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PREFACE 
 
 
 While computer clock speeds were doubling every 18 months (from about 1982 to 2006), 
software speeds should have doubled accordingly.  Yet application improvements did not realize 
the speed benefits due to the poor approach to software development.  As clock speeds leveled 
off, computer manufacturers have put multiple processors (cores) on a chip and multiple chips on 
a board.  This might lead one to believe that using 8 processors could increase the speed by a 
factor close to 8.  This assumes that all processors are being used efficiently to support an 
application - something that eludes current software approaches. 
 

 Sufficient inherent parallelism must exist in the application system, else processor 
utilization efficiency will be low causing low speed multipliers.  More importantly, inherent 
parallelism must be properly mapped onto parallel processors.  This requires subject area experts 
who understand the application.  Expecting compilers to do this, e.g., tiling of loops, wastes time 
unless loops are sufficiently large and independent, a rare case.  Expecting the operating system 
to map the inherent parallelism is folly, especially if the application system is nonstationary. 
 

 Solving the concurrency problem in parallel processing implies translating the inherent 
parallelism in a system into a software architecture that runs correctly on a parallel processor.  
This implies that parallel processor solutions must be complete and consistent with those 
produced on a single processor. 
 

 Effective mapping of inherent parallelism requires designing large hierarchical data 
spaces.  This requires a language that supports their use as well as design.  With the proper 
language facilities, large data spaces can be copied in a single instruction fetch, with all data 
elements directly available.  This implies copying blocks of memory - a critical speed factor.  
Memory is cheap and abundant; saving it creates bottlenecks and wastes time. 
 

 Misunderstandings of the problem are historic.  Software developers have been unable to 
cope with parallel processors for decades, putting most hardware manufacturers out of business.  
More recently they have moved the problem back on the hardware designers, causing precious 
chip space to be wasted on irrelevant solutions.   Recent statements by the top technical officers 
at Intel, Microsoft, and AMD say that current computer languages cannot handle multi-core / 
parallel processor applications.  They have made an urgent call for changing the way people 
build software, saying it is time for a new approach, see [47], [84], [99], [152].  But resistance to 
change is immense and well documented in other technology fields, see [46], and [85].  It is due 
to: (1) fear for job security; (2) huge investments in existing approaches, and (3) the Not 
Invented Here (NIH) syndrome. 
 

 For decades, experts have dropped from the field, complaining that software is far from a 
scientific technology, and not based upon experiment.  Journal articles rarely compare data 
representing measures of improvement, such as time to run an application, or time to build and 
test it.  Many articles fall into the category described by Bailey, [8], “Twelve Ways To Fool The 
Masses When Giving Performance Results On Parallel Computers.”  Without overcoming the 
huge resistance inhibiting fair comparisons, a good solution to the parallel processing problem 
will never be tried, let alone accepted.  The main purpose of this book is to provide a scientific 
foundation for the technology of software. 
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 Software theory follows from Shannon’s Mathematical Theory Of Communications, also 
known as Information Theory.  The basis for this theory is that the binary number system, the 
foundation for modern computers, forms a mathematical space wherein the general set of 
characters used to write software and control devices is represented by strings of bits or binary 
numbers. 
 

 Another concept underlying this theory is the State Space framework, formulated by 
engineers to extend Control Theory in order to solve complex problems associated with the 
design of Control Systems.  A prime example is controlling the orbits of objects in space.  This 
theory extends the mathematics of vectors and matrices into more complex transformations that 
deal with sets of large vector spaces. 
 

 The extension of this theory is described in Chapter 7, where the concept of Generalized 
State Space is introduced.  This requires two additional concepts.  The first is derived from the 
requirement for completeness and consistency of results when using parallel processors, i.e., that 
two processes must be independent in order to run concurrently on two different processors (as 
used here, a process is a sequence of machine instructions).  To be independent, these processes 
must not share data. 
 

 This leads to the next concept that, to simplify the determination of the independence of 
two processes, one must separate data from instructions at the software language level.  Known 
as the Separation Principle, this provides the ability to represent data structures and rule 
structures (processes) using icons on engineering drawings of software.  We note that 
engineering drawings represent the connectivity of elements; they are not flow charts.  
Engineering drawings of software provide an iconic visualization of what processes share what 
data (memory resources), and therefore their independence.  By grouping these icons into 
hierarchies of modules, the drawings represent transformations on the state vectors. 
 

 Since the state vector elements are represented by binary numbers and may contain 
general character data, they are termed Generalized State Vectors.  The transformations may 
contain IF ... THEN ... ELSE statements and are termed Generalized Transformations.  This 
framework for designing software is called Generalized State Space. 
 

