure,
one must write all of the three names - separated by decimal points - to qualify the fourth level
attribute, even though it is unique. Something like

 if BUILDING DESCRIPTION.ENTRANCES.FRONT.DOOR == OPEN
 or BUILDING DESCRIPTION.ENTRANCES.BACK.DOOR == OPEN

 MAKE_ENTRY()
 else if BUILDING DESCRIPTION.ENTRANCES.BACK.WINDOW == OPEN
 CHECK ENTRY()
 else ...

This makes lines long and unreadable.

 Although these operations are sequential in nature, just understanding the reference to a
single item attribute may be difficult for a reader other than the author to discern. (More false
job security?)

The VisiSoft Solution

 VisiSoft tackles this general problem in several ways, each devoted to keeping the
naming as simple as possible while retaining great clarity and understandability of the
algorithms. The first principle has already been discussed; that is:

• A process must be directly connected, architecturally, to all resources that contain data
referenced by that process (there is no global data).

 Put another way, instructions must be connected to the data segments needed by the
instructions, and need not be connected to any other resources or data segments in the program.
This greatly simplifies naming, for the names contained in the connected resources are directly
visible without regard to any qualification of its parent or other ancestors.

 Of course, as in any language, other connected resources compete for names. This brings
us to the second rule in VisiSoft which is:

• Any name can be directly referenced as long as it is uniquely qualified.

 Knowing that only connected resources compete for names, consider the following:

 1 ENTRANCES
 2 FRONT
 3 DOOR STATUS OPEN CLOSED LOCKED
 3 GARAGE STATUS OPEN CLOSED
 2 BACK
 3 DOOR STATUS OPEN CLOSED LOCKED
 3 WINDOW STATUS OPEN CLOSED

Software Survival Page 11 - 8

Reuse of names that refer to different attributes is allowed provided the intended use can be
uniquely resolved. Here, GARAGE and WINDOW can be directly referenced, without
qualification. On the other hand, the use of the name DOOR to mean FRONT DOOR or BACK
DOOR is resolved by adding the qualifier FRONT or BACK - that’s it!

 A conditional statement using the above resource can thus be written as follows:

 IF GARAGE IS OPEN OR FRONT DOOR IS OPEN
 EXECUTE MAKE_ENTRY
 ELSE IF WINDOW IS OPEN
 EXECUTE CHECK ENTRY
 ELSE ...

In the case of OPEN or CLOSED, reuse of STATUS names is qualified automatically by the
particular status attribute FRONT DOOR or BACK DOOR.

 Generally, any name in VisiSoft can be directly referenced as long as it is unique. Names
are reusable within the same resource or over multiple resources. Reuse of names in a VisiSoft
process requires qualification only to the extent sufficient to insure uniqueness of the referenced
item. When a name appears in two resources, this may be accomplished just using the resource
name - no matter what the level of the referenced item. All of which is a great step towards the
simplicity, brevity, and understandability of the code.

 Two other considerations are appropriate to this discussion. One is the use of
architecture to ensure independence of data:

• Resources connecting two processes should only contain those attributes that must be
shared between the processes.

• Attributes used by a single process, such as temporary attributes, pointers, or counters,
should be contained in a resource dedicated to that process.

 Another consideration is the practice of good naming conventions. Names are a major
contributor to understandability.

• Attributes should not be used for more than one purpose, even in a dedicated resource.

Then names can be dedicated to one use and need not be generic, e.g., I, J, K, etc.
Understandability increases significantly when names are meaningful, e.g., RECORD_COUNT,
CHARACTER_POINTER, etc.

 The time it takes to think of a name that clearly represents what the attribute itself is
representing is a great investment in the future reuse of resources and particularly processes that
use it in complex algorithms. It should go without saying that the time to type it is
inconsequential.

Software Survival Page 11 - 9

STATUS ATTRIBUTES AND ALIAS CLAUSES

 The STATUS clause is used to indicate each of the allowed states that a variable may
assume during execution. STATUS attributes correspond to enumeration types in other
languages. By defining a STATUS attribute, the programmer can set the state of an attribute to a
predefined named state, then test to see if that attribute is set to a predefined named state. For
example, we may have

TRANSCEIVER STATUS TRANSMITTING
 RECEIVING

PROBABILITY STATUS LOW, MEDIUM, HIGH

This significantly improves the understandability of complex conditional rules, for example,

 IF TRANSCEIVER IS RECEIVING . . .

while significantly reducing the chances for a logic error.

 The ALIAS clause in VisiSoft extends the idea of status attributes to a wider range of
applications. An ALIAS clause enables one or more values to be identified by a single identifier
called the alias name. The ALIAS clause may be used along with a CHARACTER,
DECIMAL, INTEGER, INDEX, REAL, or DREAL attribute.

 The list of numeric or nonnumeric literals, separated by commas, specify the group of
values which are to be associated with the alias name. More than one ALIAS clause may be
specified for a variable. Some examples are

 INPUT MESSAGE
 1 LEAD CHARACTER CHAR 1
 ALIAS CONTROL CHAR VALUE 'S', 'R'
 ALIAS DELIMITER VALUE '.', ',', ';', ':'
 1 MESSAGE TEXT CHAR 78
 1 LAST DIGIT INDEX
 ALIAS TERMINATOR VALUE 0,9

 Both STATUS values and ALIAS names can add to the understandability of a program.
Thus we can have eminently readable statements such as

 IF TIME_OF_DAY IS NOON
 SET RECEPTION_PROBABILITY TO HIGH

 IF LEAD CHARACTER IS A DELIMITER . . .

 IF LAST DIGIT IS NOT A TERMINATOR . . .

Software Survival Page 11 - 10

PROCESSING TABLES

 Arrays become complex tables specified with a QUANTITY clause. For example,

 MESSAGE BUFFER
 1 MESSAGE QUANTITY(20)
 2 MESSAGE HEADER
 3 MESSAGE TYPE CHAR 8
 3 MESSAGE PRIORITY STATUS LOW
 MEDIUM
 HIGH
 2 MESSAGE BODY CHAR 68

Here MESSAGE BUFFER contains 20 messages.

 Processing tables of data is an important part of almost any large-scale application. The
SEARCH table statement provides for automatic searching of tables over some or all indices,
and execution of a rule when the specified table conditions are found to be true.

 As an example, consider the following structure:

NUMBER OF TRANSCEIVERS INDEX
RECEIVER INDEX
TRANSCEIVER INDEX

LINK CONNECTIVITY VECTOR QUANTITY(500)
 1 CONNECTIVITY MATRIX QUANTITY(500)
 2 PROPAGATION LOSS REAL
 2 SIGNAL TO NOISE RATIO REAL
 2 LINK STATUS GOOD FAIR POOR

 To SEARCH this two-dimensional table executing TRANSMISSION for every LINK
that is GOOD, one can use the following statement:

 SEARCH CONNECTIVITY MATRIX OVER RECEIVER, AND TRANSMITTER
 EXECUTING TRANSMISSION
 WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD

 To limit the search range to NUMBER_OF_TRANSCEIVERS instead of covering the
500 by 500 range, one would write the following:

 SEARCH CONNECTIVITY MATRIX
 OVER RECEIVER TO NUMBER OF TRANCEIVERS
 AND TRANSMITTER TO NUMBER OF TRANSCEIVERS
 EXECUTING TRANSMISSION
 WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD

Software Survival Page 11 - 11

 To search the LINK_CONNECTIVITY_VECTOR to find the good links to a particular
RECEIVER over the same range of TRANSMITTERs, one would write the following:

 RECEIVER = SELECTED_RADIO
 SEARCH LINK_CONNECTIVITY VECTOR
 OVER TRANSMITTER TO NUMBER OF TRANSCEIVERS
 EXECUTING TRANSMISSION
 WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD

This is a powerful feature for searching databases or parsing character strings. Much of the
detailed and sometimes complex algorithms for table handling are done automatically and
conveniently.

Software Survival Page 11 - 12

Software Survival Page 12 - 1

Chapter 12. Processes and Rule Structures

 Almost every popular language includes some variant of if-then-else structures, do-while
loops, and usually, some variant of a switch or case statement. These structures lead to a static
understanding of control and are reasonably well behaved. In fact, these structures are so
familiar and widely used that they go unquestioned.

Nevertheless, it is our perception that the way these control structures are defined leads to
a major impediment to understandability. We believe that there are technical difficulties with
these structures, and that additional elements need to be considered to achieve good
understandability of code.

 VisiSoft significantly improves understandability when dealing with complex algorithms,
conditional statements, and repetition. The elegant solution implemented in VisiSoft is a clear
departure and improvement over conventional control structures, implementing the one-in one-
out structure suggested by Mills [66]. The VisiSoft approach is similar to that devised for
COBOL, a language known for its readability. However, it eliminates two severe problems in
the COBOL approach.

Software Survival Page 12 - 2

PROCESSES, RULES, AND STATEMENTS

 The executable aspects of a software system in VisiSoft are embodied in a construct
called a “process”. A process is a collection of executable statements organized in a hierarchical
structure. A VisiSoft process can be invoked from any other process by using a CALL statement:

CALL process_name

Here control is immediately transferred to the called process.

 Within a process, groups of statements are organized into “rules”. A rule is a named
sequence of statements invoked by an EXECUTE statement. A process is thus defined as
follows:

• A process consists of one or more rules, each with a unique name.

• Each rule name must appear on a separate line (starting in column 1) followed by one or
more statements (starting in column 5 or beyond) that make up the rule.

• Each statement must begin on a new line, but can extend over many lines.

An example of a VisiSoft process is shown in Figure 12-1. The combination of statements and
rules in a process form a logical structure of hierarchical levels.

Controlling Complexity With Rule Hierarchies

 To control the complexity of highly conditional algorithms, a VisiSoft process can
contain a hierarchy of rules. The hierarchy of rules is controlled through a simple one-in, one-
out control structure, embodied in the EXECUTE statement. This statement allows the designer
to deal with rules that are at an "equal level" in the hierarchy of logical operations, without
resorting to the dangers of nested control structures.

 When a process is invoked, the first rule is executed first, starting with the first statement.
Other rules within this process may be executed by using an EXECUTE statement. Figure 12-2
shows an example of the process PLACE_CALL, which has five rules. A process terminates
once the last statement in the first rule is performed.

 What this means is that each process has a top-level rule (e.g., RULE_1), whose
statements are executed in order. When the statements in this first rule have been executed,
control returns to the calling process. Any rule may contain EXECUTE statements that invoke
other rules within the process.

Software Survival Page 12 - 3

PLACE CALL level 1
 IF CLOCK TIME IS GREATER THAN ONE HOUR
 STOP.
 IF ACTIVITY(SOURCE) IS WAITING TO CALL
 EXECUTE ATTEMPT CALL
 ELSE EXECUTE RETRY LATER.

ATTEMPT CALL level 2
 INCREMENT CALLS ATTEMPTED
 IF LINES IN USE(OFFICE(SOURCE)) ARE LESS THAN
 LINES IN OFFICE(OFFICE(SOURCE)) THEN
 EXECUTE MAKE CALL
 ELSE EXECUTE BLOCK CALL.

RETRY LATER
 SET ACTIVITY(SOURCE) TO RETRY LATER
 CALL TERMINATE CALL

MAKE CALL level 3
 INCREMENT LINES IN USE(OFFICE(SOURCE))
 IF CALLERS PLAN(SOURCE) IS PLACE NEW CALL
 SET PHONE NUMBER TO UNKNOWN
 EXECUTE LOOK UP NUMBER UNTIL PHONE NUMBER IS FOUND.
 OFFICE NUMBER = OFFICE(DESTINATION)
 CALL CONNECT CALL

BLOCK CALL
 INCREMENT CALLS BLOCKED
 SET SIGNAL TO SUBSCRIBER TO BUSY
 MOVE 'BLOCKED AT SOURCE' TO CALL STATE

LOOK UP NUMBER level 4
 DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1
 IF DESTINATION IS NOT EQUAL TO SOURCE
 SET PHONE NUMBER TO FOUND.

Figure 12-1. Example of the hierarchical rule structure of a process.

This dual structure has several advantages:

a. Flow of control is always linear within a rule.

b. At the end of a rule, control returns to the statement following the EXECUTE statement.
This guarantees the 1-in, 1-out property.

c. A process may contain one or more rules, each identified by a mnemonic name. This
gives great flexibility in the number of conditional statements a process can support.

d. There are no parameters passed to processes in VisiSoft, as is typical in conventional
languages. All data is shared by resources.

e. There is no nesting of IF statements.

Software Survival Page 12 - 4

 Statements that are at the same logical level are all contained in the same spot. This
makes them easier to build, and much easier to understand by someone other than the original
author. The additional layer of hierarchy in a process allows the designer to partition complex
algorithms that deal with the same attribute structures into isolated sets at similar levels in a
logical hierarchy.

The example of Figure 12-1 involves at least 4 levels of control, yet is strikingly simple
to understand. It also shows the ability to "push down" the complexity of rule sets into
hierarchical logical levels. As a result, a process is typically somewhat larger than a “well
written” C++ or Java function that are more the size of a rule. But it should be much more
understandable, and will require many fewer comments, perhaps even none. Furthermore, a
process with 20 rules may take a number of C++ or Java functions to implement.

SEPARATION OF CONTROL STRUCTURES FROM STATEMENT STRUCTURES

 A Process defines the way a system transitions from state to state. A process is
comprised of a set of rules that determine how the resources available to that process change
depending upon their current state. (We must emphasize that the term rule as used here is
different from its use in a rule-based language, e.g., PROLOG.)

Understandability of Complex Conditional Situations

 One of the most important benefits of the VisiSoft conventions for rule structures is the
handling of complex conditional situations. Consider the example in Figure 12-2. In particular
consider

IF SYMBOL IS AN UNDERSCORE
OR SYMBOL IS A PERIOD
 EXECUTE CHECK_WORD_BLOCK
ELSE
 EXECUTE SCAN_FOR_SPECIAL_CASES.

IF STATEMENT IS A SPECIAL_CASE
 EXIT THIS RULE
ELSE ...

Here we see the equivalent of a case statement. But in VisiSoft, the statements that are contained
within the case statement may be placed later in the process and given a name, in this case
CHECK_WORD_BLOCK and SCAN_FOR_SPECIAL_CASES. This adds great clarity to the entire
process, as we can read and understand the top level of control without getting involved in nested
details that may be quite complex.

 To simplify IF ... THEN ... ELSE chains, an EXIT THIS RULE statement allows one to
exit a rule directly. This eliminates additional IF statements that must check a status attribute
that has been changed above, simply by exiting the rule immediately after the change.

Software Survival Page 12 - 5

BUILD_WORD_BLOCKS
 ADD 1 TO SEARCH_INDEX
 MOVE INPUT_CHARACTER(SEARCH_INDEX) TO SYMBOL
 IF SEARCH_INDEX IS GREATER THAN 72
 AND SYMBOL IS NOT EQUAL TO SPACE
 MOVE '10390' TO ERROR CODE
 EXECUTE REPORT_ERROR.

 IF SYMBOL IS AN UNDERSCORE
 OR SYMBOL IS A PERIOD
 EXECUTE CHECK_WORD_BLOCK
 ELSE
 EXECUTE SCAN_FOR_SPECIAL_CASES.

 IF WORD_BLOCK IS STARTED
 EXECUTE CHECK_WORD_BLOCK.

 IF SYMBOL IS NOT EQUAL TO SPACE
 MOVE SYMBOL TO LAST_NONBLANK_CHARACTER.

 IF SEARCH_INDEX IS EQUAL TO RECORD_SIZE
 SET WORD_STATE, COMPLETION_STATE TO COMPLETED.

CHECK_WORD_BLOCK
 SET SCAN_TYPE TO WORD
 MOVE DEBLOCK_WORD(WORD_INDEX) TO KEY_WORD_TABLE
 MOVE ZEROS TO CHARACTER_INDEX
 SET WORD_STATE TO BEGIN
 IF DEBLOCK WORD(WORD_INDEX) IS NOT EQUAL TO SPACES
 SET LITERAL_TYPE TO NON_NUMERIC
 ADD 1 TO WORD_INDEX.

SCAN_FOR_SPECIAL_CASES
 IF
 STATEMENT_1
 ELSE IF
 STATEMENT_2

Figure 12-2. Un-nested Conditional Structures

Understandability of Loop Structures

 A related and visible property of a VisiSoft process is the use of loop structures that
isolate the body of the loop (the statements to be repeated) in a separate rule. Only the name rule
is used within the control structure itself.

Thus we must write something like

 EXECUTE LOOK UP NUMBER
 UNTIL PHONE NUMBER IS FOUND

and place the body of the loop elsewhere

Software Survival Page 12 - 6

 LOOK UP NUMBER
 DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1
 IF DESTINATION IS NOT EQUAL TO SOURCE
 SET PHONE NUMBER TO FOUND.
 . . .

After the body of the loop LOOK_UP_NUMBER is executed, control automatically returns to
the EXECUTE statement.

This is a powerful feature for clarity. For rather than a sequence of nested structures, we can
again always read the control at a single level.

Logical Levels and Independence

 Figures 12-1 and 12-2 also illustrate process structures that follow the rule for grouping
hierarchical logical levels. Since the logical levels are totally independent of position, the
process need not be organized this way, but in any manner the designer deems most
understandable. Except for the first rule appearing first, the rest of the rules can be shuffled like
a deck of cards.

 Probably the largest benefit of the hierarchy of rule structures within processes is the
understandability of complex conditional statements, and the ease with which one can add new
conditions. These hierarchical structures support the direct representation of a physical system's
natural flow of control.

NESTED CONTROL STRUCTURES IN CONVENTIONAL LANGUAGES

 Nesting of control structures is a feature of virtually all conventional programming
languages. For example, it is not uncommon to see

An if-statement
containing an if-statement

which contains a while-loop

 Such an example by itself is not especially problematic, but does suggest the mental
complexity of keep track of code with nested control. Moreover, the mental complexity
increases as the length of the code and the length of nested sequences grows. It is not
uncommon for single blocks of code to extend over more than one page

 Things can get complex even without a nested loop. When there is nesting and the
statements contained in the IF are of some length, the problem is getting a clear picture of the
entire structure. When nested IF’s cover many lines, it is hard to see what is going on.

