
the Software Survivors Page 1

 The Software Survivors
Relating Software Survival to the Evolution of Complexity

by W. Cave, & R. Wassmer
Visual Software International, May 15, 2014

BACKGROUND

 To learn from history, one must be a seeker of truth - even when the results of scientific
experiments go against the biases of one’s beliefs. When comparing differences in thinking
across widespread segments of the global population, one may conclude that Truth is Key to
Survival.

 The February ‘96 issue of Upside magazine compared changes in technology to the
evolution of mankind resulting from the “Cambrian Explosion” on planet Earth, [1]. Before this
event, no molecules were sufficiently complex for evolutionary processes to proceed to the
species we have today. The article noted that explosions in technology follow similar trends.

 The industrial revolution developed machinery to levels of complexity well beyond
anything less than a century before. Scientific revolutions in atomic physics, aerospace, and
electronics broke down major barriers of complexity. Computer-Aided Design (CAD) led to
explosions in semiconductor chip technology, with engineers achieving complex designs of the
integrated circuit and Personal Computer (PC). PCs now allow individuals to solve complex
problems previously limited to large mainframes.

 So what is the underlying motivation? According to W. Edwards Deming, a leader in the
field of quality control, happiness is constant improvement, [2]. To be happy, one must see
constant improvement in the quality of life. When most people are working to improve their
lives, those “standing still” appear to be falling behind. In today’s technological world,
improvement in our lives is often accomplished through improvements in technology.

 Looking at the history of technology, breakthroughs make life easier by solving problems
of significant complexity. One can conclude that, to achieve happiness, we must be able to deal
with growing levels of complexity. So where is the next technological breakthrough likely to
occur? In our view, it should be in software.

A HISTORY OF THE PROBLEM

 During the 1960s and 1970s, software productivity was increasing by all measures, with
articles published on ways to improve programming languages. The principle languages of the
time were FORTRAN and COBOL. Various studies showed that COBOL had grown to support
80% of the world’s software applications. Combined with FORTRAN, they occupied about
95%. But getting there was a fight. Assembly language programmers argued that both of these
languages were too slow, even though scientific experiments proved them wrong. In those days
managers came up through the programming ranks, so truth and economics won out. High
school programmers replaced PhDs, and time and cost of development and support dropped
dramatically. So how did we get to where we are?

the Software Survivors Page 2

 During the 1980s, software studies showed productivity turning downhill, [3], [4], [5].
This followed the decision by AT&T to compete with IBM in computers. Billions were spent to
promote the UNIX operating system, and a language called C went along for the ride. Wall
Street - invested in UNIX companies like SUN - pressured their data processing departments to
move to the new boxes. IBM lost major clients. When transaction processing times shot way
up, customers returned to main frames in what became known as the “UNIX After Market.”

 About this same time, along came the PC. Small Silicon Valley companies started to sell
computers and software to small businesses that heretofore could not afford them. This miracle
soon spread to individuals and academics as well as larger businesses.

 Although FORTRAN made it easy for engineers to build complex mathematical systems,
the commercial data processing world was the biggest user of computers. FORTRAN was not
suitable for handling big data and did not require college level courses to learn. COBOL was
shunned by engineers and academics because it did not support mathematical programming.
Being easy to learn and use, it was akin to vocational training - not suitable for college courses.
When C was upgraded with pointers to C++, and Object Oriented Programming (OOP) came
about, AT&T overwhelmed the literature with articles promoting its software. Universities used
this esoteric approach to achieve dramatic expansion of their Computer Science schools.

 Covering up the slowness of C, computer speeds followed an exponential rise, until about
2006 when clock rates hit a wall. Prior to that clock speeds were doubling every 18 months,
doubling software speeds without any effort. But software systems that were “improved” led to
(Nicklaus) Wirth’s Law: Software gets slower faster than hardware gets faster. [6].

 When clock rates leveled off at about 4 GHz, chip manufacturers started putting multiple
processors (cores) on a chip, implying that 8 processors should yield a speed-up of 8. Nothing
appears further from the truth. The trail of failed parallel processor manufacturers goes back to
the 1970s. Although software developers are quick to blame hardware manufacturers, the real
problem is the approach to building software.

 In spite of what most people think, many leading technologists support the view that
software productivity has been going down and failures have been going up. John Warnock,
CEO of Adobe and Gordon Bell, architect of the DEC VAX family are quoted as predicting
Object-Oriented Programming (OOP) to be a disappointing technology, [7]. Henry Ledgard,
famous author on programming languages has written that it does not deliver real improvements
in software productivity, [8]. Many engineers now agree that C-based languages (C, C++, C#,
Java, etc.) have added a significant burden of needless complexity to their software projects.