 We note that this framework was developed in 1982 to support the design of the General 
Simulation System (GSS).  GSS was developed as a Computer-Aided Design (CAD) tool to 
simplify the design of discrete event simulations of communication and control systems on 
parallel processors.  Since then it has evolved into VisiSoft, a CAD system for building complex 
software as well as simulations for parallel processors. 
 

 Having refined the approach described here over many years, and having compared it to 
current approaches to building software on many different projects it is apparent that, without a 
scientific basis, one will never take real advantage of parallel processor technology.  More 
importantly, parallel processing hardware technology is now headed in questionable directions - 
to make up for the lack of science in the current approaches to software. 
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CHAPTER 1. INTRODUCTION 
 
 As one gets older, one becomes more appreciative of time.  This is particularly true if one 
is trying to accomplish specific objectives, advance the state-of-the-art, or demonstrate new 
technologies.  Nowhere is the importance of time more prevalent than in the computer field. 
 

 The first all-electronic computer was developed to reduce the time needed to solve the 
equations required to design the Atomic Bomb.  It replaced hundreds of people with hand 
calculators.  This was followed by the Hydrogen bomb, a much more difficult problem.  The 
need for greater speed drove development of the stored-program computer.  The major hurdle 
was providing sufficient memory to handle larger sets of numbers as well as stored programs. 
 

 In the 1960s, the rule was that the cost of internal memory would never fall below 10 
cents a bit.  Today, one can buy a 32 Gigabyte memory for $20 (10 cents buys 1.28x109 bits).  
Since then, engineers have tackled the problem of building faster computers, breaking down the 
computational speed barriers with dramatic increases in both clock rates and memory. 
 

 Shortly after the new Millennium, the great driving force behind increasing computer 
speeds was predicted to come to a halt.  This was the ending of the part of Moore’s rule that 
computer clock speeds would double every 18 months.  This has been borne out by the leveling 
of clock rates at about 4 Gigahertz.  As this was becoming a reality, computer manufacturers 
started to put multiple processors on a chip, saying that speeds should continue to improve as the 
number of processors in a single computer climbed to unforeseen heights.  However, software 
providers have tried to make good use of parallel processors since the early 1960s.  Except for 
special “embarrassingly parallel” problems, this has been difficult to achieve. 
 

 In addition, many software applications have become more complex.  Increasing 
complexity is generally the barrier to growth when advancing the state of technology in any 
field.  Without the ability to linearize growing complexity, it grows exponentially - limiting the 
ability to move ahead.  Conquering complexity requires breakthroughs in approach.  This is 
clearly true in the case of software.  Fortunately, the other half of the speed driver, memory, is 
becoming more abundant and cheap.  Using more memory has again become the key to speed. 
 

 Technological breakthroughs are almost always the result of science.  In the end, 
improvements and breakthroughs are measured against prior results.  The thesis of this book is 
that software breakthroughs and improvements are measured in terms of time.  As indicated 
above, this implies the time to develop as well as time to run a piece of software. 
 

 The purpose of this book is to describe a theory of software that can be proven by test 
data taken from repeatable experiments designed to make fair time and speed comparisons.  This 
testing is best initiated using stop watches to measure run-times.  Our experience is that, 
following run-time experiments where the outcomes are obvious, one is prone to make fair 
comparisons of the development times (productivity) as well.  The rest is left to science. 
 

 The authors of this book have been developing Computer-Aided Design (CAD) tools for 
engineering since the 1960s.  To maximize ease-of-use of the CAD tools, one must deal with 
complexity - behind the scenes.  The CAD tool described here makes parallel processor software 
easier to develop than current approaches for a single processor.  To make this CAD system so 
easy to use, the underlying design is complex.  Without a CAD tool for building this extremely 
complex software, the final CAD tool itself would have never been completed. 
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The Importance Of Science in Advancing Computers And Software 
 

 Computers have played a major role in improving the lifestyle and chances of survival of 
the human race.  This may be born out simply by looking at the dramatic increase in availability 
of information to anyone with a computer.  Without computers and the sophisticated software 
behind them, the design of most everything we depend upon today would be difficult, and in 
many cases nonexistent.  These are the underlying forces that drive the desire for (1) faster 
computers; and (2) improved productivity in creating and running applications software.  These 
improvements are measured by comparing the time it takes to build and run important 
applications. 
 

 With the advent of the integrated circuit chip, the problem moved from computer 
hardware to software.  During the 1960s and up until the 1970s, great strides were made in 
computer languages, driven by measurable improvements in speed and productivity. 
 

 This all changed during the 1970s when knowledgeable software language designers 
were replaced by corporate power battles and PR.  The major difference in the popular software 
world of today is the lack of a scientific approach used to evaluate run-time speed and 
productivity.  This mind-set has now moved into the realm of hardware design.  Today, the lack 
of science in software is leading hardware designers astray. 
 

 Software is rapidly becoming the world’s largest and most important industry.  It now 
provides the backbone facilities underlying many new technologies. 
 