Software Survival Page 12 - 7

 As we get into larger or more complex situations, we mire ourselves in the complexity of
logical flow. The program can eventually become unreadable. And this is often the accepted
norm on software projects. Along these lines, we note that recursion is not allowed in VisiSoft.

Rule Pointers and Process Pointers

A nice step towards simplification and understandability of processes is the VisiSoft
ability to assign the name of a rule or a process to a “rule pointer” or “process pointer”. Let us
look at rules.

 The RULE clause is used to define the allowed rule names that a pointer attribute can
assume during execution. Consider:

NEXT_ACTION RULE INITIALIZE_NETWORK
 START_TRANSMISSION
 START_RECEPTION
 DISCONNECT_CALL

Here, NEXT_ACTION is a Rule attributes.

 By defining a RULE attribute, the modeler can execute a rule based on the value of the
rule attribute. This can be simulated by a case statement in a conventional programming
language. The value of the VisiSoft approach is the simplification on control flow. Meaningful
names can be used for the rules and the rule-pointer, and the choice of action can be set when an
appropriate condition is met.

The rule pointer will likely be set in a conditional statement prior to a point where the rule is to
be executed, such as:

IF TRANSCEIVER(TRANSMITTER) IS TRANSMITTING
 SET NEXT_ACTION TO START_TRANSMISSION
ELSE IF TRANSCEIVER(RECEIVER) IS RECEIVING
 SET NEXT_ACTION TO START_RECEPTION

Then, at the point where the choice of rules is to be executed (that choice will already have been
made as above), one merely EXECUTE's the rule pointer name.

EXECUTE NEXT_ACTION

Process Pointers

The PROCESS pointer clause is similar to the RULE pointer clause. It is used to define each of
the allowed process names that a PROCESS pointer attribute can assume during execution. It is
used to support the PROCESS pointer version of the CALL statement for executing processes.

Software Survival Page 12 - 8

The mechanism is almost identical to rule pointers. For example,

NEXT_PROCESS PROCESS COMPUTE_TIMERS
 DRAW_TERRAIN
 COMPUTE_MEASURES
. . .

IF INPUT_OPTION IS INITIATE
 SET NEXT_PROCESS TO COMPUTE_TIMERS
ELSE IF INPUT_OPTION IS CALCULATE
 SET NEXT_PROCESS TO DRAW_TERRAIN

Then, at the point where the choice of process is to be called, (that choice will already have been
made as above) one merely CALL's the process pointer name.

CALL NEXT_PROCESS

INTERTASK COMMUNICATIONS AND CONTROL

 The next example provides for two very simple interactive tasks, each sending messages
to the other. The messages are input via the keyboards of each task, and appear on the screen of
the other task. This is done using separate windows controlled by separate tasks running
concurrently under the VisiSoft Run-Time Monitor. Figure 12-3 below shows the architecture of
this simple example. The implementation follows in Figure 12-4.

 The session starts by the user running task 1, which automatically opens a window.
Task 1 immediately starts Task 2, with a window, and suspends itself. The very first message of
the session, 'ASK A QUESTION', is put on the screen of task 2 by initialization. From then on,
the conversation proceeds with the keyboard entry being put into CONVERSATION_ BUFFER,
an intertask resource. The task that accepts input from the keyboard then resumes the other task
and suspends itself. When a task is resumed, it displays the message in CONVERSATION_
BUFFER upon the screen, accepts the next input from the keyboard, putting it into the
CONVERSATION_ BUFFER, resumes the other task and suspends itself. This continues until
one of the keyboard entries is STOP.

Figure 12-3 Architecture of a real-time intertask communications example.

Software Survival Page 12 - 9

Intertask Resource:

 CONVERSATION_DATA
 1 ANSWER CHAR 4
 ALIAS STOP VALUE 'STOP'
 1 REST CHAR 60

Task 1

 PROCESS_1
 START TASK_2 WITH WINDOW
 SUSPEND TASK_1
 EXECUTE ANSWER_A_QUESTION
 UNTIL ANSWER IS STOP
 TERMINATE THIS TASK

 ANSWER_A_QUESTION
 DISPLAY CONVERSATION_BUFFER
 ACCEPT CONVERSATION_BUFFER
 RESUME TASK_2
 SUSPEND TASK_1

Control Specification for Task 1

 *CONTROL SECTION
 TITLE, EXAMPLE OF INTER-TASK COMMUNICATIONS & CONTROL
 LEAD_PROCESS IS PROCESS_1
 *END

Task 2

 PROCESS_2
 MOVE 'ASK A QUESTION' TO CONVERSATION_BUFFER
 EXECUTE ASK_A_QUESTION
 UNTIL ANSWER IS STOP
 RESUME TASK_1

 ASK_A_QUESTION
 DISPLAY CONVERSATION_BUFFER
 ACCEPT CONVERSATION_BUFFER
 RESUME TASK_1
 SUSPEND TASK_2

Control Specification for Task 2

 *CONTROL SECTION
 TITLE, EXAMPLE OF INTER-TASK COMMUNICATIONS & CONTROL
 LEAD_PROCESS IS PROCESS_2
 *END

Figure 12-4. Elements of a simple two task example.

Software Survival Page 12 - 10

 Anyone who has worked with intertask communications and control in UNIX, referred to
as Inter-Process Communication (IPC), will testify to the level of difficulty involved in creating
the little example above. All of the effort of setting up and managing shared memory control
blocks, shared memory areas, and the difficulties of putting processes to sleep and sending
signals to wake them up is done for the user, behind the scenes, by VisiSoft. These VisiSoft
features ease the programming of real-time communications and control applications.

Software Survival Page 13 - 1

CHAPTER 13 CONTROL SPECIFICATIONS

 In contemporary software environments, there are facilities to put together the
components of a project. Typically, a project will require different kinds of resources, e.g. a
compiler (perhaps a debugging compiler), libraries, access to operating system routines, files,
access to directories, and so forth. On some systems, there is a specific language to control these
aspects, generally known as a script or Makefile.

 VisiSoft handles this issue in an elegant way that is independent of both the machine and
operating system. This is through a separate high level language known as the “Control
Specification” language. An example is shown in Figure 13-1.

 The Control Specification is eminently readable and organized. It contains a sequence of
labeled sections. Each section specifies some property of the environment. The notation used
for the syntax is based on a simplified English-like format.

Software Survival Page 13 - 2

CONTROL SECTION
 TITLE, SIMPLE TELEPHONE SYSTEM
 LEAD_PROCESS IS INITIALIZE_NETWORK

LIBRARY SECTION
 C:/S/LIBS/GENERAL
 C:/S/LIBS/RTG_DRAW

GRAPHICS SECTION
 ACTIVATE GRAPHICS
 WORLD_SPACE LOWER_LEFT = (0, 0),
 UPPER_RIGHT = (1280, 1024)
 NVS/BDS = 1.0
 INITIAL_WINDOW LOWER_LEFT = (-100, -100), WIDTH = 1280

 ICON OFFICE_OUTLINE = OFFICE, SCALE(1.0, 1.0)
 ICON MAN = MAN SCALE(2.0, 2.0)
 ICON PHONE = PHONE, SCALE(1.0, 1.0)
 ICON TERMINAL = TERMINAL, SCALE(1.0, 1.0)
 ICON PBX_LINE_TERM = PBX_LINE_TERM, SCALE(1.0, 1.0)

 . . .

 INST GENERATED_CALLS = THERMOMETER_VERTICAL,
 LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE
 INST BLOCKED_CALLS = THERMOMETER_VERTICAL,
 LOW 0, HIGH 400, INITIAL_VALUE 0, COLOR BLUE
 . . .

 OVERLAY 3 = DRAW_SWITCH IN PHONE BACKGRND
 AT 0,0, SCALE 1, 1, MENU SWITCH
 COLOR BACK_BLUE
 ***COLOR BACK_WHITE
 OVERLAY 4 = DRAW_LABELS IN PHONE BACKGRND
 AT 0,0, SCALE 1, 1, MENU LABELS
 COLOR BACK_WHITE

 RTG_EVENT_HANDLER INTERACTIVE_SCENARIO

DATABASE INPUTS
 ASSIGN SFI INPUT_DATA.SFI TO READ_SCENARIO_DATA

DATABASE OUTPUTS
 ASSIGN SFI OUTPUT_DATA.SFI TO OUTPUT_TEST_DATA

END

Figure 13-1. Sample task control specification.

Software Survival Page 13 - 3

Some of the items addressed in the Control Specification include:

• LEAD_PROCESS The process named as the LEAD_PROCESS is started when the task
is executed.

• TRACE A debugging facility used to trace processes, rules, and produce trace output
when one or more processes have been prepared with the one of the trace options on.

• TIME PROFILE Provides a histogram of the percentage of time spent in each process.

• LIBRARY SECTION This section allows the user to specify the paths and names of
libraries to be used when preparing a task that uses library modules.

• GRAPHICS SECTION This section is used to invoke the VisiSoft Run-Time Graphics
facilities. This section has numerous options for the user.

• DATABASE INPUTS AND OUTPUTS These sections may be used to reassign
external files to an external resource, or to invoke the Standard File Interface (SFI) option
for input data to a task.

• MODEL SECTION Listed here are models that contain processes to be started in a
simulation (only applies to GSS).

STANDARD FILE INTERFACE (SFI)

 When users want to change or look at data files, they typically want to use an editor or
print the files as raw data. If users want to put the resulting data into a spreadsheet, (e.g. EXCEL
or SAS) for data analysis or plotting, or if they wish to create a readable report, they must do
considerable work. The amount of time consumed is high compared to what it takes to
understand and use a standardized file input and output system.

 Ideally, one would like to have standard interfaces to readily available database
management packages, e.g., Oracle, ACCESS, DB-2, etc., as well as spreadsheets, e.g., EXCEL
and LOTUS, or statistical analysis packages, e.g., SAS and SPSS. This is why a number of users
developed the Standard File Interface (SFI) formats. The SFI approach greatly simplifies
reading and writing large sequential data files.

 There are a number of facets to be understood in order for SFI to be appreciated. These
include creation of the raw data files, editing of input data, and providing for standard file input
to, and output from, a simulation so that users do not have to build data input and output modules
for each file. SFI also provides for standard reporting facilities that take care of header
information and page counting.

 Most important, direct interfaces to database management systems for data entry and
management, and to spreadsheets and statistical packages for data analysis and plotting is a
necessary requirement today. All of these considerations are addressed with SFI.

Software Survival Page 13 - 4

 All SFI files must contain one format record for each field in the data records. These are
used to automatically recognize the data element names and their formats on input and output
files, and to send and accept data from EXCEL, LOTUS, DBase, and other formatted databases.
In addition, standard reporting and plotting facilities can be used directly with SFI files because
the format records contain all of the information to determine what a user wants to see. See
Figure 13-2.

* HUB - SUBSCRIBER DEPLOYMENT FILE
**
* SFI HEADER RECORD FOLLOWS
*
TERMINATOR = SPACE, SPACES = 1
*

* SFI FORMAT RECORDS FOLLOW
*
NAME = HUB_ID INTEGER
NAME = AREA_CODE INTEGER
NAME = NUMBER_OF_SUBSCRIBERS INTEGER
NAME = SERVICE_TYPE CHARACTER
* C = CAS, L = LAM, S = SAM, I = SAM-SI, A = ADMIN
NAME = CABKE_ID INTEGER
NAME = SERVICE_FREQUENCY FLOAT
NAME = DEST_FREQ FLOAT
NAME = MEAN_INTERGEN_TIME EXPO
NAME = GREETING_TIME EXPO
*

* DATA RECORDS FOLLOW THE DESCRIPTION BELOW
*
*HUB AC SUB S CID SFR DF MIT GRT
*
001 908 5 C 30 65.8 2.73 39.2E+03 -.56E5
001 908 0 L 8 65.8 2.73 39.2E+03 -.56E5
001 908 0 S 4 65.8 2.73 39.2E+03 -.56E5
001 908 0 I 8 65.8 2.73 39.2E+03 -.56E5
001 908 0 A 4 65.8 2.73 39.2E+03 -.56E5
001 201 10 C 30 65.8 2.73 39.2E+03 -.56E5
001 201 0 L 8 65.8 2.73 39.2E+03 -.56E5
001 201 0 S 4 65.8 2.73 39.2E+03 -.56E5
001 201 0 I 8 65.8 2.73 39.2E+03 -.56E5
001 201 0 A 4 65.8 2.73 39.2E+03 -.56E5
001 609 8 C 30 65.8 2.73 39.2E+03 -.56E5
001 609 0 L 8 65.8 2.73 39.2E+03 -.56E5
001 609 0 S 4 65.8 2.73 39.2E+03 -.56E5
001 609 0 I 8 65.8 2.73 39.2E+03 -.56E5
001 609 0 A 4 65.8 2.73 39.2E+03 -.56E5
002 215 9 C 30 65.8 2.73 39.2E+03 -.56E5
002 215 0 L 8 65.8 2.73 39.2E+03 -.56E5
002 215 0 S 4 65.8 2.73 39.2E+03 -.56E5
002 215 0 I 8 65.8 2.73 39.2E+03 -.56E5
002 215 0 A 4 65.8 2.73 39.2E+03 -.56E5
002 610 7 C 30 65.8 2.73 39.2E+03 -.56E5
002 610 0 L 8 65.8 2.73 39.2E+03 -.56E5
002 610 0 S 4 65.8 2.73 39.2E+03 -.56E5
002 610 0 I 8 65.8 2.73 39.2E+03 -.56E5
002 610 0 A 4 65.8 2.73 39.2E+03 -.56E5

Figure 13-2. Example of an SFI input file

Software Survival Page 13 - 5

 Each SFI input file must be associated with a unique VisiSoft process. This is
accomplished when building the architecture by connecting a file icon to a process and selecting
the desired SFI file name.

 SFI input processes automatically call the SFI file input subsystem to read the next record
and move each field into the user specified attribute. The SFI input subsystem automatically
performs the following functions:

• Opens and closes the input files

• Reads each record from a file

• Reads each field from a record

• Transforms and checks numeric fields

• Produces appropriate error messages

 This facility is directed squarely at easing the burden on the programmer and system
designer, thus another contribution to increased productivity.

SPECIFICATIONS FOR RUN-TIME GRAPHICS

VisiSoft greatly simplifies the use of graphics for viewing output during run-time. When
using the Run-Time Graphics (RTG) facility, the designer must identify elements that will be
used from the graphics library. RTG control specification statements are used to invoke the
graphics facilities, set parameters, and identify the graphic objects within their respective
libraries. Therefore, the control specification contains an additional section, known as the
GRAPHICS section.

 Figure 13-3 provides an illustration of an RTG graphics window. This example contains
icons, lines, instruments, and backgrounds. In this figure, the SWITCH, PBXs, and OFFICES
can be drawn as backgrounds. The men and telephones are examples of RTG ICONS. The four
thermometer type bars on the right are examples of RTG INSTRUMENTS. The lines
interconnecting the switch with PBXs and PBXs to telephones are examples of RTG LINES.
The overall picture is an illustration of what may appear in the RTG graphics window during
execution.

Various options exist for setting the world space, window size, and the relative size of
elements to be shown on the screen. Symbols to be inserted in the graphics window, whether
from the application or by interactive input, must also be defined in the control specification.

Software Survival Page 13 - 6

Figure 13-3. Illustration of icons lines and instruments to represent network activity.

The Graphics Section

 The GRAPHICS SECTION is used to define the graphics library elements to be available
at run-time as well as the process that is invoked whenever an interactive input event occurs. At
this stage the modeler defines the graphic symbols and their attributes. The following key
identifiers are used:

ICON - Defines Icons

INST - Defines Instruments

LINE - Defines Lines (connectivity links)

OVERLAY - Defines the Background Overlays

RTG_EVENT_HANDLER - Defines the Automatic Event Handling Process

Software Survival Page 13 - 7

Activating Graphics

 Two separate modes of RTG graphics are available, ORTHO and PERSPECTIVE.
ORTHO refers to a 2-Dimensional mode of operation for RTG, which provides a view looking in
the negative Z direction. PERSPECTIVE refers to a 3-Dimensional mode of operation for RTG,
which allows the user to view objects from any viewpoint in space toward a specified look-at
point, such as the origin. The format for the statement defining the RTG graphics mode of
operation is shown below. The default mode of operation is ORTHO.

ACTIVATE [GRAPHICS] ⎧ ⎫
⎨ ⎬
⎩ ⎭

[ORTHO]

PERSPECTIVE

World_Space Definition

 If an application has run time graphics, users can define the “play-box” and VIEW
POINT for 2D and 3D graphics scenes.

 The “play-box” or WORLD SPACE is the box inside of which all of the action takes
place. This box is defined by the two points (Xmin, Ymin, Zmin) and (Xmax, Ymax, Zmax).
These two coordinates define the diagonal line that spans the play-box. For example, X could
range from -3 to +7 miles. Z could range from 0 to 80,000 feet. The format for the statement
defining this rectangle box is shown below.

WORLD_SPACE LOWER_LEFT = (Xmin, Ymin [, Zmin])
 UPPER_RIGHT = (Xmax, Ymax [, Zmax])

 If the run time graphics mode is PERSPECTIVE (3D), an initial view vector can be
specified. The initial view vector is defined by two points:

 the viewer’s viewpoint (viewer_x, viewer_y, viewer_z), and

 the viewer’s look-at point (lookat_x, lookat_y, lookat_z).

 The user must also decide how large symbols should be in the world space. The scale
factor is the called the NVS / BDS ratio, and can be set by the user. The default is 1, i.e., the size
as drawn of the original icon.

 All foreground objects and background overlays are drawn over the RTG window
background color. By default, the RTG window background is black. Users can choose
different colors (e.g., white instead of black).

Software Survival Page 13 - 8

Icon Names

 Icons are drawn and defined in a special VisiSoft facility known as the Icon Library
Manager (ILM). Within an application, an icon is given an internal program name, which in turn
is associated with a specific icon defined in the ILM.