 As described by industry spokesman Paul Strassmann, most software environments treat
programming like a craft, lacking the necessary separation of skills common to an industrial
environment, [9]. Trying to move to an industry has been difficult. Strassman makes a strong
case that separation of skills is key to dealing with complexity and becoming a productive
industry. This was well before the current press to use parallel processors.

 Comments below describe the level of urgency toward solving the parallel processor
software problem while talking about the number of years it may take based upon history:

Intel Corp.'s Chief Technology Officer (CTO), Justin Rattner: -- “As hardware technology approaches the
terascale level on the desktop, software has fallen further behind.” -- “One result has been a lack of
parallel programming applications to leverage dual-and multi-core processing technology. Intel is
looking for ‘new languages for programming in parallel,’ [11].

the Software Survivors Page 3

"The industry is in a little bit of a panic about how to program multi-core processors, ... " said Chuck
Moore, CTO at Advanced Micro Devices (AMD) trying to rally support for work in the area. "To make
effective use of multi-core hardware today you need a PhD in computer science." [12].

Craig Mundie, CTO at Microsoft, said this is the "tip of the iceberg." --- To maximize computing
horsepower, software makers will need to change how software programmers work. Only a handful of
programmers in the world know how to write software code to divide computing tasks into chunks that
can be processed at the same time instead of a traditional, linear, one-job-at-a-time approach. --- A new
programming language would be required, and could affect how almost every piece of software is written.
--- "This problem will be hard," [13].

RESISTANCE TO NEW SOLUTIONS

 Although apparent from the above statements, barriers to a new software technology
must be broken. But separate books by Christensen, [14], and Kuhn, [15], show that disruptive
technologies must overcome tremendous inertia caused by three factors:

• Job Security - People have invested years becoming experts in an existing technology.
The new technology eliminates the need for their expertise.

• Not Invented Here - The NIH factor exists in government or academic research
laboratories where people are paid large sums of money to come up with solutions.

• Financial Competition - Huge financial investments exist in the current technology and
are at risk of being wiped out.

 The above bullets are reminiscent of companies trying to sell robots to the U.S. Auto
industry in the 1960s. Based upon union threats, they were not allowed on the shop floors in
Detroit. So the robots were sold to Japan where manufacturers proceeded to automate their
factories. Today, Detroit is in bankruptcy while the Japanese auto industry is a dominant force in
the world, and building new plants in the U.S. With chip designers now being led by the
programmers, could Silicon Valley be headed in the same direction?

 Parnas, [16], Sitner, [17], and Yourdon, [18], among others have pointed out the lack of a
scientific approach to measuring software productivity. Experimental results and evaluations of
software technology fall far short of their counterpart benchmarks of hardware. Lack of
experimental evidence and scientific deduction has led to misperceptions of programmer job
security. Substantial evidence points to perceived job security as based on hidden knowledge of
what lies behind complex code. But real job security in the software business must ultimately
depend upon one’s productivity in a competitive economic environment - worldwide. Software
productivity must be analyzed in terms of understandability, independence and reusability of
modules - the same measures used in a hardware environment.

 The solution described below was developed in the U.S as a CAD simulation tool to
support design of military communication systems. As it became known, manufacturers in
NATO countries wanted it to build their own simulations. Programmers in those countries
refused to work with it. They enjoyed the job protection of highly symbolic C-based languages.
The end result was that they could match neither the fidelity nor the speed of the simulations.
When management purchased the simulations as well as the software environment, programmers
tried to rewrite the code in C++ and finally gave up.

the Software Survivors Page 4

 When working with most software today, there is a clear lack of organization compared
to typical scientific and engineering fields. Forcing an organization of people who are not
amenable to it may be impossible. However, young people with little vested interest in current
approaches enjoy being very productive - very fast. If that implies being organized, they are
willing to do it, provided the system they use helps them to accomplish their goals faster.

REQUIREMENTS FOR A SOLUTION

 Is there an equivalent “Cambrian Explosion” on the software horizon. Pulses of promise
appeared over the past few decades. But these solutions are not based upon sound experimental
science. There is reasonable agreement among people experienced in many languages that
popular approaches to building software have increased the level of complexity faced by
developers instead of decreasing it, particularly in the support and upgrade mode.

 When reading history written by the developers from Bell Labs, [19], one finds that C
was designed to quickly port a game played by a few researchers waiting to be assigned to a
project. The design goals were made clear by the original designer, Ken Thompson: (1) Use a
Spartan syntax to keep the compiler simple to write; and (2) Keep the compiler small to fit in the
PDP 7’s tiny memory. It was never intended to be a real programming language. The original
version of C was upgraded a number of times, but still falls behind FORTRAN and COBOL in
speed. Because of the poor handling of data in C, pointers were added to C++ to help speed
things up. But this solved only a small part of the problem.