 The Hydrogen Bomb was not created based upon the popular tastes of the time or the 
styles that appealed to its designers.  It was derived to produce a very clear result based on 
scientific experiments and measurements. 
 
 
Applying A Scientific Approach To Parallel Processing 
 
 To apply a scientific approach to building software for parallel processors requires the 
following steps: 
 

• Gain an in-depth understanding of the application. 
 

• Create a decomposition of the application system based upon its inherent parallelism. 
 

• Map the inherent parallelism of the application into a software architecture of 
independent modules that can be visibly inspected using engineering drawings. 

 

• Generate the code for complex algorithms that all members of the development and 
support team can easily understand. 

 

• Optimize the allocation of parallel processor resources to the independent modules. 
 

 Performance of the above steps requires a fully integrated approach to the use of parallel 
processors.  It requires a development environment where designers can easily create optimized 
software architectures.  The development environment must automatically generate a run-time 
system with dynamic allocation facilities that are tailored to the hardware environment as well as 
the software architecture.  The run-time system must support dynamic reallocation of parallel 
processor resources when run-time connectivity of the architecture is stochastic. 
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The Basis For Real Science 
 

 Many scientists contributed to the development of Nuclear power.  They include people 
like Bohr, Einstein, Fermi, Heisenberg, ..., etc.  Each contributed theories backed by 
experimental evidence that could be used to advance the required breakthroughs to get to the 
final tests.  These efforts took many years, as the underlying theory evolved.  When the theory 
was mostly in place, it took a large team of many of the best scientists another few years to 
complete the development and testing of the first Atomic bomb.  It took another decade after that 
to complete tests of the Hydrogen bomb.  It was this last decade, following World War II, that 
led to the development of the first stored program computer, the Maniac, used to support the Los 
Alamos Laboratories in New Mexico in development of the Hydrogen bomb. 
 

 Real science is based upon repeatable experiments and the measurements derived from 
them.  The data taken from these experiments is used to uncover the truth about competing 
theories.  It also leads to new unanticipated theories.  It is then shared among scientists so that 
further advances can be made.  Clearly, it has been this truth-seeking approach to science, and 
the corresponding advancements in technology, that have brought the human race to where it is 
today. 
 

 The scientific method is governed by the ability of different people to repeat the 
experiments of the originator.  Only unbiased people questioning the theory can take the 
measurements - independently - and reveal the data that supports their findings. 
 
 As described by Lord Kelvin, 
 

“When you can measure what you are speaking about, ... you know simething about it;  
but when you cannot measure it, ... your knowledge is of a meager and unsatisfactory 
kind ... ” 

 
 From W. Edwards Deming, Father of Quality control, [53]. 
 

 “If you can’t measure it, you can’t improve it.” 
 
 From Anselmo & Ledgard, Communications of the ACM, [2]. 
 

 “We take for granted our ability to compare hardware productivity using benchmarks 
and purchase hardware based upon them.  There are no acceptable productivity 
benchmarks for a software environment.  Comparisons are generally based upon 
literature advocating a given method.  Invariably they lack scientific data to support the 
claims.” 

 
From Henry Ledgard, Communications of the ACM, [89]. 

 

 “The field has yet to measure the productivity of competing software development 
environments.  The software industry deserves some objective investigations in this area. 
In today’s situation, one can say that, without measures from repeatable experiments, 
software is not a science.” 

 
 The approach to software described here is based upon many years of hard science 
inquiry, competing theories, scrutinized logical deductions, experiments, measurements, and 
resulting data.  Both the development time and run time of different applications can be 
measured against the clock. 
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Comments From Engineers - on current approaches to building software: 
 

 The comments immediately below by Rattner (Intel CTO), Moore (AMD Senior Fellow, 
Technology Group CTO, and Chairman of the Technology Advisory Board), and Mundie 
(Microsoft Chief Research & Strategy Officer) indicate the level of urgency toward solving the 
software problem while talking about the number of years it will likely take based upon history.  
Of this group, Chuck Moore (recently deceased) had a clear understanding of the problem and 
undoubtedly would have fully appreciated the VisiSoft solution presented here.  It’s apparent 
from the articles that barriers to a totally new approach to building software must be overcome. 
 
EE Times: ESC Fall 2007 Preview: Multi-cores, software's Gordian Knot, see [47]. 
 

To fully utilize the hardware parallelism inherent in embedded multi-core designs, they say, will require a 
shift to a more implicitly parallel programming language and methodology. However, many, including 
researchers at Microsoft, believe that it will take at least ten years for the industry to shift to a new parallel 
programming framework.  
 
EE Times: Intel CTO presses software developers to keep pace, see [84]. 
 