ICON icon_name = icon_library_name

 [, SCALE scale_x, scale_y [, scale_z]]
 [, COLOR color]
 [, STYLE style]
 [, THICKNESS thickness]

When the x, y, or z scale factors are specified, all of the icons in a hierarchy are scaled as well as
their relative distances. The values for color, line style, and line thickness only apply to
variable-property icons. These must be created in the ILM with parts whose color has been set
to the variable color. For example, we may have

ICON PHONE = TELEPHONE_03, COLOR RED, STYLE 1, THICKNESS 1
ICON OFFICE = OFFICE_10, COLOR LIGHT_GREEN, STYLE 1,

 THICKNESS 3

Instruments

 Intruments are predefined VisiSoft objects that take on special properties similar to actual
instruments. The values assigned to an instrument describe the default settings that the
instrument is to assume unless otherwise explicitly stated in a process. For example, we may
have

INST CALLS_GENERATED = THERMOMETER, LOW 0, HIGH 400,
INITIAL_VALUE 0

Background Overlays

 Background overlays are separate user models created using VisiSoft and VSE draw
libraries, or Open-GL directly for very special functions. To incorporate a background overlay
in an application, it must be defined in the control specification.

 Each background overlay must be defined using a separate OVERLAY statement as
shown in Figure 13-1. The sequence of names, i.e., overlay_name, module_name, and
library_name, specifies the process in a VSE library module to be called to draw the overlay.
The menu_name is placed in the background overlay list that can be used to interactively toggle
any of 100 background overlays on or off.

Software Survival Page 13 - 9

 By default, the origin - (0, 0, 0) point - of coordinates defined inside the overlay module
is automatically registered relative to location (0, 0, 0) in the world space. The AT clause can be
used to register the (0, 0, 0) point in the overlay to a different location in the world space.
Likewise, the SCALE clause can be used to reconcile an overlay to the coordinates used for the
world space. The default scale factor is 1.

 The color or color ramps used by overlay draw routines can be changed in the control
specification. Similarly, the coordinates of the light source must be provided when using 3-D
shading. This coordinate is used by the overlay to determine the direction of the light source
vector with respect to the look-at point mentioned above.

 The user is responsible for creating background overlays. The RTG_DRAW library,
available to the user directly from VSE, includes most of the utilities required to draw 2D or 3D
background overlays.

 Figure 13-1 illustrates the specification of some of the above features in the Graphics
Section of a Control Specification. The RTG_EVENT_HANDLER clause identifies the process
to be invoked automatically when a graphics event has occurred.

Software Survival Page 13 - 10

Software Survival Page 14 - 1

Chapter 14. Simple Examples

 The above illustration is a screen shot from a simulation of multiple platforms moving
and communicating in 3D terrain. The terrain is drawn using digitized terrain databases as an
RTG background overlay. This chapter describes two examples of VisiSoft graphics using RTG
to demonstrate the ease with which one can build graphical representations of system dynamics.
One is a simple bouncing ball with a smiley face. The other is the game of TIC-TAC-TOE,
where players could use their own computer on a network.

SMILEY - THE BOUNCING BALL

 This is an example of a bouncing ball. It uses an RTG icon with a smiley face as the ball,
and some simple equations to make the ball bounce in a somewhat realistic manner. As shown
in Figure 14-1, the ball is pushed off a wall on the left, and bounces to the right, with diminishing
height. This motion can be represented by the product of a sine wave and an exponential decay
function, with parameters adjusted to suit the desired speed of motion. It is also simple to have
the ball spinning for a bit of realism.

 This example uses the Icon Library Manager to build the smiley icon, and uses a
background overlay for the wall and floor. It also illustrates how one makes use of RTG to move
icons against a background.

Software Survival Page 14 - 2

Defining The Problem

 Figure 14-1 illustrates the desired motion of the ball, and the smiley face icon.

X

Y

SmileyExample 8/28/06

Figure 14-1. A ball is pushed off a wall and bounces away.

 Motion is handled using the following simple set of equations as a function of time T :

X = K1·T

Y = K2 · ABS[SIN(K3·T)] · e -aT

Φ = K4·T

K1 determines speed in the X direction. K2 determines the amplitude of the sine wave which is
modulated by the decaying exponential with time constant a. K3 determines distance between
bounces. Φ is the rotation angle of the ball, and K4 determines speed of rotation.

Building The Icon

 To build the icon, one must click on the ILM button in the VDE window. This brings up
the Hierarchical ILM. Then one clicks on the Create Elementary button to get into the
elementary ILM drawing board shown in Figure 14-2. Using the drawing tools on the left button
bar, the face outline and eyes are formed using the ellipse, and the mouth is formed using the
filled polygon. The grid is determined by parameters from the Status Bar, toggled by clicking on
the Status button on the right side of the lower button bar. The icon is saved with the name
SMILEY.

Software Survival Page 14 - 3

Figure 14-2. Building SMILEY using the Elementary Icon Drawing Board.

Building The Architecture

 The basic architecture for bouncing smiley is shown in Figure 14-3. It requires only one
resource and one process. These are both shown in their respective edit sessions in this figure. If
we ignore the gray wall in Figure 14-4, this will run as is, bouncing the smiley ball, using a fairly
simple control specification. The more complete one (with an overlay) is shown in Figure 14-6.

Building The Background Overlay

 There are different ways to add in the wall. One could use an icon. But that gets redrawn
in the foreground every time smiley moves. A better way is to use the background overlay
facility within RTG, removing the requirement to redraw the background when only the
foreground changes, as is the case here. To do this, the user creates a library module as shown in
Figure 14-5. This process calls DRAW_RECTANGLE in DRAW_MOD in RTG_DRAW, a
VSE library that provides the facilities of Open-GL without having to write C code.

Software Survival Page 14 - 4

Figure 14-3. Architecture for bouncing SMILEY.

Figure 14-4. Running bouncing SMILEY.

Software Survival Page 14 - 5

Figure 14-5. Architecture for SMILE_WALLS.

CONTROL SECTION
 TITLE, TEST OF SMILE
 LEAD_PROCESS IS PROCESS_SMILE

LIBRARY SECTION
 C:\S\LIBS\RTG_DRAW

GRAPHICS SECTION
 ACTIVATE GRAPHICS
 WORLD_SPACE LOWER_LEFT = (-500, -500), UPPER_RIGHT = (500, 500)
 BACKGROUND_COLOR = WHITE

 ICON SMILE = SMILEY, SCALE (0.5, 0.5)

 OVERLAY 1 = SMILE_WALLS IN SMILE_WALLS IN SMILE_LIBRARY
 MENU WALLS,
 AT (0.0, -50.0)
 COLOR GRAY

END

Figure 14-6. Control Specification for SMILEY.

Software Survival Page 14 - 6

 To create the walls using the RTG_DRAW library, one merely sets the fill to 1 if the
object being drawn is to be filled with a color. In this case, we are drawing two rectangles, so we
must specify the lower-left and upper right vertices and call the DRAW_RECTANGLE routine
in module DRAW_MOD.

 Then, to make this work, we must add the LIBRARY SECTION into the Control
Specification in Figure 14-6, and also specify the overlay module (as OVERLAY 1 here). We
must provide the process_name, module_name, and library_name that we have created above.
We must also provide a menu name if we want to turn it on and off, the point at which the object
will be inserted, and the color of the object if filled.

 To bring up the walls (overlay) automatically, we must add an INSERT OVERLAY 1
statement at the top of PROCESS_SMILE. Some minor changes are required to the formulas to
start the smiley ball at the top of the wall. This is best done by setting T = 3 instead of 0 to start.

Building A Panel To Change Speed

 Now let’s put in a panel to change the speed interactively. We will use a slider bar such
as shown in Figure 14-7. To do this, we must first add a panel resource to the architecture shown
in Figure 14-7

Figure 14-7. A slider bar for controlling SMILEY’s speed.

Software Survival Page 14 - 7

 The SMILE task architecture shown in Figure 14-8 has been augmented with a
SMILE_SPEED resource at the bottom of module SMILEY. This resource holds the
information for the slider bar shown during run time in Figure 14-7 above. This resource is built
automatically by the Panel Library Manager (PLM), after one has saved the drawing of a panel.

 To vary the speed of the SMILEY ball, we will use the SUSPEND statement to suspend
the task for varying fractions of a second. This is the SUSPEND_TIME that has been added to
the bottom of the SMILE_DATA resource shown in Figure 14-8.

Figure 14-8. A new SMILE_SPEED resource for a slider bar to control SMILEY’s speed.

 Additional statements have been added to the process to display the panel, initialize the
suspend time, query the panel for inputs, and update the suspend time if inputs have occurred.

 The PLM is used to build the panel using a panel drawing board, shown in Figure 14-9,
with the various widgets available to the user. The panel widgets are on the left column of
buttons on the PLM drawing board. A vertical sliding bar has been used to adjust the speed.
While the ball is bouncing, the user can adjust the speed of the ball by moving the slider up and
down.

Software Survival Page 14 - 8

Figure 14-9. Building the slider bar panel in the PLM to control SMILEY’s speed.

 To build the slider bar, one just drags out the slider bar widget and places it in the panel,
selecting the vertical option in this case. Prompted inputs allow selection of the minimum and
maximum values of the bar. The user can add text to put the labels MAX - 20.0, SPEED, and
MIN - 0.1 . After saving the panel, the panel resource, SMILE_SPEED gets built with all of the
statements needed to use the widgets in the panel. So all of the code that a user must write to
build this example is shown above. That’s it!

Software Survival Page 14 - 9

TIC TAC TOE GAME

 In this example we will build an interactive game of Tic Tac Toe. The board will be built
as a background overlay and the X and O letters will be built as icons that can be inserted on the
board. This is shown in Figure 14-10 below. To determine where a player has placed the X or O
icon, we must test the position of the icon relative to the board. Our test will simply be to
determine if the center of the icon lies within one of the blue squares. If so, we will take it and
center it, provided the grid square is empty.

0
0 100

100

200

200

300

300

X O

X

X

O

O

TicTacToe 9/1/06

Figure 14-10. The game of TIC TAC TOE.

BUILDING THE GAME BOARD BACKGROUND OVERLAY

 The (x, y) coordinate system for the game board is shown in Figure 14-10. It has been
designed for ease of testing the placement of an icon. Given that the grid squares are each 84
units on a side, then all sides are 8 units away from the 0, 100, 200, 300 lines. Valid placement
implies that the center of an icon must be in one of the ranges [8, 92], [108, 192], and [208, 292]
in both the x and y directions. The background overlay is composed of 10 squares, the outer
square and the 9 inner squares. This library module is rather simple to build. It is shown in
Figure 14-11 below. The process is in the upper left corner and the resource in the lower right.

 To start the game, each player will be given five icons of X or O. To place an icon on the
board, the player left mouse clicks on one of the icons to select it, and holding the button down,
drags it to place it over the desired grid square. When the button is released, the position of the
icon is tested to ensure that it lies in one of the grid squares that is free. If not, it will not be
accepted, and a beep will occur telling the player he has not selected a valid position. The player
must then click on the icon to select it and drag it to a valid square, where it will be automatically
centered.

Software Survival Page 14 - 10

Figure 14-11. TIC TAC TOE background overlay module.

 After the icon is centered, a test will be made to determine if the insertion has completed
the game. If not, an icon from the other player’s set must be selected and placed. The game
continues until one of the players wins or it is determined that no one can win.

BUILDING THE GAME

 The game starts with each player’s icons next to the board as shown in Figure 14-12. As
icons are placed, their positions are checked to ensure the center of the icon lies within an
unoccupied blue box. Valid entries are centered automatically, and the state of the board is
updated. A panel indicates the state of the game, and also contains a button that can end the
game at any time.

 After each valid entry, the state of the board is checked to determine if there is a winner.
If so, a red line is drawn through the entries that won the game. This is illustrated in
Figure 14-13. Otherwise, the game continues.

Software Survival Page 14 - 11

Figure 14-12. TIC TAC TOE starting screen.

Figure 14-13. TIC TAC TOE ending screen.

Software Survival Page 14 - 12

 The architecture is shown in Figure 14-14, with the two resources TIC_TAC_TOE and
GAME_STATE. The MESSAGE_PANEL resource is not shown since it is built automatically
using the PLM. Although it must be referred to by process TIC_TAC_TOE that controls the
panel, the references are quite simple.

Figure 14-14. TIC TAC TOE ending screen.

 The process TIC_TAC_TOE is shown in Figures 14-15a & b. It is the most complex of
the processes. The rule GET_NEXT_EVENT starts with the statement

GET NEXT EVENT AND WAIT

This causes the task to wait on an RTG event. When an event occurs, the process specified as
the RTG EVENT HANDLER (in this case: GET_NEXT_EVENT - Figure 14-16) is invoked,
after which control is returned to the statement following the GET NEXT EVENT AND WAIT
statement in TIC_TAC_TOE.

Software Survival Page 14 - 13

TIC_TAC_TOE
 EXECUTE INITIALIZE
 EXECUTE GET_NEXT_EVENT
 UNTIL GAME IS DONE

**

INITIALIZE
 MOVE SPACES TO STATE_OF_THE_BOARD
 SET GAME TO IN_PLAY
 SET WINNER TO NONE_YET
 INSERT OVERLAY 1
 EXECUTE INSERT_X_O_ICONS
 MOVE 'GAME IN PROGRESS' TO MESSAGE_PANEL PANEL_TEXT
 DISPLAY PANEL MESSAGE_PANEL AT 800, 100

INSERT_X_O_ICONS
 EXECUTE INSERT_ICONS
 INCREMENTING ICON_POINTER
 UNTIL ICON_POINTER IS GREATER THAN 5

INSERT_ICONS
 X_POSITION = -200
 Y_POSITION = 360 - 70 * ICON_POINTER
 INSERT X(ICON_POINTER) ICON AT X_POSITION, Y_POSITION
 X_POSITION = 500
 INSERT O(ICON_POINTER) ICON AT X_POSITION, Y_POSITION

**

GET_NEXT_EVENT
 GET NEXT EVENT AND WAIT
 QUERY PANEL INPUT
 IF RTG_PANEL_EVENT IS GREATER THAN 0
 EXECUTE PANEL_INPUT_EVENT .

 IF GAME IS DONE
 EXIT THIS RULE .

 CALL GET_NEXT_EVENT
 EXECUTE PROCESS_ICON_MOVE
 IF POSITION_STATE IS VALID
 CALL CHECK_FOR_WINNER .

 IF WINNER IS NONE_YET
 EXIT THIS RULE
 ELSE EXECUTE GAME_IS_OVER .

PROCESS_ICON_MOVE

 .
 .
 .

Figure 14-15a. Top part of process TIC_TAC_TOE.

Software Survival Page 14 - 14

 .
 .
 .

PROCESS_ICON_MOVE
 SET POSITION_STATE TO INVALID
 CALL CHECK_ICON_POSITION
 IF POSITION_STATE IS INVALID
 EXIT THIS RULE .

 IF ICON_TYPE IS X
 UPDATE X(ICON_POINTER) ICON
 TO X_POSITION, Y_POSITION
 ELSE
 IF ICON_TYPE IS O
 UPDATE O(ICON_POINTER) ICON
 TO X_POSITION, Y_POSITION .

**

PANEL_INPUT_EVENT
 ACCEPT PANEL MESSAGE_PANEL
 IF MESSAGE_PANEL PANEL_BUTTON_STATUS IS ON
 SET GAME TO DONE .

GAME_IS_OVER
 IF WINNER IS X
 MOVE 'WINNER IS X' TO MESSAGE_PANEL PANEL_TEXT
 ELSE
 IF WINNER IS O
 MOVE 'WINNER IS O' TO MESSAGE_PANEL PANEL_TEXT
 ELSE
 MOVE 'ERROR' TO MESSAGE_PANEL PANEL_TEXT .

 DISPLAY PANEL MESSAGE_PANEL
 SUSPEND THIS TASK FOR 4 SECONDS

Figure 14-15b. Bottom part of process TIC_TAC_TOE.

GET_NEXT_EVENT
 IF RTG_GRAPHICS_SYMBOL IS AN ICON
 EXECUTE GET_ICON_DATA .

GET_ICON_DATA
 MOVE RTG_ICON_SIMULATION_NAME TO ICON_NAME
 MOVE RTG_ICON_INSTANCE_PTR(1) TO ICON_POINTER
 IF ICON_CHAR IS EQUAL TO 'X'
 SET ICON_TYPE TO X
 ELSE IF ICON_CHAR IS EQUAL TO 'O'
 SET ICON_TYPE TO O .
 MOVE RTG_ICON_X TO X_POSITION
 MOVE RTG_ICON_Y TO Y_POSITION

Figure 14-16. Process GET_NEXT_EVENT.

Software Survival Page 14 - 15

 The two processes, CHECK_ICON_POSITION and CHECK_FOR_A_WINNER are
relatively simple to build. CHECK_ICON_POSITION checks to see if the center of the icon is
within one of the boxes and if so, checks if there is already an icon in that grid square. If it is
inside and the square is free, it is placed in the center. If not, it is put back where it was before it
was selected. If placed in a grid square, it then calls CHECK_FOR_A_WINNER to determine if
that icon has caused a win. This is done by checking the possible win combinations to determine
if one is a win.

CONVERSION TO A NETWORKED GAME

 The game described above provides a single mouse input and window output, awkward
for two players. This can be converted to a two-platform game using a VisiSoft Interprocessor
Resource. The architecture is shown in Figure 14-17. Each player has a corresponding task that
provides the state of the game in the window, and takes control from and passes control to the
other player. So the architecture shown below is repeated on the O side. This runs in a client-
server mode, where the server is started before the client. This concept is easily adapted to
multi-player games.

Figure 14-17. Multi-platform architecture.

Software Survival Page 14 - 16

THE ICON LIBRARY MANAGER (ILM)

 The examples of icons built using the ILM above are somewhat trivial. It is worth while
to consider some others. Examples of more complex icons are shown in Figure 14-18 below.

Figure 14-18. Examples of more complex icons built using the ILM.

Software Survival Page 15 - 1

Chapter 15. Simulation

 This chapter describes the use of the General Simulation System (GSS) in building
discrete event simulations. Although GSS supports the discrete event approach, it provides for
dynamic nonlinear mathematical modeling within a simulation. This includes the solution of
stiff nonlinear systems of differential equations with “look ahead” algorithms. However, most of
today’s system designs require that sophisticated sets of IF ... THEN ... ELSE ... rules are built
into the algorithms, such as those used to provide layered protocols. This is particularly true in
the design of complex communications and control systems.

 In this chapter we start with a well known example typically solved using differential
equations. We then extend the concepts used to in this example to the simplified design and test
of embedded algorithms used in a telephone network.