 Referring to Peter van der Linden's book, Deep C Secrets on the use of C and C++ in a
production environment at SUN, he questions the placement of the burden of translating
code, [20]. Should it be on the programmer, or on the language translator? Placement of this
burden is important for single processors, but becomes critical when using parallel processors.

 Looking at the software horizon, inspiring new solutions exist. These evolved in a
competitive engineering environment - one requiring measurable productivity improvements,
[21]. Breaking down barriers of complexity is the critical direction required. This is best
measured by understandability, leading to increased productivity. So what are the analogies that
may be used to solve this problem?

 Starting with the requirement to split software into modules that run concurrently on
parallel processors, one must understand the property of module independence that allows this to
occur. Simply stated, independent modules may not share data directly, [22]. This is an
organizational problem. When looking at such problems, none is more representative than the
military. Their solution is obvious: everything must be organized into hierarchies, from top to
bottom. This does not exist in today’s popular programming languages.

 Given a language that simplifies representation of hierarchies, one only has to look at the
layers of hierarchy required to describe the data spaces needed to simplify otherwise complex
algorithms. This problem is analogous to picking the best space in which to solve a complex
mathematical problem. As the spatial definition becomes more complex, the algorithms are
simplified. But they must be organized into hierarchies that are easily understood. Current
popular languages have none of the sophisticated facilities required to easily create and
understand a multi-layered hierarchical approach.

the Software Survivors Page 5

 Given that one can design deep multi-layered data hierarchies, the next requirement is to
provide equivalent facilities for instruction hierarchies. Given these facilities in a language, it
becomes much easier to develop independent modules and their special interfaces. When
implemented properly, the result is dramatic improvements in speed - even on a single processor.

 This requirement is paramount when working with parallel processors. Grouping
hierarchies of data into separate subspaces that only support a particular module, or into separate
subspaces that act as the minimal interface between two modules yields the required property of
independence. Having organized the data spaces as described above leads to dramatic
improvements in understanding how multiple modules work independently to support each other.

 Many of these requirements were prevalent in the 1970s, but have since been forgotten.
For example, one in-one out control structures were known to greatly simplify understanding.
This required a language that supported the instruction hierarchies needed to accomplish this.
Current popular languages remain within the waterfall category, i.e., no hierarchies.

A TESTED SOLUTION

 A CAD approach has evolved based upon a language environment designed to support
very complex applications on parallel processors, [22]. Using hierarchical structures to support
both data and instructions, one can design software architectures with engineering drawings.
Large hierarchical structures support separation of data from instructions. The CAD approach
implementing this has separate languages for describing data structures and rule structures. The
result is profound simplification, yielding large increases in understanding and productivity.

 A second paradigm shift follows directly from the first. This is the separation of
architecture from language, see Figure 1. After reviewing design rules for building independent
modules with this CAD approach it becomes apparent that architecture is as important in
software as in other engineering fields. It supports the separation of skills noted by Strassmann.

 These new paradigms put software on a plane with hardware. Architecture provides
visibility of design, from top to bottom. Using simple design rules, one can ensure independence
of modules, cutting through complexity and leading to real reusability. Graphical depiction of
architecture yields a one-to-one mapping to the language elements. Two distinct icon types are
used to represent these elements - one for data structures and one for rules.

 The architecture of independent modules can be related to distribution of a system’s
database into independent data structures relative to transformations (rules). This permits
architects to group primitive elements - data icons and rule icons - into modules using design
rules that maximize module independence.

 Separate languages for data structures and rules support representation of hierarchical
information structures and rule structures that are easily understood by system designers. One
need not have programming experience to understand the details of a system implementation.
Both size and scope of these primitive elements are visible from the engineering drawings.

 Achieving a good balance between what should be depicted graphically versus what
should be described in a language is clearly affected by the size and scope of the data and rule
structures. The combination of graphics and natural language represents a dramatic
improvement in productivity for designers who can then focus on understanding the complexities
of an application, and not get lost in “quirky” details of a programming language.

the Software Survivors Page 6

 Having engineering drawings to control complex software product life cycles supports
geographically distributed development efforts. This includes the collaborative efforts of highly
skilled individuals or teams distributed internationally as well as nationally.

 The biggest improvements for management are visibility of the design from top to
bottom, and clarity of the implementation details. These come at no cost to module isolation and
protection, provided one follows the design rules to ensure module independence. To enforce
the rules one simply inspects the engineering drawings.