Software development and delivery have failed to keep pace with advances in computer hardware, 
according to Intel Corp.'s CTO, (Justin) Rattner: -- “As hardware technology approaches the terascale 
level on the desktop, software has fallen further behind.” --  “One result has been a lack of parallel 
programming applications to leverage dual-and multi-core processing technology.  Intel is looking for ‘new 
languages for programming in parallel,’ Rattner told the India Semiconductor Association. 
 
EE Times: Industry seeks a model for next-gen multicore CPUs, see [98]. 
 

"The industry is in a little bit of a panic about how to program multi-core processors, especially 
heterogeneous ones," said Chuck Moore, a senior fellow at Advanced Micro Devices trying to rally 
support for work in the area. "To make effective use of multi-core hardware today you need a PhD in 
computer science. That can't continue if we want to enable heterogeneous CPUs," he said.  ---  The 
challenge in the parallel world is finding a dynamic and flexible approach to schedule parallel tasks from 
these modules across available hardware in complex heterogeneous multi-core CPUs. 
 
EE Times: Multicore puts screws to parallel-programming models, see [99]. 
 

Leaders in mainstream computing are intensifying efforts to find a parallel-programming model to feed the 
multicore processors already on chip makers' drawing boards.  ---  Developers need to expand the 
current software stack in fundamental ways to handle a coming crop of processors that use a variety of 
cores, accelerators and memory types, according to the company.  ---  Both AMD and Intel have said they 
will ship processors using a mix of X86 and graphics cores as early as next year, with core counts quickly 
rising to eight or more per chip. But software developers are still stuck with a mainly serial programming 
model that cannot easily take advantage of the new hardware.   ---  Thus, there's little doubt the computer 
industry needs a new parallel-programming model to support these multicore processors. But just what 
that model will be, and when and how it will arrive, are still up in the air. 
 
Reuters - Craig Mundie, Microsoft Corp's chief research and strategy officer, is sure he has a good 
handle on where technology is going. When is another story, see [152]. 
 

The computer industry has taken its first steps toward parallel computing in recent years by using "multi-
core" chips, but Mundie said this is the "tip of the iceberg."  ---  To maximize computing horsepower, 
software makers will need to change how software programmers work. Only a handful of programmers in 
the world know how to write software code to divide computing tasks into chunks that can be processed 
at the same time instead of a traditional, linear, one-job-at-a-time approach.  ---  A new programming 
language would be required, and could affect how almost every piece of software is written.  ---  "This 
problem will be hard," admitted Mundie, who worked on parallel computing as the head of supercomputer 
company Alliant Computer Systems before joining Microsoft. "This challenge looms large over the next 5 
to 10 years." 
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Software Productivity 
 

 Since the late 1980s, productivity in software has declined - faster than any other 
industry in the U.S. (see charts below).  Whereas computer chips had the highest productivity 
growth of all industries in the 5 years prior to 1995 (chart 1), computer software had the lowest.  
Software actually had negative productivity growth (red bar).  The high cost of building and 
maintaining software, and large number of project failures has put many projects on hold.  Large 
companies are now outsourcing software projects overseas to India, China, and similar countries. 
 

CHART 1.  Data From Business Week - January 1995 [26] 
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CHART 2.  Data From Groth, IEEE Software, November/December 2004 [66] 
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 Recent studies make it clear that this situation hasn’t changed.  In the year ending 2004 
(chart 2), computer chips had the highest productivity growth while software came in with the 
most negative growth again (red bars).  The most recent exposure of the problem is contained in 
an National Science Foundation RFP, [158].  The underlying cause is the same job protection 
mentality that occurred on shop floors in the automobile industry in the 1960s, recently putting 
Detroit into bankruptcy. 
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 But in the computer field it is the approach to software that impedes the potential to 
dramatically improve productivity using Computer-Aided Design (CAD) tools to build parallel 
processor software.  More importantly, computer chip builders are trying to help solve the 
software problems with hardware.  Precious chip real estate is being wasted on band-aids that 
only cover up symptoms.  As discussed in the next chapter, this is putting Silicon Valley on the 
same course as Detroit.  This book has been written to help put the U.S. computer field back in a 
sound future direction. 
 
 
Fair Comparisons Require Representative Performance Measures 
 

 One must start with Meaningful Measures Of Performance (MMOPs) when considering 
such comparisons.  To the end users of parallel processors, the major issue is “How much time 
did it take to run my problem?”  Or “How much time did it take to run a day’s worth of typical 
problems?”  And, “How much did it cost?”  If time and cost are not measured properly, 
comparisons may be biased if not distorted, [8]. 
 

 This is especially true today when some organizations are measuring Watts used to run a 
computer facility.  End users buy or expend Watt-Hours to solve problems.  They want to know: 
“How many watt-hours did it take to run my problem?” or “How many watt hours did it take to 
run a typical day’s worth of problems?” 
 