Software Survival Page 15 - 2

RABBIT - COYOTE BIOLOGICAL MODEL COMPARISON

 In this example, we compare a continuous-time system model to its rule-based
counterpart. We will use the classical example of biological balance between a host and a
parasite as provided in many texts, e.g., Gordon, [43], pp. 103. In this example, the dynamics of
the interactivity between the rabbit and coyote populations are modeled. In this model, rabbits
are the hosts (prey), multiplying in large numbers compared to coyotes that are the parasites
(hunters). The equations, when simplified, take the form described by Gordon as follows.

dr = A·r(t) - B·r(t)·c(t)
dt

dc = K·r(t)·c(t) - D·c(t)
dt

The first equation defines the rate of change of the rabbit population, where rabbit births

are a fraction, A, of the existing population, and rabbit deaths (due to coyote kills) are a fraction,
B, of the product of the rabbit and coyote populations. The coyote population changes similarly,
but they are modeled as the birth rate being a fraction, K, of the product of the rabbit and coyote
populations, and their death rate is a fraction, D, of their population.

 Figure 15-1 illustrates an approach to describing the model graphically using a fairly
standard analog diagram for the differential equations. This set of equations can be solved using
special methods or existing software systems. The analog diagram is easily related to the
equations.

 Figure 15-2 shows a stock and flow diagram for the same system, using slightly different
coefficients for the equations. This diagram is somewhat more easily related to the stock and
flow of rabbits and coyotes, but is harder to relate to the system of equations.

 The classical approach to determining the coefficients for this problem is to assume the
solution to be quasi-stable, i.e., oscillatory, with no damping to a stable state. This is justified on
the grounds that oscillation is observed in real life. However, as we shall show, this is not a
realistic representation of the physical system, since any perturbation will drive the system into
an unstable state, causing at least one of the populations to got to infinity or zero. In fact,
basically stable systems may appear to operate in constant oscillation, even though they require
continuous perturbation from an external source. One merely has to redefine the external source
as part of the overall system. Any form of clock or electronic oscillator is good example. This is
fine when using simple mathematical models of oscillators as examples in a classroom
environment, where the complexity of nonlinear models need not be described. However, it
presents a misleading picture when trying to explain the real biological behavior of interest here.
And this is another case where

Software Survival Page 15 - 3

r

r

A

r A r

 - Kr A r - K r c r

 - K
- K r c

c

c

 - D

c - D c

 K c K r c - D c

K
K r c

c

RABBIT03 9/28/06

Figure 15-1. Rabbit - coyote biological model using anolog symbol diagram.

RBF CBF

RABBIT BIRTH COYOTE BIRTHS

RABBIT COYOTE
POPULATION POPULATION

RKPC

RABBIT DEATHS COYOTE DEATHS

NRDF CDF

RABBIT03 9/28/06

Figure 15-2. Rabbit - coyote biological model using system dynamics symbol diagram.

Software Survival Page 15 - 4

A MORE REALISTIC MODEL OF THE PHYSICAL PHENOMENON

 The theory and design of electronic oscillators has been well researched. Their
operational characteristics are governed by nonlinear physical phenomenon, refer to
Hafner, [49]. Accurate representation of real physical oscillatory behavior requires nonlinear
models. In addition, damping exists in all physical systems to some degree, as do external
perturbations. When the perturbations are absent, the system will relax, with decreasing
oscillatory behavior, to a stable state - normally not oscillatory because of the effects of
damping. When a perturbation occurs, the system moves from its stable state into what may
appear to be oscillatory motion that naturally decays. These perturbations can came close
enough together to cause superposition of their effects, and give the appearance of continual
oscillatory motion. We submit that is the case with the typical biological model.

 The model of a system that is less than critically damped will show the same form of
oscillatory responses every time it is perturbed. Clearly, biological systems such as rabbits and
coyotes are always being perturbed by external factors not modeled here. These can produce
what would appear to be continuous oscillation, even though the systems themselves are highly
stable. These additional perturbations would hardly change the overall behavior of the system.
Depending on how one chooses the coefficients in the nonlinear equations, vastly different
results can occur. One must study the effects of perturbations on the populations to gain good
agreement with reality.

 Given these facts, both of the linear models described above can misrepresent the real
physical behavior of the biological system, particularly if one is concerned about studying the
survival of the populations. It is more realistic to represent coyote deaths as due to starvation
(not enough rabbit kills) as well as natural causes. Similarly, given reasonable circumstances,
the rabbit population in a linear model quickly grows to infinity - an impossible consequence if
we are studying a finite geographical area, with a finite food supply.

 Rabbits will also starve if they don't have enough food, and can die of natural causes as
well. Also, the incubation periods of different animals can be significantly different, affecting
the time constants for birth after pregnancy. As we add these more detailed representations to
gain accuracy, the model will necessarily become more complex. But, instead of solving a set of
equations for fictitious coefficients to land on the single point of oscillation, we are providing
real characterizations, observed phenomena and watching the simulated results. Furthermore,
both of the prior approaches require a knowledge of how to transform the description of a
physical problem into differential equation format, and then find a means to solve it. Our rule-
based approach dispenses with this requirement. The description appears in a natural language
format, requiring only a knowledge of algebra.

A RULE-BASED RABBIT-COYOTE BIOLOGICAL MODEL

 Figure 15-3 below shows a GSS version of the rabbit-coyote simulation using the same
biological type model. This approach is totally different than that using differential equations
described in the prior section. Note that we are modeling the physical phenomena directly,
minimizing abstractions. This is a great aid when it comes to adding detail to the model. As a
result, the processes in the model relate directly to pregnancy, birth, natural death, and of course
the rabbit hunt, as the affect the population of the herds.

Software Survival Page 15 - 5

Figure 15-3. Rabbit - coyote biological model using the GSS Model Development Graphics.

 The GSS Processes rules and Resource data structures are shown on the next three pages.
Although not many decision processes are represented in these simple models, the approach to
the computations is more understandable in terms of real life considerations. One does not have
to understand differential equations to represent the physical system. However, the models
account for many more details than their counterparts using an abstract mathematical approach.
Equally important, the counterpart of nonlinear differential equations would be much more
complex to write and solve.

 We also note that using discrete event simulation, most of these processes run
independently, transforming the states of the herds when they run. The pregnancy process
affects the percent of pregnant animals in the herds. The birth process causes an increase in the
herd size. The natural death process causes a reduction in the herd size, and the rabbit hunt
causes a reduction in the rabbit herd. Note that the red codes inside processes cause them to be
started since they run independently, scheduling themselves in the future.

 Graphs of the dynamic behavior of the possible rabbit - coyote relationship, as
represented in GSS, are shown in Figures 15.4 through 15-7. These results were obtained by
modifying the birth, death, and hunger submodels for each. It can be seen that a wide range of
results can be obtained, depending upon various factors. Figures 15-4 and 15-5 show the result
of a single perturbation, at the beginning of the chart, on this very stable system. We note that a
sequence of perturbations, occurring two years apart, will give the appearance of continuous
oscillation. We would expect perturbations to occur at least this often.

Software Survival Page 15 - 6

RESOURCE: RABBIT_HERD

RABBIT
 1 POPULATION INTEGER INITIAL_VALUE 10000
 1 PREGNANCY_SET INDEX INITIAL_VALUE 1
 1 PREGNANCIES QUANTITY(9) INTEGER
 1 NATURAL_DEATHS INTEGER
 1 TOTAL_DEATHS INTEGER
 1 HUNGER_DEATHS INTEGER
 1 HUNGER_DEATH_FACTOR REAL
 1 DEATHS_BY_COYOTE INTEGER
 1 REPRODUCTION_RATE REAL INITIAL_VALUE 0.2
 1 NATURAL_DEATH_RATE REAL INITIAL_VALUE 0.05
 1 MEDIAN_POPULATION INTEGER INITIAL_VALUE 10000

PROCESS: RABBIT_PREGNANCY

PREGNANCY_CONTROL
 *** DETERMINE PREGNANCY GROUP (MONTH - INSTANCE)
 IF PREGNANCY_SET IS GREATER THAN 2
 PREGNANCY_SET = 1.
 *** COMPUTE NUMBER OF PREGNANCIES FOR THIS PEROID
 PREGNANIES (PREGNANCY_SET) = REPRODUCTION_RATE * POPULATION

 *** SCHEDULE BIRTH AND PREGNANCY DATES
 SCHEDULE RABBIT_BIRTH IN 60 DAYS USING PREGNANCY_SET
 SCHEDULE RABBIT_PREGNANCY IN 30 DAYS USING PREGNANCY_SET
 INCREMENT PREGNANCY_SET.

PROCESS: RABBIT_BIRTH

RABBIT_BIRTH_CONTROL
 ADD PREGNANCIES(PREGNANCY_SET) TO POPULATION

Software Survival Page 15 - 7

PROCESS: NATURAL_RABBIT_DEATH

RABBIT_DEATH_CONTROL
 IF POPULATION IS GREATER THAN ZERO
 HUNGER_DEATH_FACTOR = ((MEDIAN_POPULATION + POPULATION)/
 MEDIAN_POPULATION)**2
 TOTAL_DEATHS = NATURAL_DEATH_RATE * POPULATION *
 HUNGER_DEATH_FACTOR
 SUBTRACT TOTAL_DEATHS FROM POPULATION.
 IF POPULATION IS LESS THAN 2
 STOP.
 SCHEDULE NATUAL_RABBIT_DEATH IN 30 DAYS

RESOURCE: COYOTE_HERD

COYOTE
 1 POPULATION INTEGER INITIAL_VALUE 250
 1 PREGNANCY_SET INDEX INITIAL_VALUE 1
 1 PREGNANCIES QUANTITY(9) INTEGER *** ALLOW UP TO 9 INSTANCES
 1 NATURAL_DEATHS INTEGER
 1 HUNGER_DEATHS INTEGER
 1 TOTAL_DEATHS INTEGER
 1 RABBIT_KILLS INTEGER
 1 HUNGER REAL
 1 COYOTE_RABBIT_RATIO REAL
 1 REPRODUCTION_RATE REAL INITIAL_VALUE 0.1
 1 NATURAL_DEATH_RATE REAL INITIAL_VALUE 0.02
 1 HUNGER_DEATH_RATE REAL INITIAL_VALUE 0.02
 1 APPETITE INTEGER INITIAL_VALUE 20
 1 PROBABILITY_OF_CATCH REAL
 1 MEDIAN_RABBIT_CATCH INTEGER INITIAL_VALUE 10000

TIME_FACTORS
 1 DAY_COUNT INTEGER
 1 MONTH INTEGER

PROCESS: COYOTE_PREGNANCY

PREGNANCY_CONTROL

 *** DETERMINE_PREGNANCY SET (MONTH - INSTANCES)
 IF PREGNANCY_SET IS GREATER THAN 3
 PREGNANCY_SET = 1.

 *** SET COYOTE PREGNANCIES AND SCHEDULE BIRTH
 PREGNANCIES(PREGNANCY_SET) = REPRODUCTION_RATE * POPULATION
 SCHEDULE COYOTE_BIRTH IN 90 DAYS USING PREGNANCY_SET
 SCHEDULE COYOTE_PREGNANCY IN 30 DAYS USING PREGNANCY_SET
 INCREMENT PREGNANCY_SET.

Software Survival Page 15 - 8

PROCESS: COYOTE_BIRTH

COYOTE_BIRTH_CONTROL
 ADD PREGNANCIES(PREGNANCY_SET) TO POPULATION

PROCESS: COYOTE_DEATH

COYOTE_DEATH_CONTROL
 IF POPULATION IS GREATER THAN ZERO EXECUTE
 COMPUTE_COYOTE_DEATHS.
 IF POPULATION IS LESS THAN 2
 STOP.
 SCHEDULE COYOTE_DEATH IN 30 DAYS

COMPUTE_COYOTE_DEATHS
 *** DETERMINE COYOTE HUNGER
 COYOTE HUNGER = 3*(5*COYOTE POPULATION/RABBIT_KILLS) ** 3
 NATURAL_DEATHS = NATURAL_DEATH_RATE * POPULATION
 HUNGER_DEATHS = COYOTE HUNGER * HUNGER_DEATH_RATE * POPULATION
 TOTAL_DEATHS = NATURAL_DEATHS + HUNGER_DEATHS

PROCESS: RABBIT_HUNT

RABBIT_HUNT
 *** DETERMINE RABBIT_KILLS
 PROBABILITY_OF_CATCH = (RABBIT POPULATION/
 (RABBIT POPULATION + MEDIAN_RABBIT_CATCH)) ** 2
 RABBIT_KILLS = APPETITE * COYOTE POPULATION * PROBABILITY_OF_CATCH
 DECREMENT RABBIT POPULATION BY RABBIT_KILLS
 IF RABBIT POPULATION IS LESS THAN 2
 STOP.
 IF RABBIT_KILLS ARE LESS THAN ZERO
 RABBIT_KILLS = 1.
 SCHEDULE RABBIT_HUNT IN 30 DAYS

Software Survival Page 15 - 9

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

0

2000

4000

6000

8000

10000

12000

COYOTE
RABBIT

COYOTES RABBITS

MONTHS

Figure 15-4 Oscillatory relationship when basic model is linear and rabbits are limited by food.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

COYOTE
RABBIT

COYOTES RABBITS

MONTHS

Figure 15-5 Stable relationship when basic model is nonlinear and rabbits are limited by food.

Software Survival Page 15 - 10

0
200
400
600
800

1000
1200
1400
1600

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

0

10000

20000

30000

40000

50000

60000

70000COYOTE
RABBIT

COYOTES RABBITS

MONTHS

Figure 15-6. Unstable relationship when model is linear and rabbit growth is not limited.

0

50

100

150

200

250

300

350

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

RABBITSCOYOTES

MONTHS

Figure 15-7. Extinction occurs when model is linear and rabbit growth is slow and limited.

Software Survival Page 15 - 11

TELEPHONE NETWORK SIMULATION

 Figure 15-8 is the graphical output representing the telephone network simulation. This
is a simulation of four business offices (green boxes), each with different numbers of people
having phones. We are concerned with interoffice calls that must go through the PBXs (gray
boxes) and the local telephone company’s central switch (brown box). We must determine how
many lines to buy between each office PBX and the central switch. In the picture, green lines are
in use, black indicates call setup in progress, and tan represents unused lines.

Figure 15-8. Graphical output representing the telephone network simulation.

 To minimize our cost, we want to buy as few lines as needed to ensure a specified
probability that calls will be completed under stress conditions (the busy hour). To do this, we
must measure calls attempted, calls completed, calls that were blocked (not enough lines) and
calls not completed because the other party was busy (not blocked).

Software Survival Page 15 - 12

 The architecture for this simulation is shown in Figure 15-9. The simulation was
designed to support up to ten local offices with up to twenty subscribers each. Each office has a
PBX that is connected to the central switch. In addition, modules exist for initialization, running
the busy hour scenario, providing dynamic graphical output, and collecting the data needed to
determine the results.

TELEPHONE_NETWORK

Figure 15-9. Architecture for the telephone network simulation.

 A single simulation is used for a given design, i.e., a selected number of trunk lines
between the PBX and central switch for each office. Then using the GSS optimization facilities,
the number of trunk lines can be varied while running a set of simulations, e.g., 50 to determine
the optimal solution. Then, having set the optimal solution, a Monte Carlo run can be performed
using 50 simulations to create a distribution of outcomes to verify that the constraint on the
desired probability is met.

Software Survival Page 15 - 13

VALIDITY OF THE MODELS

 The most important factor in using simulation to perform design and testing is to ensure
that simulated results match what happens under live (real) test conditions, i.e., that the
simulation results are a valid representation of the system. As illustrated in Figure 15-10,
simulation validity is determined by the validity of the measures of merit (MOM) obtained from
the simulation. These measures, of equipment performance or overall system effectiveness, must
quantify values that an analyst must use to make decisions. In order for these measures to be
valid, they must be based on data from the simulation that is accurate relative to predicting what
will occur in a real environment with real systems. This implies that the models and scenarios
used in a simulation must provide a sufficiently accurate representation of the real system and its
environment.

MODELING 7/30/03

SIMULATION VALIDITY
MOM

VALIDITY

SCENARIO
INPUT

VALIDITY
MODEL ACCURACY
DATA COLLECTION ACCURACY
MOM COMPUTATIONAL ACCURACY

Figure 15-10. Determining Model Validity

 Generally speaking, the major factors boil down to two: validity of the scenario, and
accuracy of the models. With a good simulation design, many scenarios can be created by the
users to investigate different worst cases. Typically, the critical piece is accuracy of the model
representations. As one learns more about the problem, one must be able to increase model
detail to account for more factors. The ease with which this is accomplished depends directly
upon the simulation environment.

REUSABILITY OF THE MODELS

 More importantly, one would like to pull a model off the shelf and reuse it in different
simulations. The ability to do this depends directly upon the range of validity of the model. This
implies that models with sufficient detail can be used for a wider array of problems than those
tailored simply to a specific application. An example in communications is a propagation model
that covers a very broad band of the frequency spectrum. Such a model is typically much more
complex than one that covers a small band of the spectrum. But to be reusable, models must be
understandable and independent. These properties are defined below.

Software Survival Page 15 - 14

MODEL INDEPENDENCE

 Looking at the architecture in Figure 15-9, one observes two factors. First, the models
are built along the physical lines of the system being modeled. The office model contains the
model for subscribers and PBXs. This model is connected to the switch model. The instrument
model is connected to the subscriber model, since that is where the calls are initiated and the
resulting blocked, busy, and connected signals are recorded. The scenario control module is
connected to the office and switch. The number of connections between models never exceeds
two, making it relatively easy to disconnect a model and reconnect it in another simulation.

MODEL UNDERSTANDABILITY

 This property determines the ability of an analyst or modeler, other than the original
author, to understand the model to the extent that it is easily validated and reused. From an
economic standpoint, models that are more easily understood are more valuable because they are
more easily validated, modified, and reused.

 We note that the most complex model from an element standpoint is the subscriber
model. Within that model, placing calls is the most complex. Let’s look at the SUBSCRIBER_
ATTRIBUTES resource and the PLACE_CALL process in Figures 15-11 and 12, noting that one
of the resources that PLACE_CALL uses is not shown.