 Architectural restructuring is another area that benefits from this new approach. Since
software is selected over hardware for flexibility, one must be able to change it easily to
accommodate new features and functions. But most software is poured into concrete shortly
after the first pieces of code are written. Then everyone watches in frustration as it evolves - out
of control - into a typical “rat’s nest.”

 Using the hierarchical paradigms, one can restructure both architecture and code easily -
after as well as during - the development process. This helps to create modules that can support
added functionality while maintaining independence. “Rats nesting” is suppressed, removing the
exponential approach to project completion (always close but never there). This technique can
cut development time by whole numbers, as one learns about new implementation details and the
corresponding changes required for their support.

 The CAD tool that implements these new paradigms is VisiSoft. Using this new
approach, one can expect to deal with much higher levels of software complexity. At the same
time, it can significantly reduce the number of people required to complete a project as well as
reduce their level of programming expertise. Productivity can benefit most in the maintenance
mode, particularly when major design changes are required to complex systems.

 Underlying this system are three language translators as shown in Figure 1: one for data;
one for instructions; and one for run-time control. Control Specifications render the software
independent of the OS and platform, eliminating scripts while supporting complex databases and
graphics. To make it easy for the human to understand, the languages are context oriented,
requiring the translators to be extremely complex pieces of software.

SUMMARY

 In a competitive economic environment, truth eventually surfaces in terms of time and
cost savings. This is especially true when the differences in measures are significant. Improving
productivity while maintaining a high level of quality for a given product will not be sufficient to
survive in a free market society. This is like building a factory for one model of automobile. To
survive in a competitive environment, one must be able to deal with changing models, ones that
are increasing in complexity every year. As software products and users become more mature,
this is the direction in which they must head.

 This has been the direction taken by the developers of VisiSoft. The entire CAD system,
including the languages, has evolved over many years of scrutiny and change. These changes
will continue to ensure that the economic needs of the software market are met.

the Software Survivors Page 7

Figure 1. VisiSoft engineering drawing - just double click on the icons to edit the code.

the Software Survivors Page 8

REFERENCES

1. Michael Rothschild, "Bionomics," Upside Magazine, February 1996.

2. Deming, W. Edwards, Out of the Crisis, MIT CASE, Cambridge, MA, 1992.

3. Standish Group International, "Chaos, Charting the Seas of Information Technology," The Standish
Group International Inc., Report, Dennis, MA, 1995.

4. Business Week, "PROGNOSIS '95", McGraw-Hill, January 9, 1995, pp 72-80.

5. Groth, R., Is the Software Industry’s Productivity Declining?, IEEE Software, Nov/Dec 2004.

6. Wirth, Nicklaus, A Plea for Lean Software, Computer, Feb, 1995.

7. Upside Magazine, "Musings on the Millenium," Feature Editorial, October 1994.

8. Ledgard, Henry F., The Emperor with No Clothes, Communications of the ACM, Oct 2000.

9. Strassmann, Paul, "From a Craft to an Industry," Ada Symposium, George Mason University, 1992.

10. Ledgard, Henry F., The Emperor with No Clothes, Communications of the ACM, Oct 2000.

11. Krishnadas, L.C., EE Times Article, Jan 17, 2008, www.eetimes.com/showArticle.

12. Merritt, R., Wintel will fund parallel software lab at Berkeley, EE Times On Line, Feb 13, 2008,
www.eetimes.com/showArticle.jhtml?articleID=206503988.

13. Wakabayashi, Daisuke, Reuters Article, Seattle, 03/13/08.

14. Christensen, Clayton M., The Innovator’s Dilemma, Harvard Business School Press, Cambridge,
MA, 1997.

15. Kuhn, Thomas, The Structure of Scientific Revolutions, The University of Chicago Press,
Chicago, IL, 1970.

16. Parnas, D., "Education for Computer Professionals," IEEE Computer, January 1990, pp 17-22.

17. Sitner, Jerry, "Viewpoint - How Much Longer," Mainframe Journal, July 1990, pp 120.

18. Yourdon, E, Decline & Fall of the American Programmer, Yourdon Press - Prentice Hall,
Englewood Cliffs, NJ 1993.

19. Anselmo, Donald, Why Software Productivity Has Not Improved, Software Summit,
Washington, D.C., May 2004.

20. van der Linden, P, Expert C Programming - Deep C Secrets, SunSoft Press - Prentice Hall,
Englewood Cliffs, NJ, 1994.

21. Cave, W.C., et.al, Time is of the Essence: Software Engineering For Parallel Processors, Visual
Software International Technical Report, Oct 2007, Spring Lake, NJ.

22. Cave, W.C., et.al, Software Theory For Parallel Processors, Visual Software International
May 2014, Spring Lake, NJ.