 Proper measures must account for the fact that some vendors are now building machines 
with slower memory that takes less watts.  To maintain speed, one may need more processors.  
But as the footprint of a machine gets larger, the distance between processors gets larger, and the 
time to run the identical test problem can grow exponentially.  To obtain meaningful measures, 
one must compare the energy expended to solve the same set of problems. 
 

 Finally, different software development environments yield different software 
architectures on the same machine and correspondingly different speeds.  These differences can 
be huge, and can be illustrated on a single processor.  So one must use the same set of problems 
that fairly demonstrate the comparison desired. 
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CHAPTER 2. UNDERSTANDING THE PROBLEM 
 
 This chapter is concerned with understanding the requirements for a parallel processor 
software environment.  By software environment, we imply both the development and run-time 
environments - including planned as well as existing hardware designs.  Measuring what’s best 
implies comparing different software environments relative to a set of stated requirements.  This 
chapter offers a set of general requirements for both software development and run time 
environments.  Given that a set of requirements is agreed upon, one can then run experiments to 
compare candidate software environments against those requirements.  We note that these 
experiments must be repeatable by independent parties.  Such repeatable experiments form the 
basis for scientific discovery - the discovery of scientific facts. 
 

 We also note that time and cost become major considerations when conducting complex 
experiments.  It is not unusual for a large experiment (or set of experiments) to be conducted in a 
manner that conserves time and cost.  This may result in sets of independent parties participating 
in a single large experiment, one that is analyzed and documented by all parties.  Or by 
evaluating different production efforts that provide a solid basis for an on-going experiment. 
 
 
TOP LEVEL REQUIREMENTS 
 

 The fact that clock speeds have hit a wall has put a damper on enhancements to existing 
applications as well as new applications that require faster processors.  As described in the prior 
chapter, this requirement has been addressed by the computer chip manufacturers by putting 
multiple processors (cores) on a chip and multiple chips on a board.  However, the ability to 
produce run time reduction factors that are commensurate with the number of processors 
available has been elusive.  Large parallel processing applications that are not embarrassingly 
parallel typically get about a 10% multiplier on the number of processors.  In other words, to 
obtain a speed improvement of a factor of 10 may require on the order of 100 processors.  This 
implies a processor utilization efficiency of approximately 10%.  This factor, defined carefully in 
Chapter 6, depends upon the inherent parallelism in an application as well as the software and 
hardware architecture.  The inherent parallelism properties of an application are described in 
Chapter 6.  Software architecture is introduced in Chapter 7 and described in Chapter 9. 
 
 
APPLICATION REQUIREMENTS 
 

 Embarrassingly parallel applications have inherent parallelism close to 100%.  This 
implies insignificant communications between the separate parts.  An example of this is Monte 
Carlo simulation, where multiple simulations are started with different random number seeds.  
These applications may be run on separate computers in a cluster environment, or as separate 
tasks on a server, an easy solution.  They are addressed here implicitly, but not of real concern. 
 

 The applications of concern have inherent parallelism higher than 50%.  Our goal is to 
achieve processor utilization efficiencies that are above 90% of the inherent parallelism in such 
applications.  In the applications of interest, this typically implies run time multipliers greater 
than 80% of the number of processors.  This translates to a multiplier of 80 or more when using 
100 processors as opposed to the current typically good multipliers of 10. 
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 If the technologies presented here can increase the speed of an application running on a 
single processor by a factor of 5 to 10 over current technologies, the result can be well over an 
order of magnitude faster on a parallel processor (existing comparisons support these 
multipliers).  The goal of the technology described here from a run-time standpoint is to increase 
the speed of applications running on a parallel processor by an order of magnitude. 
 

 In addition to raw speed requirements, one must be concerned with the application of 
parallel processing to the simulation of dynamic physical systems.  This produces additional 
requirements for timing and synchronization.  These requirements are particularly critical when 
dealing with discrete event simulations embedded in a real-time system.  In these systems, one 
must be concerned about the unpredictable advancement of the simulation clock as well as the 
real-time clock.  These requirements are addressed in Chapter 6. 
 

 Finally, one must achieve high quality while improving productivity.  This generally 
translates to end user productivity which is achieved by designing high quality user interfaces.  
This often requires complex graphical software interfaces to achieve ease of user understanding 
and interaction.  In addition, the unpredictable nature of timing and synchronization of discrete 
event simulation (a fast approach to simulation) presents a more challenging requirement for 
parallel processing.  It can be used to build simulations that represent a wide variety of problems, 
e.g., inherent parallelism, the independence of modules, and communications between modules.  
This is the application environment that is best suited for testing and comparison. 
 