SUBSCRIBER INDEX

SUBSCRIBER_INFORMATION
 1 CALLERS_PLAN STATUS PLACE_NEW_CALL
 RETRY_CALL
 1 SUBSCRIBER_TYPE STATUS DATA
 VOICE
 1 SUBSCRIBER_STATUS STATUS BUSY
 FREE
CURRENT_CALL_PARAMETERS
 1 CALL_TIME REAL
 1 CALL_START_TIME REAL
 1 CALL_DURATION REAL
 1 PHONE_NUMBER STATUS UNKNOWN
 FOUND
CALL_ATTRIBUTES
 1 CALL_INTERGEN_TIME REAL ***INITIAL_VALUE 12 ***MINUTES
 1 AVERAGE_CALL_DURATION REAL ***INITIAL_VALUE 4 ***MINUTES
 1 VARIANCE REAL ***INITIAL_VALUE 1 ***MINUTE
 1 RETRY_INTERGEN_TIME REAL ***INITIAL_VALUE 4 ***MINUTES

PHONE_BOOK
 1 PHONE_BOOK_STATE STATUS INCOMPLETE
 COMPLETE
 1 PHONE_TOTAL_OFFICES INDEX
 1 PHONES_IN_OFFICE QUANTITY(4) INDEX

DIALED_OFFICE INDEX
DIALED_SUBSCRIBER INDEX

Figure 15-11. Resource: SUBSCRIBER_ATTRIBUTES.

Software Survival Page 15 - 15

PLACE_CALL
 IF SUBSCRIBER_STATUS IS FREE
 EXECUTE MAKE_CALL
 ELSE EXECUTE RETRY_LATER .

MAKE_CALL
 IF CALLERS_PLAN IS PLACE_NEW_CALL
 SET PHONE_NUMBER TO UNKNOWN
 EXECUTE LOOK_UP_NUMBER UNTIL PHONE_NUMBER IS FOUND .
 MOVE OFFICE TO SUBSCBR_PBX_SRCE_OFFICE
 MOVE SUBSCRIBER TO SUBSCBR_PBX_SRCE_SUBSCBR
 MOVE DIALED_OFFICE TO SUB_PBX_DES_OFF
 MOVE DIALED_SUBSCRIBER TO SUBSCBR_PBX_DEST_OFFICE
 SET SUBSCRIBER_STATUS TO BUSY
 SET SUBSCRIBER_SIGNAL TO PLACE_CALL
 MOVE CLOCK_TIME TO CALL_START_TIME
 SCHEDULE RECEIVE_SUBSCRIBER_INPUT NOW
 CALL CONNECT_SUBSCRIBER

RETRY_LATER
 SCHEDULE PLACE_CALL IN EXPON(RETRY_INTERGEN_TIME) SECONDS

LOOK_UP_NUMBER
 DIALED_OFFICE = (PHONE_TOTAL_OFFICES * RANDOM) + 1
 IF DIALED_OFFICE IS EQUAL TO OFFICE
 EXIT THIS RULE .
 DIALED_SUBSCRIBER =
 (PHONES_IN_OFFICE(DIALED_OFFICE) * RANDOM) + 1
 SET PHONE_NUMBER TO FOUND

Figure 15-12. Process: PLACE_CALL.

 The SUBSCRIBER_ATTRIBUTES resource contains most of the important information
on the state of a subscriber. The two other resources within the SUBSCRIBER model are
SUBSCRIBER_SYMBOLS, which contains the subscriber icon information, and
SUBSCRIBER_PBX_INTERFACE, which contains state information to be sent to the PBX.
We note that these attributes have been selected to help make the PLACE_CALL process easily
understood by a third party. The most difficult part is the transfer of information from the
subscriber to the PBX regarding the calling subscriber’s own number and office number, as well
as the numbers of the called office and subscriber. We note that routing tables are not needed to
obtain the desired measures from this simulation.

 To provide for additional insight into these models, the process RECEIVE_
SUBSCRIBER_INPUT is also provided in Figure 15-13. The intent here is to demonstrate the
readability of the rules. Although this simulation has be characterized as simple, the algorithms
for passing information through the system, so that all of the control messages necessary to set
up a call are modeled, are not so simple. However, any engineer who has an understanding of
these algorithms can quickly learn the logic of the models, and determine their validity or
reusability.

Software Survival Page 15 - 16

RECEIVE_SUBSCRIBER_INPUT
 IF SUBSCRIBER_SIGNAL IS PLACE_CALL *** SOURCE
 EXECUTE ATTEMPT_CONNECTION
 ELSE IF SUBSCRIBER_SIGNAL IS END_CALL *** DESTINATION
 EXECUTE BREAK_CONNECTION.

ATTEMPT_CONNECTION
 IF TRUNKS_AVAILABLE ARE GREATER THAN 0
 EXECUTE ESTABLISH_CONNECTION
 ELSE EXECUTE CONNECTION_FAILURE.

ESTABLISH_CONNECTION
 SET PBX_SUBSCRIBER_LINE TO BUSY
 DECREMENT TRUNKS_AVAILABLE
 MOVE SUBSCRIBER_MESSAGE TO PBX_SWITCH_MESSAGE
 SET PBX_SWITCH_SIGNAL TO PLACE_CALL
 SCHEDULE RECEIVE_PBX_SIGNAL NOW

CONNECTION_FAILURE
 SET PBX_SUBSCRIBER_SIGNAL TO BLOCKED_AT_SOURCE
 SCHEDULE RECEIVE_PBX_RESPONSE NOW
 USING SUB_PBX_SRC_SUB

BREAK_CONNECTION
 INCREMENT TRUNKS_AVAILABLE
 MOVE SUBSCRIBER_MESSAGE TO PBX_SWITCH_MESSAGE
 SET PBX_SWITCH_SIGNAL TO END_CALL
 SET PBX_SUBSCRIBER_LINE TO FREE
 SCHEDULE RECEIVE_PBX_SIGNAL NOW

Figure 15-13. Process: RECEIVE_SUBSCRIBER_INPUT.

 We should also point out that all of the statements are intuitive except for the
SCHEDULE statement. This statement schedules a process to be run at a future time (n seconds
from now) or at the current time (NOW). This causes the process name to be placed in a queue
at a specified time and priority (not used above). Also stored in the queue are up to six instance
pointers so that when the process runs, it knows what model instances it represents. These
instance pointers are determined in the architecture (VDE) environment. The selection of the
instance pointers is shown in Figure 15-14, where the names SOURCE and DESTINATION are
selected as the first and second instance pointers.

 Thus, when one process schedules another, the values of the instance pointers are
automatically passed from one to the other through the scheduler. The modeler only has to use a
common name for these pointers and set them to the desired value where necessary. This makes
the models much easier to write as well as read.

 To make all this work, behind the scenes all such resources are instanced, i.e., there is a
copy for each instance. So every model instance has a separate copy of all the resources
contained within it. If a model is not instanced, then there is only one copy. But if there are up
to 10 subscribers each in 4 offices, there are 40 instances of subscriber resources. This makes
running simulations very efficiently on parallel processors also very simple. In fact, the modeler
need not even think about that problem. This is discussed in Chapter 16.

Software Survival Page 15 - 17

Figure 15-14. Selection of Instance Names for RECEIVE_PBX_RESPONSE.

INTERACTING WITH THE SIMULATION

 In this particular simulation, the user can interact with the simulation while it is running.
This can be done in a few ways. One can click on the ICON button (in the left set of buttons in
Figure 15-1). This brings up a list of icons that are available to the simulation. If a user selects a
subscriber icon, it can be inserted into any of the offices provided there is room for more
subscribers (not all are active). When it is clicked down, a subscriber initialization process takes
place to activate it as part of the running simulation. It can then initiate and receive calls. Thus,
an analyst can watch what happens when more subscribers are added to an office. Similarly, one
can add or subtract trunk lines interactively and watch the results. The ability to make changes
interactively aids in the analysis of complex systems.

DESIGNING AND TESTING COMPLEX SYSTEM ALGORITHMS

 It is becoming almost impossible to design and test large systems that depend upon
complex software algorithms without the aid of simulation. Using VisiSoft, the algorithms
written in VSE can be placed directly in GSS simulations. Companies that use VisiSoft have the
significant advantage of using GSS as a design tool for new algorithms and also a test tool for
existing algorithms. Creating test cases that repeat complex conditions is very difficult without
the aid of simulation. So when problems are encountered in the field, simulation can be used to
determine the root causes, redesign fixes, and run further tests without creating live tests,
generally a dramatic way to cut scarce personnel time and costs.

Software Survival Page 15 - 18

Software Survival Page 16 - 1

Chapter 16. Very Large Scale Systems

 This chapter describes cases that occur with large scale systems and complex software.
In engineering, one learns to investigate the limiting cases, producing limiting factors that help
one to determine the best technological approach to solving problems in design architecture and
language. In this chapter, we investigate extremely large software systems that stress many
aspects of the software development and product upgrade process.

SINGLE PROCESSOR SYSTEMS

 In this section, we are looking at large scale software systems designed to run on a single
processor. Multi-Processor and Parallel processor systems are covered in following sections.

Software Survival Page 16 - 2

Motivation

 The new paradigm described in this book was driven by the need to develop large scale
simulations of communication and control systems, simulations that would have to be run very
fast - on parallel processors under a single operating system. As indicated in Chapter 5, this led
to the “separation principle,” [55]. This approach allows one to track software module
independence and automatically allocate processors to processes at run-time on a large parallel
processor.
 As we have shown in prior chapters, the separation principle also provides the basis for
engineering drawings of software, with a one-to-one mapping from the drawings to the code, a
true form of software architecture. Prior to VisiSoft, software architecture did not exist, an
observation that should now be apparent to the reader. The analogy between current
programming approaches, and architects in other fields trying to produce designs without
drawings, should also be apparent.

Current Pertinent Comparisons

 Operating systems have always been difficult pieces of software to build, going back to
the days of OS-360 and the collapse of the MULTICS project. Time response requirements on
speed, multiple tasking coupled with handling large numbers of events in real time, and
managing large numbers of distributed databases is difficult enough. But sheer size - Microsoft
claims that Windows is up to 50 million lines of code - leads one to question the lack of an
architecture. Having 4000 programmers writing code presents even more questions.

 It is pertinent to make a comparison of two companies in the Seattle, WA area. Anyone
who has been inside a hanger at Boeing where large aircraft are assembled has to be amazed at
the size of the hangers and the complexity of the assembly and testing process. But one had to
be equally amazed at the size of the drawings wrapped around the walls of these hangers -
multiple stories high - with rolling catwalks to review them. Most everything is on computer
terminals now. But without these CAD systems and drawings, one could not begin to understand
how it all fits together. Now imagine taking the drawings away and having everything described
in a language - as is done at Microsoft.

 This is not an absurd analogy. The Windows operating system happens to offer an
extreme case. But there are many systems with a few million lines of code. Having used
VisiSoft for years, one cannot envision controlling the architecture of a system with just 10,000
lines of code without a good architecture and corresponding drawings.

 After experiencing the development of large scale systems (more than a million lines of
code) using VisiSoft, one learns that simply invoking an architecture by an experienced architect
can cut the number of lines of code by whole numbers. The combination of engineering
drawings, high level languages, and large data structures and rule structures - that are controlled
hierarchically and easy to follow - can increase productivity by an order of magnitude when
upgrading and enhancing a large software product.

Software Survival Page 16 - 3

Managing Libraries Instead of Managing Code

 Above 1,000,000 lines of code, management of dynamic distributed databases, fielding
and scheduling real time events, and complex 2D and 3D graphical user interfaces translate into
managing large numbers of libraries. An example is managing dynamic lists. If programmers
are building different linked lists for different applications, they are likely being mismanaged. In
simulations and real time systems that move huge amounts of data, linked lists appear in many
higher level modules. In some cases, the same programmer may decide to tailor more than one
of these for different functions, usually because they are “pressed for time” to get out the release.
They don’t have time to build one that can be used three or four times.

 Now multiply this by just 20 programmers and one may have on the order of 50 linked
lists, each being debugged and tested separately. It is likely that this number could be reduced to
three or four library modules that are bug free as well as extremely fast. This requires a library
management facility to ensure that everyone knows what is available, and that rebuilding one of
these is unacceptable practice.

 When building a large scale system, library development and management is critical.
When building the next system, it is even more critical, since the next system is likely to be
larger, but can be put together and tested faster given a huge set of reusable libraries.

 Having engineering drawings of the software enforces the practice of using libraries.
This is because an architect can specify libraries to be used by the coders, and can then check the
module drawings to ensure no one is rebuilding an existing module - one that is just a tiny bit
different than one on the shelf. Most often, the tiny difference can be incorporated into an
existing library without changing the way it works for the current users. Then it is still the same
library with a slightly new feature. If it must be slightly different from the existing module from
a user standpoint, the person responsible for the existing library module is the best person to
copy it, rename it, modify it, and make it available as a new module. It will likely be built and
totally debugged in less than 10% of the time.

 Libraries contain reusable modules that can be shared by huge numbers of programmers.
Documenting library functions and how they are used is part of the library management function.
The amount of time taken to organize, document, and distribute libraries is paid back in whole
number multipliers, from the first time they are used.

PARALLEL PROCESSING

 Hardware designers have succeeded in producing parallel and distributed processor
computers with theoretical speeds well into the teraflop range. However, the practical use of
these machines on all but some very special problems is extremely limited. The inability to use
this power is due to great difficulties encountered when trying to translate real world problems
into software that makes effective use of highly parallel machines. This has been described by
numerous authors over many years, see for example [70], [8], and [67].

Software Survival Page 16 - 4

COMMERCIAL MARKET REQUIREMENTS

 In the commercial marketplace, speed benefits gained using a parallel computer must
sufficiently outweigh the cost to develop and support the software. If not, then real
commercialization, based upon solid economics, will not occur. These economic goals will be
achieved if the following requirements can be met:

1. Subject area experts who understand the problems to be solved must be able to describe
them easily and directly to computers without concern for parallelism, or even prior
knowledge of computer programming.

2. The software must be generated automatically to take full effective advantage of the
inherent parallelism of the problem on a Massively Parallel Processor (MPP).

 These two requirements are tightly interrelated. The subject area expert should not care
whether the problem is being solved on a single processor machine, or one with hundreds of
processors. The run-time software must be generated to make effective use of the available
parallelism of the host machine, adapting to changes in the environment, a very tedious but
mechanical process.

REQUIREMENT FOR SPECIAL PROGRAMMING SKILLS

 Current approaches to solving problems on parallel processor machines have not, in
general, overcome these two barriers. Problem description for parallel - as opposed to single -
processing generally incurs a huge cost increase for all but a few special cases. This is
compounded by the fact that the problems requiring large processor power are themselves
complex, and best understood by subject area experts.

 For example, a communications engineer trying to design a specific set of algorithms, to
implement a very complex set of protocol standards, has difficulty just describing his problem
using graphic diagrams with plain English text. To constrain him to describe his problem in an
esoteric programming language is difficult. To force him to learn the language of a system
programmer, i.e., the operating system, is unlikely. To further burden him to describe his
problem so that it runs efficiently on a parallel computer makes the approach intractable.

 One is then led to an approach that augments the engineering staff with parallel processor
programmers who perform problem translation for the computer. However, it is well accepted in
most engineering departments that, when programmers are used to translate an engineer's
problem to a computer, problem solution becomes a process whose length increases
exponentially with problem complexity. Finally, translation onto a parallel processing machine
currently requires very special programming skills that are commensurably scarce and expensive.

 This is why engineering departments invest heavily in Computer-Aided Design (CAD)
tools that they interface with directly - on their own terms. These CAD tools provide interfaces
that are tailored to their problem and automatically generate highly efficient computer code. We
believe that this is the solution approach to be taken toward commercialization of parallel
computing.

Software Survival Page 16 - 5

HARDWARE FIRST

 Solutions to the parallel processing problem tend to skip over the software piece of the
problem, going from application requirements to hardware architecture. (The word architecture
implies hardware in the parallel processing literature. The words “software architecture” do not
appear.) Software is not much more than an afterthought relative to the size of the hardware
design effort. This approach, illustrated in Figure 16-1, is termed software bypass.

APPLICATIONS SOFTWARE HARDWARE

Figure 16-1. Software bypass - designing the hardware first.

 Subject area experts who want to use parallel computers cannot simply enter their
problem specifications into a piece of hardware. They must first write the very complex
software required to control parallel processor hardware. Without knowledge of the special
operating systems and languages for parallel computers, these experts typically turn to
programmers to do the job. Programmers see the chance to increase their value by learning how
to be parallel programmers. Their interest is in learning deeper specializations to broaden their
higher-paying job opportunities. This cycle of thinking is at odds with commercial market
requirements.

USE OF ABSTRACT REPRESENTATIONS

 Certainly there are many uses of abstractions when building models of highly complex
systems and their environments. One could not perform simulation without abstraction of reality
into models that run on a computer. The General Simulation System (GSS), [45], provides for
ease of abstraction where complex processes that may be spread across all of the entities in a
system are represented in a single list. GSS contains a library of high speed list management
facilities that eliminate the need for the modeler to develop linked list software, a basic
abstraction in modeling. However, one must consider the trade offs between time and cost of
development as well as speed and memory utilization at run-time.

 With today's parallel processors, memory utilization is not an issue. It is difficult to
conceive of a problem where the amount of memory on a large parallel processor computer
presents a limitation. Using conventional techniques for parallel processing, the trade is usually
between development time and running time, given resource constraints in dollars. This leads to
decisions on how models are represented.

Software Survival Page 16 - 6

 The choice is usually between the way one deals with abstractions, and typically ends up
with substantial hand tailoring of code to the parallel processing environment. This implies a
huge effort in development, resulting in significant time and cost, to use parallel processors.
More importantly, the abstractions required for parallel processing make it difficult for a modeler
with subject area expertise to understand the code.

THE INHERENT NATURE OF SYSTEM DECOMPOSITION

 As systems are designed to be more user-friendly and adapt to their environment with
greater effectiveness, they become more complex. To deal with a high level of complexity,
designers must partition systems into modules that operate independently, minimizing the shared
interfaces. If module interfaces are designed for maximum isolation, they incur a minimum
transfer of information. This maximizes the ratio of internal processing to interface processing,
which in turn maximizes their measure of independence. This is the type of software
architecture required for effective use of parallel processing. Given a high degree of module
independence and inherent parallelism, many applications have still failed to achieve a high
degree of efficiency in parallel processor utilization. This is because current software
approaches cloud this level of architecture.