 To summarize, the approach described here addresses large complex applications, 
typically requiring a team effort to construct.  In particular, it addresses applications with a 
reasonable amount of inherent parallelism so they can run effectively on a parallel processor and 
meet stringent run-time speed requirements.  Examples are real-time planning and control 
systems used in large manufacturing plants or military operations.  These applications require 
high reliability, rapid enhancement to support new features, and potential for growth of 
complexity. 
 

 There are two basic problems described in the computer literature.  First is the need to 
increase software productivity and run-time speed.  Second is the need to simplify software 
development for parallel machines.  These are described below.  In addition to these basic needs 
is the requirement to provide tools for planning and control of complex systems, in real time, as 
information is fed back to the planners.  Examples are: air traffic control; electrical power 
distribution control; planning large military operations; and top level corporate planning.  The 
application best representative of difficulties in these problems are the Joint Air & Space 
Operations Centers (AOCs).  The solution to that problem applies directly to the other 
applications as well as the basic needs described below. 
 
 
The Need To Increase Software Productivity As Well As Run-Time Speed 
 

 U.S. software is being outsourced overseas to places like India, China, etc., where 
programming labor is cheap.  Recent articles, e.g., the special issue of the Economist, May 2012, 
clearly state that software is becoming the most important technology in the world.  Productivity 
in other industries depends upon automation which, in turn, depends upon software.  Yet, as 
described in many references, e.g., [2] thru [4], [6], [19] thru [21], software productivity growth 
in the U.S. has been more negative than any other industry since the 1980s.  We note that, in the 
last 6 years, except for articles on economics, the technical literature has gone quiet on this topic. 
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The Need To Simplify Software Development For Parallel Processors 
 

 As described in Chapter 1, many articles in EE TIMES and REUTERS describe huge 
difficulties programmers have using multi-core chips (parallel processors), see Merritt [101], and 
Sutter [144].  For most large scale parallel processor applications, processor utilization 
efficiencies are down around 10% or less, i.e., to get a factor of 10 speed increase over a single 
processor, one needs 100 processors.  For applications that have a reasonable degree of inherent 
parallelism, this should be on the order of 10 processors, not 100.  Chip manufacturers, e.g., Intel 
and AMD are investing many millions of dollars in search of solutions to this problem.  But only 
the subject area experts understand the inherent parallelism in a system.  What they need is a 
CAD system to map their understanding of that inherent parallelism into a software architecture 
that runs efficiently on a parallel processor.  And that is what this book is about. 
 
 
The Need For Real-Time Planning Tools 
 

 There are many planning systems where large sums of money have been invested with 
little results.  The U.S. air traffic control system is an example.  What is not understood is that 
planning requires sufficiently accurate predictions of outcomes of complex decision processes.  
Predictions are produced as conditioned probability statements, where the conditioning 
determines the accuracy of prediction.  The conditions are represented by models of the system, 
and the outcomes depend typically on complex physical events whose behavior must be 
characterized with sufficient detail.  In most cases, this can be accomplished through detailed 
modeling and fast simulations.  However, the complexity of the modeling and simulation 
problem coupled with the requirement to produce results in real-time cannot be accomplished 
without a breakthrough in software. 
 

 This problem is best represented by the planning requirements in Joint/Air Force AOCs, a 
very complex application that the authors have been working to support for the past 14 years.  
Prior to that, since 1982, these same authors have been developing a software environment to 
make efficient use of parallel processors when running large scale simulations.  This system, 
known as VisiSoft has evolved to where it is today, through simulations initially built for the 
Army, [112], and DARPA, [113] & [114], to demonstrate the solution to the parallel processing 
problem as well as the software productivity problem.  These tests have demonstrated superior 
results with one exception, the shortcoming of efficiency when using existing compilers and 
Operating Systems (OSs), e.g., UNIX, Linux or Windows, especially when they are tailored for 
existing parallel processor chip designs. 
 

 These operating systems typically depend upon special compilers or translators that 
interpret special code or perform tiling, or automatic separation of loops to be run concurrently 
on separate processors.  Users must be concerned about timing and synchronization.  As 
described by the chip designers, these approaches are highly inefficient and difficult to use.  For 
years, Chip designers have been saying that solving this problem requires a dramatic departure 
from current software development approaches.  This has not happened.  Instead, modifications 
have been made to the existing languages, the heart of the problem.  In addition, hardware 
designers have used precious chip space to make up for poor software with approaches, e.g., for 
hardware cache coherency.  This space is much better used to house more memory.  Having built 
the proper solution, it is obvious why current approaches using C-based languages are so far off. 
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Commercial Market Requirements 
 

 Before describing specific requirements for parallel processing solutions, we note our 
concern with the market for simulation of complex physical systems, a very difficult problem.  
Although the ensuing discussions apply to other software markets as well, those markets are 
generally more easily handled by design.  Our concern is running large scale simulations, where 
processors are generally allocated as a group to substantially cut the running time of a single 
simulation, e.g., from 20 hours to 1 hour or less.  In this market, time is of the essence, and 
parallel processors are purchased specifically to accomplish this goal.  The set of assigned 
processors are typically not shared by other applications. 
 

 As in other markets, the benefits gained using a parallel processor must sufficiently 
outweigh the time and cost to develop and support the software.  Otherwise, justification based 
upon solid economics does not exist.  These economic goals will be achieved only if the 
following requirements are met: 
 

1. The speed multipliers obtained from using a large number of processors must be 
sufficiently high to justify their cost in time and money (the SPEED measure). 

 

2. The software must be generated and enhanced within a cost and time period that clearly 
justifies the effort economically (the PRODUCTIVITY measure). 

 

 These two requirements are tightly interrelated.  Subject area experts typically do not care 
whether their problem is solved on a single processor or on hundreds of processors.  To them, 
time is of the essence.  Without substantial speed multipliers, parallel processing is not justified.  
If the number of processors and corresponding cost can be reduced by an order of magnitude 
while simplifying the software, any real market will move to the better solution. 
 
 
Military Planning Tool Requirements 
 

 Visual Software International’s client, Prediction Systems, Inc., has been building large 
scale simulations of complex physical systems since 1982.  Current efforts are focused on 
supporting real-time planning at the operational level for the U.S. Joint/Air Force Air and Space 
Operations Center.  This requires detailed analysis of potential problems that may be 
encountered when planning large numbers of missions that interact over large areas of the globe, 
on land, sea, in the air, and in space.  Planning cycles using simulation are expected to be on the 
order of 4 hours, including time for modification of scenarios, running multiple simulations, and 
analysis. 
 

 To perform realistic analyses, one must run large scale simulations covering 1 to 2 hour 
(or more) scenarios involving hundreds of platforms and the corresponding detailed mission 
threads in which they participate.  This requires models of platform movement, sensor systems, 
communication systems, command & control decision systems, weapon systems, jammers, etc. 
of both red and blue forces.  Models of these systems must be sufficiently detailed to ensure that 
realistic worst case variations may be characterized in terms of distributions generated by 
running 20 to 50 simulations. 
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 A single simulation of this size and complexity may take on the order of 10 to 20 hours to 
run on a single fast computer.  As with most physical systems, there is a high degree of inherent 
parallelism in the actual system.  For example, each platform operates independently except for 
the required information exchanges between them, with much of the sensor and communications 
processing being housed on the individual platforms.  Many complex Electro-Magnetic (E-M) 
wave propagation calculations may be done for each individual platform to determine 
connectivity, with relatively small transfers of information content between equipment on the 
different platforms. 
 

 This form of simulation requires the use of parallel processors to decrease the running 
time by factors approaching the number of platforms, implying time decreases of 1 to 2 orders of 
magnitude or more.  This makes it possible to run a single simulation in minutes rather than 
hours.  To run even faster, separate simulations may be run in parallel on separate sets of 
processors.  Allowing one hour for scenario modifications and one hour for analysis of results, 
an operational assessment can be accomplished within four hours, an acceptable time for overall 
operational planning cycles.  With the new technology described here, it is estimated that this 
may be accomplished using a 32 processor PC that can run faster than a 250 processor High 
Performance Computer (HPC) using existing technology.  The approach to estimating these time 
differences is described in Chapter 8. 
 
 
Understanding Real-Time Planning Requirements 
 

 The Air and Space Operations Center is typically where theater level planning is done for 
all airborne operations in multiple 24 hour cycles.  These plans must account for ground, sea and 
space platforms that may interact with those in the air.  Large scenarios, e.g., in the Pacific or 
Mid-East, must provide for hundreds of platforms as they may come and go in a daily cycle.  Of 
particular interest are the plans for many missions within a specified time frame that include 
platforms with sensors, command & control systems, communications, electronic warfare 
systems, and weapons. 
 

 One of the major requirements is ensuring that platforms that must exchange information 
can communicate.  The Joint Airborne Network Control (JANC) simulation and planning system 
described here is designed to support that role.  JANC can take in Airspace Control Orders and 
Air Tasking Orders and help to ensure the proper placement and movement of platforms on 
desired paths (air, land, sea and space).  JANC is capable of modeling all of the required 
platforms and movements in 6 DOF+ as well as the pertinent equipment (antennas, sensors, 
radios, computers, electronic warfare systems, weapon systems, decision systems), and their 
environments (electro-magnetic, terrain, foliage, atmospheric, ionospheric, etc.).  JANC is 
designed to help place radio relays and assign flight paths to units to ensure sufficient 
communications to meet mission requirements. 
 

 Plans must account for potential variations and changes that may occur.  To do this 
accurately implies running multiple simulations (e.g., 20 - 50) in a short time period (2 hours) to 
uncover problems and determine the likely outcomes.  This will allow changes to be made in the 
plans to help ensure the effectiveness of many missions in near simultaneity. 
 