 The two most prominent parallel processing companies in the early 1990s, Kendall
Square Research (KSR) and Thinking Machines Corp. (TMC), failed due to lack of good
software environments for both developing and running applications. There are a number of
reasons that no software environment has yet to crack the problem. We believe that the two most
important reasons are:

 (1) Decomposition of a large software system is an architectural problem, and the
architecture of a system of independent modules is best described graphically (like
hardware) - not using a language;

 (2) Software architectural design methodology and supporting technology have not been
tied to the requirements of efficient scheduling and assignment of processors to processes
during run time.

 After one gains a good understanding of the software side of the parallel processing
problem, it becomes clear that the language environment must be designed to support the
architecture environment as well as the requirements for understandability and independence of
the detailed implementation. This has major implications on scoping the size and controlling the
hierarchies of independent modules. At least as important, the architecture environment must
serve to optimize the scheduling and assignment of processors to processes in the run-time
environment. The VisiSoft solution solves both problems.

Software Survival Page 16 - 7

PERTINENT CONSIDERATIONS

Future survival depends upon the speed with which one can deal with increasing complexity.

THE IMPACT OF SPEED AND COMPLEXITY ON SURVIVAL

 The things we take for granted today would have boggled the minds of people just 100
years ago. Looking back 1000 or 10,000 years is awesome. Which way would any of us prefer
to live? Who is better prepared to survive? The answer to the first question is generally obvious.
The answer to the second requires more consideration.

 The U.S. is learning that there are many faces of survival. The days of firearm versus
bow and arrow are long past. Yet a high speed aircraft with smart missiles may not help
preserve our own infrastructure when attacked by terrorists. The approach to survival is taking
on a different meaning than historic war. The enemy situation is becoming much more complex.
Accurately predicting what an adversary may do depends upon how much time he has to think,
communicate, and take action. The problem of defending the U.S. is being redefined in light of
the increasing need to deal with speed and complexity as we endeavor to survive.

Dealing With Increasing Complexity

 Anyone familiar with the history of mathematics knows the motivations leading to the
progression of numbers. It started with “whole numbers” or integers, and progressed to signed
integers, then to fractions and rational numbers. It continued to real numbers, imaginary and
complex numbers. Each step covered a more complex realm - not by imagination, but by
necessity.

 There is more to this progression than just the increase in complexity. Each of these
extensions is still referred to as a number. And each encompasses the prior. Real numbers are a
subset of complex numbers. More importantly, many of the laws and transformations still apply
as we move up the scale of complexity. Their interpretations are simply extended to be more
general. This allows us to deal with jumps in complexity.

Selecting The Most Convenient Coordinate System

 As we continue to move up the food chain of numbers and mathematics, we can group
numbers into vectors. The position of a body in space can be described by three numbers
depending upon the coordinate system we choose. And we learn in higher levels of mathematics
and physics, particularly in electro-magnetic theory and partial differential equations, that
problems can be solved more easily if we select the right coordinate system. For example, when
a particle moves in a spherical orbit, it is much easier to describe its motion in spherical
coordinates. Cartesian coordinates will work, but it takes longer to solve the problem.

Software Survival Page 16 - 8

 Selection of the most convenient coordinate system is typically taught under the topic of
separation of variables. One learns that the separation principle can be used if the variables
form an independent set. The property of independence can be verified using specified tests.
The concept of choosing the best coordinate system and the property of independence are the
important principles one can apply when dealing with complexity in a constrained time
environment. We will make use of these concepts.

 Einstein introduced the use of tensors to deal with the increasing dimensions of time,
velocity, and acceleration. Control system engineers developed the state vector to account for
the many degrees of freedom required to characterize complex dynamic systems. The state
space framework has been shown to be the most general representation of a dynamic system, see
[4], and [39]. Providing a framework for problem description was not the only benefit of the
state space approach. It also afforded a framework for developing faster solutions to problems
that could run for days on the computers of the time.

FRAMEWORKS FOR REPRESENTING COMPLEX DYNAMIC SYSTEMS

 In a competitive time-constrained environment, time (speed) is the most important factor.
If two sides develop the same capability, the one that gets there first is likely to be the one that
wins. When building tools to help people solve design problems or make complex planning
decisions, time enters into the picture in at least two major ways.

• Development Time - the time it takes to develop the tool

• Solution Time - the time it takes to get a useful solution from the tool

 One can imagine a great tool for solving a problem. But one must answer the question -
can we get it built in time to accomplish our goal? Or, more importantly, will it produce valid
answers fast enough if we get it built? Of course cost and risk are also major factors. However,
time is usually of the essence.

Automating The Representation Process

 As we have indicated in the early chapters, electronic circuit designers developed
automated tools for solving complex systems of nonlinear differential equations required to
represent digital waveforms in the time domain. These Computer-Aided Design (CAD) tools
allowed engineers to describe large networks topologically and write FORTRAN-like equations
describing nonlinear functions. Programming skills became unnecessary. The code needed to
generate and run simulations of very large networks was generated automatically. This afforded
a huge leap in design productivity. It enabled the design of huge complex networks leading to
integrated circuit design.

 CAD system development became a business for many, including the principals of VSI.
Two systems were developed, one for continuous system modeling (e.g., for digital circuit
design), and one using a discrete-time framework (for the design of signal processing systems).
The second used sampled data principles to reduce computation time. An underlying state space
framework supported both products.

Software Survival Page 16 - 9

 For large networks, the number of state variables runs to thousands. Solving worst case
design problems involves multiple optimization runs of thousands of simulations. Each
simulation has to solve the optimal control problem, involving thousands of nonlinear
differential equations. Speed and accuracy are the driving forces in designing these systems. If
it takes a computer days to get a design, only one or two test points are produced in a week - not
very attractive.

Capitalizing Upon General Principals

 State space is used because it provides the most convenient framework for solving any
type of dynamic problem. The general form of the solution holds for any set of independent state
variables. This allows for the development of generalized methods, e.g., optimal sparse matrix
inversion and describing functions, to solve nonlinear problems fast while ensuring algorithm
convergence. The end result is to solve huge problems in minutes. However, this approach
requires formulating problems in a mathematical framework.

Facing Totally New Problems

 Models built using VSI products prior to 1982 were formulated mathematically, i.e.,
using vectors, matrices, and systems of equations. This approach allowed the solution to be
derived automatically and solved very fast. By 1982, this approach was recognized to have
severe limitations when modeling communications or control systems involving algorithmic
decision processes. Clients wanted to describe their problem using more general state concepts,
and be able to write conditional statements within the system of equations. It was determined
that these types of decision processes could be handled using the discrete event approach
originally developed by Gordon in 1961, see [41] and [42].

A MORE GENERALIZED PROBLEM FORMULATION

 In 1982, discrete event simulation was analyzed. The motivation was high because of the
requirement for writing decision algorithms into the models. Users wanted to break up systems
of equations and embed English-like conditions and rules, e.g.,

IF THE MESSAGE_TYPE IS CONTROL, THEN … ,
ELSE IF MESSAGE_TYPE IS DATA, THEN … .

 Additionally, there were complaints about the inability of existing discrete event
simulation products, e.g., GPSS, SIMSCRIPT, and SLAM, to solve our client’s problems. The
major complaints were lack of scalability (inability to deal with increasing complexity) and
excessive simulation run-times. This led to an investigation of the deficiencies of the other
products in the market, as well as an analysis of how to formulate the basis for general solution.

Software Survival Page 16 - 10

 At first it appeared difficult to derive a mathematical framework to support this new
requirement. This caused concern about the ability to justify design decisions without a formal
framework. We appeared to be leaving the world of mathematics. Time steps were determined
by the modeler in terms of scheduled events. This led to the development of a state space
definition of discrete event systems. The concept of a generalized state vector and state space
definition of a GSS model was described in Chapter 5. The differences and likenesses of
mathematical and rule oriented formulations are compared in Simulation Of Complex Systems,
[27].

Facing The Speed Issue

 Because of the excessive running times of competing products (some critical simulations
were taking 5 to 7 days to run a 2 hour scenario), it was determined that if a new product was
developed, it must be able to run on a parallel machine. The experience of the VSI principals in
computer design, parallel processing, and the knowledge of how chips were evolving to support
fast computing methods led to an approach that would take advantage of future hardware
technology.

 As indicated in earlier chapters, parallel processing imposes the requirement that two or
more processes must run concurrently on separate processors. This implies that concurrent
processes must be independent. The property of independence implies that the processes share
no data. This led to the decision to separate data from instructions so the independence property
could be tracked. As previously described, the design of GSS was launched in 1982. It called
for a connectivity matrix to determine what processes shared what data. Then when allocating
processes to processors, the connectivity matrix could be used to determine if a process can run
concurrently with those already running.

Independent Instanced Models - Modeling Made Easy

 The separation of data from instructions led to the ability to produce engineering
drawings of models, where the lines connecting models determine the independence or lack of it.
This allows an architect to visually inspect the drawings and determine the independence of a
model relative to other models. These concepts have led to the independent instanced model as
part of the GSS environment. This allows a modeler to build a single model along physical lines,
just like building a single piece of equipment. This model can then be instanced many times,
automatically, in a simulation. This paradigm makes it easier to develop models on a large
parallel processor than by using current methods on a single processor. This capability has been
implemented as part of prior efforts.

Software Survival Page 16 - 11

OVERVIEW OF THE USER INTERFACE TECHNOLOGY

 When the GSS environment for discrete event simulation was designed, the two major
issues addressed were: (1) the difficulty of building valid models; and (2) the time to run a
realistic scenario. The difficulty in building valid models was due to the complexity of the
software. Run time may have been reduced by parallel processing, but the investment was huge
and risky. To address these issues, the CAD approach was developed that led directly to the
effective use of highly parallel processors. We note that software applications are considered
easier to implement on a parallel computer than discrete event simulations because in the
simulation environment, one must: (1) synchronize each process with the main simulation clock;
and (2) ensure synchronized data coherency to meet validity requirements. From this standpoint,
the software problem is a subset of the simulation problem.

Separation Of Data From Instructions For Efficient Processor Allocation

 In software, separating data from instructions violates the OOP rules. In hardware
design, this paradigm is the norm as described in Chapter 5. Data and instructions are separately
stored and managed on today’s chips. This is an essential software paradigm for effective use of
parallel computers, where one has to allocate processes to processors efficiently. This implies
knowing which processes can run concurrently, which implies that they must be independent.
Independence is effectively determined by whether or not they share data. If allocation is to be
done automatically, the allocation manager must have the information on who shares what data.
The technology described here is built upon this concept. The most significant paradigm shift in
this development environment is the separation of data from instructions.

 The resulting properties of the technology described here provide enormous benefits for
parallel processing software design. First is the ability to represent software graphically, with a
one-to-one mapping from the drawing to the code. Second is that software architectures can be
designed and reviewed from an engineering standpoint to determine module independence.
Third is the resulting connectivity map of what processes share what data. Fourth is what
processes reside inside what modules. If modules are independent, then processes within those
modules are best migrated to the same processor. This information is stored in our run-time as
well as development databases. It is this information that provides our ability to optimize the
allocation of processes to processors to maximize run-time efficiency. These benefits are best
described by an example.

Software Survival Page 16 - 12

A Large Simulation Example

 We will use the Multi-Switch Simulation (MSS), a large scale communications
simulation to describe our CAD facilities. MSS contains nine modules, including circuit, packet,
and ATM switch modules. The ATM switch module, shown in Figure 16-2 along with the
ATM_LINK module, is a hierarchical module containing seven submodules.

AAL

ATMSWICH As of 8/8/02

ATM_SWITCH
ATM_SUBSCRIBER_

INTERFACE

ATM_SWITCHING

ATM_
TRANSCEIVER

ATM_LINK

ATM_
RECEIVER

ATM_
TRANSMITTER

CONVERGENCE_
SUBLAYER

SEG_&_REAS_
SUBLAYER

ATM_
NETWORK_

LAYER

VIRTUAL_CHANNEL_SWITCH

VIRTUAL_PATH_SWITCH

ATM_
SWITCH_
CONTROL PKT_AAL

Figure 16-2. ATM_SWITCH and ATM_LINK modules.

Software Survival Page 16 - 13

 The AAL submodule is also hierarchical, containing the CONVERGENCE_
SUBLAYER and SEG_&_REAS_SUBLAYER modules. The SEG_&_REAS_ SUBLAYER
module, shown in Figure 16-3, is also hierarchical, containing the SR_PROCESSOR and
SR_QUEUE modules. These are each elementary modules because they contain primitive
elements, namely resources (ovals) and processes (rectangles).

 Resources are composed of hierarchical data structures. An example is shown in Figure
16-4. Resources are used to describe the state of a module at any instant of time. These are
shared by the processes that have connect lines drawn to them. Processes are composed of
hierarchical rule structures, e.g., SR_PROCESSOR shown in Figure 16-5 (it shows 7 rules).

 Processes are used to transform modules from state to state. These processes are not
tasks as in a “multi-tasking” operating system (and therefore not UNIX “processes.”) In GSS,
processes that are scheduled are parallel threads. A simulation can run as a task (a UNIX
process). VSE and GSS also provide for intertask control and communications at the task level
so multiple simulations can run and interact as separate tasks.

 We have taken significant departures from existing software concepts to automatically
generate code to use parallel processor resources effectively, without concern by the user. The
first departure is separation of architecture from language. Design of module architectures is
done in the architecture environment of VSE and GSS, not the language environment. In the
architecture environment, the user determines graphically what resources have access to what
processes as shown in the drawing in Figure 16-3. To do this requires the second departure,
namely the separation of data (resources) from instructions (processes). Process independence
can then be determined simply by looking at the lines interconnecting processes and resources
across modules in the architecture, i.e., module independence is determined by the architectural
drawing.

 Discrete event simulation has provided us with a view of software design and parallel
computing that is not afforded in other technologies. First, GSS processes are scheduled - refer
to Figure 16-5 where SR_PROCESSOR is scheduling itself in the first rule. When the MSS
simulation runs, many thousands of processes are in the schedule at any instant of time. Of
these, more than half can be scheduled to run at the same time, e.g., the current time. These are
candidates for running concurrently. Second, we distinguish between software abstractions (that
prevent concurrent processing) and direct representations of the real-world instructions that can
run concurrently.

 For example, the SR_PROCESSOR module makes use of a number of utilities
(connections between a process and a called utility are indicated by circled letters and numbers).
These utilities (green borders), e.g., SR_QUEUE, help to save memory by having a common set
of instructions serve each instance of the switch. Some of the data are reused also, but this is
generally small compared to the data stored by instance - data that can reside separately with
each instance. When memory was expensive, this small memory savings was justified. When
running on a parallel processor, with a large memory model, this major bottleneck is unjustified
and all the circled connections can be removed. This renders the module highly independent and
reduces complexity at the same time!

Software Survival Page 16 - 14

 SR_TO_
SWITCH_
PACKET

 SR_
PROCESSOR

 SR_TO_CS_
PACKET

 INTERRUPT_
CEL_

GENERATION

6 7 8

VBR_
CELL_

WORKSPACE

GENERATE_
VBR_
CELLS

GENERATE_
CBR_
CELLS

CBR_
CELL_

WORKSPACE

ENTER_NET_
REQ_IN_

SR_Q

SR_
PARAMETERS

IINITALIZE_
SR

ENTER_CS_
REG_IN_

SR_Q

SR

SR

SR

SR

6 10 SR

6 7

SR

AD

SR_PROCESSOR

 SR_
QUEUE

 SR_
QUEUE

 SR_
QUEUE_

INTF

SR

SR_QUEUE

SEG_AND_REAS_SUBLAYER

ATMSWICH 8/8/02

Figure 16-3. SEG_&_REAS_SUBLAYER module.

RESOURCE NAME: MESSAGE FORMATS

STANDARD MESSAGE
 1 SYNC CODE CHARACTER 5
 ALIAS VALID CODE VALUE '10101',
 '01010'
 1 TYPE STATUS FORMAT A
 FORMAT B
 1 CONTENT CHARACTER 46

FORMAT A REDEFINES STANDARD MESSAGE
 1 PAD CHARACTER 13
 1 HEADER A
 2 MESSAGE PRIORITY STATUS FLASH
 PRIORITY
 ROUTINE
 2 ORIGIN INDEX
 2 DESTINATION INDEX
 ALIAS BROADCAST VALUE 0
 1 BODY A
 2 BODY LENGTH INTEGER
 1 TRAILER A
 2 MESSAGE NUMBER INTEGER
 2 TIME SENT REAL
 2 TIME RECEIVED REAL
 2 ACKNOWLEDGMENT STATUS RECEIVED
 NOT RECEIVED
 2 LAST SYMBOL CHARACTER 2
 ALIAS TERMINATOR VALUE '\\', '//', '<<','>>'

FORMAT B REDEFINES STANDARD_MESSAGE
 1 PAD CHARACTER 13
 1 HEADER B
 2 SOURCE INDEX
 2 SINK INDEX
 1 BODY B
 2 CONTENTS CHARACTER 42

Figure 16-4. A resource - a hierarchical data structure.

Software Survival Page 16 - 15

PROCESS: SR_PROCESSOR

RESOURCES: SR_TO_CS_PACKET INSTANCES: NODE
 SR_PARAMETERS
 SR_QUEUE_INTF
 SR_TO_SWITCH_PACKET

PKT_SR_PROCESSOR
 EXECUTE GET_SR_MESSAGE
 EXECUTE PROCESS_SR_MESSAGE
 IF QUEUE_STATE IS NOT EMPTY
 SCHEDULE SR_PROCESSOR
 IN PROCESSING_TIME MICROSECONDS USING NODE
 ELSE SET PROCESSOR_STATUS(NODE) TO IDLE.

GET_SR_MESSAGE
 SET SR_QUEUE_INTF REQUEST TO DEPART
 CALL SR_QUEUE USING NODE

PROCESS_SR_MESSAGE
 IF PACKET_TYPE IS A CELL
 EXECUTE PROCESS_CELL
 ELSE IF PACKET_TYPE IS A REQUEST
 EXECUTE PROCESS_REQUEST
 ELSE EXECUTE INVALID_PACKET_TYPE.

PROCESS_CELL
 MOVE SR_QUEUE_INTF MESSAGE TO SR_TO_SWITCH_PACKET
 IF SR_TO_SWITCH_PACKET DESTINATION IS EQUAL TO NODE
 EXECUTE CHECK_PAYLOAD_DEST
 ELSE IF SR_TO_SWITCH_PACKET SOURCE IS EQUAL TO NODE
 EXECUTE CHECK_PAYLOAD_SOURCE
 ELSE EXECUTE INCORRECT_NODE.

CHECK_PAYLOAD_SOURCE
 IF PAYLOAD_TYPE IS USER_VOICE
 EXECUTE PROCESS_CELL_VOICE_SRC
 ELSE IF PAYLOAD_TYPE IS USER_DATA
 EXECUTE PROCESS_CELL_DATA_SRC.

CHECK_PAYLOAD_DEST
 IF PAYLOAD_TYPE IS USR_VOICE
 EXECUTE PROCESS_CELL_VOICE_DEST
 ELSE IF PAYLOAD_TYPE IS USER_DATA
 EXECUTE PROCESS_CELL_DATA_DEST.

PROCESS_CELL_DATA_SRC
 EXECUTE GET_MESSAGE_INFO_CELL
 INCREMENT MESSAGE CELLS_TRANSMITTED
 EXECUTE UPDATE_MESSAGE_INFO
 IF MESSAGE CELLS_TRANSMITTED IS EQUAL TO MESSAGE CELLS_TO_TRANSMIT
 EXECUTE GET_NEXT_MESSAGE.
 CALL ENTER_USER_REQ_IN_VC_Q USING NODE

 ... (This process is incomplete - 2 additional pages are not shown!)

Figure 16-5. A process - a hierarchical set of rules.

Software Survival Page 16 - 16

 To insure independence of modules, a set of architectural design rules has been
developed that can be enforced automatically as the designer builds modules graphically. This
involves viewing a module as an N-port module as used in electronic hardware design. By
limiting the number of lines (wires) at a port to two, the independence of modules is ensured.
Note that we have not considered any aspects of coding, which in VSE or GSS is confined to the
language environment. We have only analyzed the module architecture - graphically! These
design rules assure ease of module understandability and independence, and therefore real reuse.
They are the major reasons we have been able to build and validate the world’s largest
simulations at very low cost. This same technology is ideally suited to make effective use of
highly scalable parallel processor computers.

 Another departure from typical software is the integrated management environment of
VSE and GSS that completely tracks the architecture behind the scenes and contains the
databases to determine both spatial and temporal independence at run-time. Modules are tracked
through all of the hierarchical levels needed by the designer to control design complexity. Every
resource and process is tracked relative to what processes have access to what resources within
multiple module instances. This database can be used to adaptively manage the allocation of
parallel processor resources during run-time based upon knowledge of module instance
independence at any level in the hierarchy. Load balancing can be achieved concurrently
through selected instance migration. This critical information is not available anywhere else!

 We will now relate the number of module instances to opportunities for parallelism. As
the top level modules, e.g., a switch, take on higher degrees of complexity, they become
significant opportunities for highly efficient parallel processing. If the switch is modeled along
physical lines, its physical counterpart operates concurrently with its neighbors. Therefore,
independent module instances in a simulation can also run concurrently in a parallel processing
environment. Such instances are not limited to simulation, but exist frequently in real-time
control and communication systems.

 Based upon this concept, our hypothesis is as follows: As the number of instances of a
complex independent module increases, the number of parallel processors that can be used
effectively increases proportionately, just due to the independent module instances. Similar
opportunities for effective use of processors can also be obtained within a top level module
instance, down to the process level. This is because of the hierarchical design and resulting
scope of a VSE or GSS process.

 For example, the ATM_TRANSCEIVER within the ATM_SWITCH in Figure 16-2 can
have 20 instances (one for each port), all tied to the same instance of a switch. A scenario of 100
switch instances can invoke a total of 2000 ATM_TRANSCEIVERs. We can envision many
instances of subscribers as well as other packet and circuit switches running concurrently,
interfacing with each other through links or gateways. Each of these instances can run
concurrently since almost all of the processes and resources are interior to the instance and
therefore independent of the other instances.

Software Survival Page 16 - 17

Quantifying The Importance Of Software Architecture.

 To better understand this typical architectural phenomenon, consider the modules in
Figure 16-6.

MODULE_K

SUBSCRIBER

SWITCH

INSTRUMENTATION

INSTANCE_
OUTPUT_

INTERF ACE

INSTANCE_
INPUT

INSTANCE_
OUTPUT

INSTANCE_
INPUT_

INT ERFACE

LINK

MODULE_3

HOST_
TRAFFIC_

GENERATOR
SWITCH

INSTRUMENTATION

INSTANCE_
OUTPUT _

INTERFACE

INSTANCE_
INPUT

INSTANCE_
OUTPUT

INSTANCE_
INPUT_

INTERFACE

LINK

MODULE_2

HOST_
TRAFFIC_

GENERATOR
SWITCH

INSTRUMENTATION

INST ANCE_
OUTPUT_

INT ERFACE

INST ANCE_
INPUT

INSTANCE_
OUTPUT

INSTANCE_
INPUT_

INTERFACE

LINK

IN
TE

RF
AC

E
CO

NN
EC

TI
O

NS

MODULE_1

RUNTIME 8/8/02

SWITCH

INSTRUMENTATION

INSTANCE_
OUTPUT_

INTERF ACE

INSTANCE_
INPUT

INSTANCE_
OUTPUT

INSTANCE_
INPUT_

INTERFACE

LINKSUBSCRIBER

Figure 16-6. Independent instanced modules connected by an interface.

 The top level modules in Figure 16-6 are drawn alike for simplicity, but in fact may be
different types or instances of the same type. As an example, we will consider an MSS
simulation with 100 circuit switches, 50 packet switches, and 50 ATM switches. Consider that
each instance of each switch is part of a single module along with its corresponding subscriber
submodule instance that generates and receives voice calls and data messages and files, and its
instrumentation submodule that takes measures of traffic. These large submodules are the largest
part of each module. A link interface submodule also exists connecting each top level module.
Except for the two processes connected from each module to the interface, all other processes in
each module are independent of those in any other module, i.e., they share no other resources
between modules. This is done by design - of the software architecture.

Software Survival Page 16 - 18

OVERVIEW OF THE RUN-TIME TECHNOLOGY

 Significant work has been done by VSI on prior projects toward development of the
required run-time technology. This work covers the use of the module architecture knowledge
described above as well as knowledge of the independence of individual processes at the module
boundaries to determine what processes can run concurrently. This work includes development
of the protocols required to ensure data coherency of resources shared across module boundaries
and used by processes in different processors. It includes the synchronization of scheduled
processes running on separate processors in a simulation. It provides for controlled variations in
synchronization that ensure validity of results of a simulation - something not provided by other
approaches, e.g., the Time-Warped Operating System, and its derivatives (e.g., SPEEDES). It
provides for optimal ordering and scheduling of p-threads.

 Figure 16-7 below provides a top level view of the design for the VSE/GSS run-time
environment for an MPP system. In addition to the Process Scheduler, there is a Processor
Allocator to allocate processes scheduled at the current time (or within a pre-defined ΔTmax in a
simulation) to the available processors. This design uses standard OS level calls to assign
parallel threads (p-threads) to processors. This provides the ability to allocate specific processes
to specific processors, including the ability to reallocate processes to processors for dynamic load
balancing if necessary.

PROCESSOR
ALLOCATOR

PROCESS
SCHEDULER

PROCESS_1

PROCESS_2

PROCESS_N

TASK or SIMULATION

VSE / GSS RUN-TIME ENVIRONMENT

RUNTIME 8/12/02

OPERATING
SYSTEM

Figure 16-7. Connection between the VSE process scheduler and the processor allocator.

 There are additional mechanics of this environment to be characterized, e.g., the nature of
the dynamic changes to the schedule versus the state at time T. This affects the algorithm design
for optimal ordering in minimal time. Instanced modules create special submatrices of the
connectivity matrix that are independent. These become candidates for quasi-independent queue
management, potentially in separate processors. VSI’s experience in discrete event simulation
for the past 20 years provides significant knowledge of solutions for these types of problems. In
addition, processor load balancing must be considered in more detail, but this has been the
subject of much prior research, both at VSI and elsewhere. Finally, marrying this new
technology to hardware is an architectural design issue. VSI has worked with many hardware
vendors in the past, and is prepared to work with more in the future.

Software Survival Page 16 - 19

Summarizing The Importance Of The Software Environment

 Given applications with a high degree of inherent parallelism and very efficient parallel
computers, their effective use comes down to three major factors. First is ensuring that full
advantage can be taken of the inherent application parallelism - a software design problem.
Second is balancing the load - a run-time software problem. By separating data from instructions
and using the visual development environment that PSI has already developed, the software
architectural knowledge exists to do both well. The third and most important factor is making it
easy for the subject area experts to describe their problem, without having to twist it into a
special computer language. VSI’s success in CAD tools for building very complex discrete
event simulations and software tools has already demonstrated the ease with which this is done.
This has built confidence in the ability to bring large scale parallel processing power into the
mainstream of computing via ease of use - the winning “WinTel” approach.

Software Survival Page 16 - 20

Software Survival Page 17 - 1

Chapter 17. MANAGING SOFTWARE LIFE CYCLES

 This chapter addresses the software life cycle management problem from a perspective of
the future software industry, and how competing companies must manage in providing both
tailored systems and software packages to their customers. We consider both cases as producing
products that require support for new releases.

 There are many texts and papers on the subject of software management. They generally
describe the life cycle in the modern context, as we have in Chapter 5, implying a continuing
cycle or incremental approach (an early version was prescribed in 1984, [24]). They also
provide ample guidance as well as policies, procedures and standards. We will cover neither
step-by-step management methods nor equivalent details here. Instead, we indicate the types of
approaches one must consider when managing a software product in a rapidly changing
competitive environment, and how one can adapt management approaches to the new technology
paradigm presented here.

BOUNDING THE ISSUES

 Depending upon where one sits in an organization, there will be a multiplicity of views of
the problem of managing software life cycles. One may be involved in an in-house project for a
small system that will live a relatively short life and require just a few programmers.
Alternatively, one may be a senior executive in a large software company considering an
investment involving hundreds of people to develop and support a new product to be sold
internationally. Clearly, there are a large number of project sizes in between these two extremes.
This chapter is aimed at the mid to upper part of this scale and beyond.

Software Survival Page 17 - 2

Quality Versus Productivity

 The Capability Maturity Model (CMM) of Carnegie Mellon’s Software Engineering
Institute (SEI) is aimed at improving software quality, particularly in the eyes of U.S.
Government buyers, see [85]. It is known that this approach may cause productivity to suffer as
one works to increase quality as measured by the CMM. This is in contrast with the highly
acclaimed and proven quality control approaches as described by well known experts, e.g.,
W. Edwards Deming, see [34], and Joeseph M. Juran, see [54].

 Although the SEI-CMM approach claims to be compatible with the Deming/Juran
approaches, it is basically different. If one follows the Deming/Juran appoach, productivity and
quality should rise together. Also, in the Deming/Juran view, quality does not emanate from
management direction or inspection; it comes from design. To do a proper design requires many
of the same functions, but they are driven from a different direction, one that fosters productivity
improvement. For another view on the advantages and shortfalls of CMM, the reader is referred
to Bach, [6].

 Our objective is to improve productivity through technology innovation while
maintaining - if not improving - quality. Our definition of quality is represented in [23] and [24].
A compatible definition of productivity is provided in [1]. More specifically, by using the new
technology described in prior chapters, we have witnessed great reductions in the required
intensity of management oversight as well as in the density of programmer activity to achieve
similar if not better quality outcomes. This has led to much higher measures of relative
productivity.

Management Versus Technology

 In a rapidly changing competitive environment, management’s most important task is to
instill the drive for innovation, to improve the quality-productivity combination. When dealing
with innovation to garner real improvements, managers must make cautious use of conventional
wisdom. As stated by Christensen, [29], this may imply not listening to one’s big customers.
This is because innovation changes the framework for measuring what’s best.

 A good example of this phenomenon relates back to software companies that specialized
in accounting packages in the early 1980s. These companies typically worked with their
customers in an attempt to come up with generalized packaged systems for accountants to
automate their bookkeeping. Then a little software company with no such clients - and hardly
any management - came up with a “spreadsheet” (VisiCalc). It wasn’t long before accountants
started building their own spreadsheets, and most of the software companies building accounting
packages went out of that business.

 Good management is hard requirement. But a great new technology can make an order
of magnitude of difference - independent of management. One could argue that really good
management is always looking at new technologies, particularly those being developed by
others.

Software Survival Page 17 - 3

Programming Language Versus Software Environment

 Programmers think in terms of languages. Even Visual Studio and Visual C++ are
language oriented. This is because, with the exception of VisiSoft, there is no way to build
architectures for software. Imagine architects of large buildings being told that their use of
engineering drawings is a legacy approach, and is best replaced by writing in a language, e.g.,
XML, that can draw figures. This is effectively what we have been doing in software. Having
used VisiSoft to build large software systems, this is not an absurd comparison. If one has not
used this new technology, it is hard to relate to. But having used it, it is hard to imagine not
using engineering drawings, and instead, hiding the architecture in code.

 But there is much more to a software environment than the drawings and the code. One
must keep track of change requests, patches, changed modules headed for the next release,
changed modules that did not make the release, test drivers, regression test sets, etc. More
importantly, there is a large body of technology that can be applied to all aspects of the software
life cycle. The more we can integrate these facilities into an overall environment, the more
teamwork becomes important, and the more incentive there is to make that environment better
for everyone. This is a management challenge that will be met by good managers.

Hierarchical Software Teams

 In 1972, Fred Baker wrote his famous paper on Chief Programmer Teams, [5]. Since
Baker worked on the OS-360 project, it became clear that many authors citing his work did not
understand the context. One of his points was the limit on the span of control of a single
manager. On a project like OS-360, there were a large number of teams, organized
hierarchically. These teams were of different types, depending upon what they were doing.
Some teams did not actually build software; they built documentation or performed testing.
What Baker emphasized were the different skill sets needed to support different teams, and the
manageable sizes of the skilled elements.

 Borrowing again from the military, thousands of people must be organized to contribute
to the cause. One person cannot manage 1000 people. Knowing this, Baker focused on the
different types of organizations needed at the bottom layer and the commonality of skill sets
required to fulfill the needs of particular types of teams.

Building Large Software Organizations That Are Effective

 To control a large software organization, one must first understand the overall software
architecture, and how it must be supported with documentation and testing. This leads to an
organizational architecture that gets mapped into the software architecture, with specific
functions to be performed by each organizational module. This implies that one must have a
software architecture before one can map out the details of an organization to support it. When
building large commercial buildings, the architects are hired first. Once they have developed the
drawings and specifications, the job is put out for bid. General contractors pour over the
drawings and specifications, and map their subcontractors into the architecture. Why can’t we
do that with software? (You should have guessed - we do not design architectures!)

Software Survival Page 17 - 4

 In a large organization, higher level managers must deal with lower level managers.
Flattening the organization is not nearly as important as having managers who understand what’s
needed - and what is really being done - below them. If managers do not understand what their
subordinates should be doing, and what they are really doing, they cannot manage effectively.
This gets worse as an organization is flattened. This points to a major problem in the software
industry - finding managers that really understand what is needed and what’s going on below.
This is because programmers generally like to work on their own and do not aspire to be
managers. This is a significant problem to be reckoned with, but one that can be solved through
selection and training. This is another management challenge that will be met by good
managers.

Policies, Procedures And Standards

 American football teams use plays. Every player must learn the playbook. On the field,
the quarterback calls the plays, and everyone carries out their assignments from the playbook. If
they don’t, everyone knows who screwed up. In the military, the generals layout the strategy,
and hand it down to the colonels who hand it down to the majors, captains, etc., until it gets
down to the sergeants who tell the individual soldiers what to do. When the starting gun is fired,
everyone moves out. Neither the football field nor the battlefield has time for bureaucratic
decisions. People must make fast decisions using the playbook in a chaotic environment.
Programmers generally have much more time. But we still need policies, procedures, and
standards, and they must be easily understood and followed. In all cases, managers must have
control of the unfolding plan. If someone does not want to play by the book, they must be
replaced - immediately! (And we should not have to go through a bureaucracy to remove
someone from the team.)

 There are many examples of policies, procedures and standards available for software.
To highlight the most important factors relative to the new technology paradigm, we offer the
following. In general, functional specifications must be produced first. Depending upon the
application, this should include a well written user’s manual. The functional specifications
should be followed by a set of architectural drawings and more detailed software specifications.
If R&D efforts are needed, e.g., to see if a particular module can be written to meet a stringent
time requirement, then one may write and test some code in the laboratory. Otherwise, the
production programmers are not needed until the functional specifications, software architecture
and corresponding specifications, e.g., module interfaces, are completed.

 Testing of hierarchical modules requires procedures and standards that serve multiple
layers in the hierarchy. These must be mapped into the overall software architecture. Testing is
an area where procedures and standards must be applied from a practical standpoint. One failure
at the bottom of the hierarchy can cause many failures up the chain (as everyone looks for a
different bug). Building and managing regression tests must be spelled out clearly so that this
important function is performed properly. This is particularly true for utility and library
modules.

Software Survival Page 17 - 5

ARCHITECTURAL IMPACTS

 A good architecture is one whose modules are relatively independent. This makes it
easier for different people or teams to develop different modules. Thus, assigning the modules to
different teams is a critical part of the management process. Modules delineate the boundaries of
resources and processes that contain the code. If an architecture is done down to the resource
and process level, then the only thing left to be done is to write the code.

 In many cases, after coding has started and more is learned about the modules, the
architecture must be changed. As in commercial construction projects, architecture affects many
aspects of a design, and should not be changed without the review of an architect. So every team
must have an architect available to review and make such changes. This provides an
independent assessment of such change requests and implementation problems by someone more
capable of making the right decision.

 In a hierarchical management framework, the architect overseeing the module may
require approval from a higher level architect who is concerned with the effects that the module
being changed may have on other modules being built by other teams. This should all be
apparent from the drawings. Now, imagine that this is all being done without any architecture or
drawings. Most of the information needed for these important decisions, including the basic
decomposition of the software design, will be hidden in the code.

 As a project progresses, the need for utilities and library modules will arise if not
provided for in the initial architectural design. In fact, it is common to start combining modules
into libraries to minimize testing and to provide well tested modules that can be depended upon
when debugging complex algorithms. This can dramatically accelerate the fault isolation
process.

 The other side of the library picture is that a sufficient number of teams must be assigned
to manage the library modules. Experience has shown that, in a highly effective software
organization, the number of people building and supporting libraries may be higher than those
building tailored application modules. Understanding the importance of investing in libraries
requires a long term business management perspective.

LOOKING BACK

 Once one has managed the development and support of large software products using the
VisiSoft technology, it is hard to envision having it taken away. This is because of the control
one has over problem prioritization, resource utilization, and most important the speed with
which high quality software is put into a production environment. Being able to look at an
architecture from the top, and then being able to drill down to the bottom and look at the code,
gives one the ability to find and fix problems very fast. More importantly, one can easily
perceive problems before they occur, see how direction must be changed, and determine how
those changes may affect the rest of the system. There is no doubt that the real winners with this
technology will be the software product managers!

Software Survival Page 17 - 6

VSE BOOK PAGE R - 1

REFERENCES

1. Anselmo, Donald and Henry Ledgard, Measuring Productivity in The Software Industry,

Communications of the ACM, Vol. 46. No.11, Nov 2003.

2. Anselmo, Donald, Tools and Software Productivity, Software Summit, Washington, D.C.,
May 2004.

3. Anselmo, Donald, History of the C Programming Language, Draft, Phoenix, AZ.,
April 2004.

4. Athans, M. and Falb, P.L., Optimal Control, McGraw-Hill, New York, 1966.

5. Baker, F.T., "Chief Programmer Team Management of Production Programming," IBM
Systems Journal, No 1, 1972.

6. Bach, James, "The Immaturity of CMM," American Programmer, Sept., 1994.

7. Bach, Maurice J., The Design of the UNIX Operating System, Prentice-Hall, Englewood
Cliffs, NJ, 1986.

8. Bell, C. G., "Ultracomputers A Teraflop Before Its Time," Communications of the ACM,
August 1992, Vol.35, No 8.

9. Booch, Grady, Software Solutions - Developing the Future, Communications of the ACM,
Vol. 44. No.3, March 2001.

10. Bowers, J.C., and Sedore, S.R., SCEPTRE: A Computer Program for Circuit and Systems
Analysis, Prentice Hall, Englewood Cliffs, NJ, 1971.

11. Boehm, Barry, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981.

12. Brooks, Fred, The Mythical Man-Month, Addison-Wesley, Reading, MA, 1975.

13. Brooks, Fred, “No Silver Bullets,” IEEE Computer, April 1987.

14. The Unix Timesharing System, BSTJ, Vol. 57 No.6, July- August 1978.

15. The Unix System, ATT/BTL Technical Journal, Vol. 63 No.8, Oct. 1984.

16. "Is the Computer Business Maturing?", Business Week Cover Story, McGraw-Hill,
March 6, 1989.

17. "Can the U.S. Stay Ahead in Software?", Special Software Report, Business Week,
McGraw-Hill, March 11, 1991.

18. "PROGNOSIS '95", Business Week, McGraw-Hill, January 9, 1995, pp 72-80.

19. "Software Made Simple", Business Week Cover Story, McGraw-Hill, September 30, 1991,
pp 92-100.

VSE BOOK PAGE R - 2

20. Wildstrom, Stephen H., "Price Wars Power Up Quality", Business Week, Technology &
You, McGraw-Hill, September 18, 1995, pp26.

21. Industry Outlook, Business Week, McGraw-Hill, January 12, 2004, pp 92-100.

22. Cave, W., “The Constrained Optimal Design System,” Proceedings IEEE WESCON,
San Francisco, CA, 1971.

23. Cave, W., and A. Salisbury, "Controlling the Software Life Cycle - The Project
Management Task," IEEE Transactions on Software Engineering. Vol SE-4, No 4,
July, 1978, pp 326-334.

24. Cave, W., and G. Maymon, Software Life Cycle Management - The Incremental Method,
Macmillan, New York, NY, 1984.

25. Cave, W., Software Survivors, Software Developer & Publisher, W. Cave, July/Aug1996.

26. Cave, W., et.al, " The Effects of Parallel Processing Architectures on Discrete Event
Simulation," Proceedings: SPIE Defense & Security Symposium, Mar/Apr 2005,
Orlando, FL.

27. Cave, W.C., Simulation of Complex Systems, Prediction Systems, Inc., Spring Lake, NJ,
June 2001.

28. Camford, Richard, "Software Engineering?", IEEE Spectrum, January, 1995, pp 62-65.

29. Christensen, Clayton M., “The Innovator’s Dilemma,” Harvard Business School Press,
Cambridge, MA, 1997.

30. Constantine, Larry, “Back to the Future,” Communications of the ACM, Vol 44, No. 3,
March, 2001.

31. Canter, Sheryl, “One-Box Development Systems,” Applications Development, PC
Magazine, July, 1992.

32. Cusumano, Michael A., “What Road Ahead for Microsoft and Windows?,”
Communications of the ACM, July 2006, pg 21-23.

33. Daconta, Michael C., C++ Pointers and Dynamic Memory Management, John Wiley &
Sons, NY, 1995.

34. Deming, W. Edwards, Out of the Crisis, MIT CASE, Cambridge, MA, 1992.

35. DeMarco, Tom, Controlling Software Projects, Yourdon Press/Prentice Hall, Englewood
Cliffs, NJ, 1982.

36. DeMarco, T and T. Lister, Peopleware, Dorset House, New York, NY, 1987.

37. Ferguson, Steve, The History of Computer Programming Languages,
http://www.princeton.edu/~ferguson/adw/programming_languages.shtml

VSE BOOK PAGE R - 3

38. Fitzsimmons, A., and T. Love, "A Review and Evaluation of Software Science," ACM
Computing Surveys 10, No. 1, March 1978, pp 3-18.

39. Gelb, A., Editor, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.

40. Gilder, George, Microcosm, Simon and Shuster, New York, NY, 1989

41. Gordon, G., A General Purpose Systems Simulation Program, Proc. EJCC, Washington,
D.C., pp 87-104., MacMillan Publishing Co., New York, 1961.

42. Gordon, G., The Application of GPSS V to Discrete System Simulation, Prentice Hall,
Englewood Cliffs, NJ, 1961.

43. Gordon, J., System Simulation, Prentice-Hall, Englewood Cliffs, NJ, 1978.

44. Groth, R., Is the Software Industry’s Productivity Declining?, IEEE Software,
Nov/Dec 2004.

45. GSS User's Reference Manual, Version 10.4, Visual Software International, Spring Lake,
NJ, 2005.

46. Guth, Robert A., “Battling Google, Microsoft Changes How It Builds Software,” The Wall
Street Journal, Sept 23, 2005, page 1, column 5.

47. Hactel, G.D. and Roher, R.A., Techniques For The Optimal Design And Synthesis Of
Switching Circuits, Proceedings of the IEEE Special Issue on CAD, Nov 1967, pp 1864.

48. Hactel, G.D. et al, The Sparse Tableau Approach To Network Analysis And Design, IEEE
Transactions on Circuit Theory, Jan 1971, pp 101.

49. Hafner, Eric, Theory and Design of Oscillators, Proceedings of the IEEE, New York, NY, in
two issues, 1977

50. "DILBERT WOULD RELATE," Managers Bulletin Board, INFOWORLD,
February 6, 1995, pp 62.

51. "Calling all COBOL users," INFORM, Digital Equipment Corp., Sept./Oct. 1995, pp 1.

52. Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality, McGraw
Hill, New York, NY, 1991.

53. Jones, Capers, “Evaluating International Software Productivity Levels,” Version 3.0,
Software Productivity Research, Inc., Burlington, MA, July, 1991.

54. Juran, Joseph M., “Juran’s Quality Handbook,” Fifth Ed., McGraw-Hill, 1999.

55. Yasushi Kambayashi and Henry F. Ledgard, “The Separation Principle - A Programming
Paradigm” IEEE Software, March/April 2004

56. Kernighan, B.W., and D.M. Ritchie, The C PROGRAMMING LANGUAGE, Prentice Hall,
Englewood Cliffs, NJ, 1973.

VSE BOOK PAGE R - 4

57. Kuhn, Thomas, The Structure of Scientific Revolutions, The University of Chicago Press,
Chicago, IL, 1970.

58. Dr. Anita J. La Salle, Software Industry and Economic Security, Software Industry
Workshop, April 27, 2000.

59. Ledgard, H., et al, "The Natural Language of Interactive Systems," CACM No. 10,
October 1980, pp 556-563.

60. Henry F. Ledgard, The Emperor with No Clothes, Communications of the ACM, Oct 2000.

61. Henry F. Ledgard, The State of the Software Industry, Technical Report, University of
Toledo, July 2007.

62. Levy, Leon, Taming the Tiger: Software Enginering and Software Economics, Springer-
Verlag, New York, NY, 1987.

63. Mahoney, Michael S. The Unix Oral History Project,
http://www.princeton.edu/~mike/expotape.htm

64. Maslo, R. and W.C. Cave, A New Approach to Development and Support of Real-Time
Control Systems, Proceedings, 7th Annual GSS User’s Conference, Prediction Systems,
Inc., Spring Lake, NJ, June 1994.

65. Marcotty, Michael, Software Implementation, Prentice Hall, New York, NY, 1991.

66. Mills, H.D., Mathematical Foundations of Structured Programming, Technical Report
FSC 72-6012, IBM Federal Systems Division, 1972.

67. Mitchell, R., "In Supercomputing, Superconfusion,” Business Week, pps 89-90,
March, 1993.

68. Netizens: An Anthology, Chap 9, On the Early History and Impact of Unix - Tools to Build
the Tools for a New Millennium, http://www.columbia.edu/~rh120/ch106.x09

69. Parnas, D., "Education for Computer Professionals," IEEE Computer, January 1990,
pp 17-22.

70. Patterson, D., Bell, G., et al, "Massively Parallel Uproar,” Upside, pps 88-97, March, 1992.

71. Perkins, T., and R. Kalgaard, "Inside Upside," Upside Magazine, September 1991.

72. Pfleeger, S. L., "Viewpoint: Software Engineering Needs to Mature", IEEE Spectrum,
January, 1995, pp 64.

73. A Tale of Three Disciplines and a Revolution, Jesse H. Poore, IEEE Computer Society,
Jan 2004.

VSE BOOK PAGE R - 5

74. Visual Software Development For Parallel Machines, Final Report, US Army CECOM
 Contract DAAB07-97-C-H501, Prediction Systems, Inc., Spring Lake, March, 1997.

75. Multi-Computer Version of GSS, Final Report, DARPA MHPCC BAA Consortium,
 Prediction Systems, Inc., Spring Lake, NJ, Sept. 1998.

76. High Efficiency, Scalable, Parallel Processing, DARPA Contract SF022-035 Final Report,
Prediction Systems, Inc., Spring Lake, NJ, June 2003.

77. Ranum, Marcus J., SECURITY - The root of the problem, ACM QUEUE, June 2004.

78. Development of the C Language, Second History of Programming Conf., 1993,
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

79. VisiSoft General Library - Software Description Document, Visual Software International,
Inc., Spring Lake, NJ, March 26, 2011.

80. Rose, F., and R. Turner, "A Jungle Out There", Front Page Article, The Wall Street Journal,
January 23, 1995.

81. Rosen, J.P., "What Orientation Should Ada Objects Take?" CACM, Vol 35, No 11,
November 1992, pp 71-76.

82. RTG User's Reference Manual, Version 4.2, Prediction Systems, Inc., Spring Lake, NJ,
1994.

83. Rubin, K.S., "Reuse in software Engineering: An Object Oriented Perspective,"
Proceedings of IEEE COMPCON, Spring, 1990.

84. Schweppe, F., Uncertain Dynamic Systems, Prentice Hall, Englewood Cliffs, NJ, 1978.

85. Carnegie Mellon University - Software Engineering Institute (SEI) - Capability Maturity
Model (CMM) <www.sei.cmu.edu/cmm>.

86. "Chaos, Charting the Seas of Information Technology," The Standish Group International
Inc. Report, Dennis, MA, 1995.

87. "Latest Standish Group CHAOS Report Shows Project Success Rates Have Improved by
50%," Press Release, The Standish Group International Inc., West Yarmouth, MA, 2003.
http://www.standishgroup.com/press/article.php?id=2

88. "Standish: Project Success Rates Improved Over 10 Years” Software Magazine, January
2004. http://www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish

89. A Description of the Standard File Interface, Version 2, Prediction Systems, Inc., Spring
Lake, NJ, 1995.

90. Sherr, A.L., "Developing and Testing a Large Programming System," In Program Test
Methods, W.C. Hetzel, Editor, Prentice-Hall, Englewood Cliffs, NJ, 1972.

91. Shore, David, "Computer Technology Stands Poised for Substantial Leap," Signal,
February 1993, pp 35-37.

VSE BOOK PAGE R - 6

92. Sitner, Jerry, "Viewpoint - How Much Longer," Mainframe Journal, July 1990, pp 120.

93. Singleton, R.C., "An Efficient Algorithm for Sorting with Minimum Storage," CACM,
Vol 12, No 3, March 1969, pp 185-187.

94. Strassmann, Paul, "From a Craft to an Industry," Ada Symposium, George Mason
University, 1992.

95. Stroustrup, B., "What is Object-Oriented Programming?" IEEE Software, May 1988,
pp 10-20

96. Stroustrup: What is Object-Oriented Programming? (1991 revised version). Proc. 1st
European Software Festival. February, 1991 - public.research.att.com/~bs/whatis.pdf

97. "Musings on the Millennium," Feature Editorial, Upside Magazine, October 1994.

98. van der Linden, P, Expert C Programming - Deep C Secrets, SunSoft Press - Prentice Hall,
Englewood Cliffs, NJ, 1994.

99. VisiSoft GENERAL Library & RTG_DRAW Library, Software Description Document,
Visual Software International, Spring Lake, NJ, 2006.

100. VSE User's Reference Manual, Version 10.4, Visual Software International, Spring Lake,
NJ, 2005.

101. Weinberg, G., An Introduction to General Systems Thinking, John Wiley & Sons, NY,
1975.

102. Wilbur, M., Managing Software Reliability: The Paradigmatic Approach, North Holland,
New York, NY, 1981.

103. Yourdon, E, Decline & Fall of the American Programmer, Yourdon Press - Prentice Hall,
Englewood Cliffs, NJ 1993.

104. Zadeh, L.A. and Desoer, C.A., Linear System Theory: The State Space Approach,
McGraw-Hill, NY 1963.

105. Zuniga, Gilberto, Concepts for the Implementation of an Air Defense Model Base,
Proceedings of the 55th Military Operations Research Symposium, May 1987

The technology described in this book is a revelation in software. It provides the
engineering discipline needed to improve quality, productivity, and run-time speed,
while maintaining tight control over extremely large complex software systems.
It describes a sound scientific basis for improving these measures. It explains the theory
and application of a new approach to building software, particularly when using multiple
processors to speed up run times. If you want to know where the software field is headed
in the next three decades, read this book. It is the most significant innovation in software
since the compiler. Although it takes an engineering background to understand the hard
science underlying the concepts, use of the CAD system it describes can be learned at the
high school level as well as by subject area experts who want to build their own software.

Henry Ledgard graduated Magna Cum Laude from Tufts University in 1964. He received the
M.S. & Ph.D. degrees in Electrical Engineering from the Massachusetts Institute of Technology
in 1969. Starting as a Visiting Fellow at Oxford University in 1969, he went on to the Computer
Science department at The Johns Hopkins University for two years, and then to the University of
Massachusetts at Amherst for five years. In 1977, he departed from the academic world to be a
member of the Honeywell Design Team for the U.S. DoD Common Language Effort (Ada).
He followed this with consultancies at commercial companies, including DEC, Alsys, Inc., and
Philips Electronics. In 1989, he returned to the academic world as Professor of Electrical
Engineering and Computer Science at the University of Toledo, where his specialties are
Software Engineering, Object-Oriented Programming, Programming Languages, and Human
Computer Interaction. Henry is internationally known as an editor for book companies and
journals, as well as a writer of many well known books and articles on software languages.

Software Engineering

Bill Cave started his career in computers in 1958 at Penn State University, writing computer
programs in 1s and 0s on a computer designed and built by the EE department. Receiving the
BSEE in 1960, he worked in computer design while getting the MSEE (1963) at night from NYU.
Specializing in CAD tools for circuit design, he received a graduate fellowship at Brooklyn Polytech
in 1965, and did further graduate studies at Stevens Institute of Technology. Bill started his first CAD
company in 1967, providing software for commercial use. In 1974, he founded Prediction Systems, Inc.
(PSI) where he remains Chairman of the Board. PSI has an international reputation for building some
of the worlds largest simulations and planning tools. In 2004, PSI spun off Visual Software
International (VSI), with its tools for building large scale software and simulation systems. These tools
are provided to clients as VisiSoft. Bill is an internationally recognized expert in modeling, simulation,
and software, having published many articles and books, and lectured in Europe, Australia, and China
as well as the U.S. on approaches to building complex software and simulation systems.

IETC Publications, Spring Lake, NJ 07762

About the authors

	A_FrontCover
	A_TOC_09_28_11
	Ch01 _ Part 1
	Ch01 - SurvivingCompetion_09_28_11
	Ch02 - SoftwareProductivity _09_28_11
	Ch03 - HistoryOfProgramming_09_28_11
	Ch04 - MoreRecentHistory_09_28_11
	Ch05 - Objectives_of_SW_Env_09_28_11
	Ch06 _ Part 2
	Ch06 - EvolutionOfNewTechnology_09_28_11
	Ch07 - OverviewOfVisiSoft_03_13_13
	Ch08 - SoftwareArchitecture_10_03_11
	Ch09 - ArchitechuralDesign_09_28_11
	Ch10 - LanguageConcepts_9_28_11
	Ch11 - DataStructures_09_28_11
	Ch12 - RuleStructures _09_28_11
	Ch13 - ControlSpec_09_28_11
	Ch14 - SimpleExamples_09_28_11
	Ch15 - Simulation_09_28_11
	Ch16 - VeryLargeScaleSystems_09_28_11
	Ch17 - ManagingSoftwareLifeCycles_09_27_06
	REFERENCES_09_28_11
	ZBackCover