 



Software Theory                   Page 2 - 6  

CATEGORIZING PROBLEM TYPES 
 
Embarrassingly Parallel Applications 
 

 There are many different types of problems that appear suited to substantial speed 
improvements using parallel processors.  One that always comes up is called “embarrassingly 
parallel.”  These are applications that typically can be broken into separate tasks that can run 
concurrently since they are almost 100% independent.   We will not address applications that are 
embarrassingly parallel since they may be run on clusters of computers and do not benefit from a 
single OS parallel processor. 
 
 
Multiple Tasks 
 

 Since the multi-tasking operating systems of the early 1960s, multiple separate tasks have 
been run concurrently on single processors.  These tasks take advantage of I/O wait times to run 
those portions of tasks that are main memory intensive while waiting for I/O channel responses.  
Because of the huge difference in time delays to access different layers of memory, particularly 
mass storage devices, we defer this set of applications to current server environments that make 
good use of DMA channels.  The subset of tasks that do benefit are described below. 
 
 
Large Single Tasks 
 

 Our concern here is with large single tasks that require substantial processor time and 
have sufficient inherent parallelism in the application to warrant the use of a parallel processor 
(multi-core) system.  This implies that the time spent handling I/O is small compared to main 
memory processing time.  It also implies that the potential speed multipliers that can be gained 
using a parallel processor are sufficiently high (e.g., above 0.5•N, where N is the number of 
processors).  Current speed multipliers may be well under this number (0.1•N is considered good 
today), but could be boosted to over 0.5•N (an improvement multiplier of 5 or more) using the 
integrated software/hardware environment described here.  For applications with sufficient 
inherent parallelism, we are looking to achieve a multiplier of 0.8•N or higher, as shown in the 
experimental results in Chapter 19. 
 
 
Software And Simulation 
 

 We can also separate parallel processor problem types into software versus simulation.  
In the case of simulation, one generally uses a simulation clock so that changes or updates occur 
at a given time based on the simulation clock.  Real-time systems, e.g., embedded applications, 
are typically geared to the real-time clock.  Some real-time systems also contain simulations.  
However, simulation clocks do not affect the timing of software systems unless the simulation 
clock is tied to the real-time clock, as occurs in real-time training systems.  All of these types of 
system are covered below.  Software systems that do not contain simulations are covered in 
terms of real-time simulations, since the problems they present to a parallel processor and their 
corresponding solution approaches are contained in that of a simulation. 
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Types Of Simulations 
 

 A large percentage of the current parallel processor applications require simulation, 
including real-time control and planning systems with embedded models and simulations.  These 
fall into different sub-categories.  We will treat them in two categories 
 

• Mathematical - The major factor affecting speed is the solution to sets of mathematical 
equations.  Fast solutions to the mathematical problems are found in real-time control 
systems.  These problems are similar if not equivalent to mathematical simulations. 

 

• Non-mathematical - The major factor affecting speed involves large complex decision 
processes or database retrievals.  These problems are similar if not equivalent to discrete 
event simulations.  As indicated below in discrete event simulation examples, the 
difficulties one encounters in software applications are easily covered in discrete event 
simulation, where on the order of a million threads may be active at a single point in 
time.  Special techniques have been developed in discrete event simulation for handling 
these applications. 

 
 
Systems Of Differential Equations 
 

 Systems of algebraic equations are considered a subset of this category and generally 
present a much more simple application for a parallel processor.  We will use applications that 
represent a large class of general applications while presenting stress cases for developing 
software for a parallel processor. 
 

 Electrical networks provide good examples of the types of problems one faces when 
solving systems of differential equations on parallel processors. 
 

• They require solution to a large number of differential equations 
 

• The matrices are sparse 
 

• The time constants vary widely 
 

• The equations are highly nonlinear 
 

• They are used as analogies to solve many other problems 
 

 Electrical engineers have developed special techniques for rapid solution on a single 
processor.  These include tabular routines that converge very fast to resolve nonlinear solutions, 
and optimal sparse matrix inversion routines that eliminate looping as well as effectively all of 
the parallelism in the system.  However, techniques have been identified that allow one to 
partition a very large matrix into multiple large submatrices using superposition.  These 
techniques provide for nonlinear solutions while making full use of the optimal sparse matrix 
techniques on separate parallel processors.  These techniques are especially useful when running 
many simulations, e.g., for parametric or sensitivity analysis, where parameters are changed 
based upon prior solutions.  We note that the connectivity of electrical networks is essentially 
constant.  Even though some nodes or links may be removed during the simulation scenario, they 
may be handled using parameter values of zero or infinity. 
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 In electrical networks, widely varying time constants typically require variable step 
integration techniques, causing a subset of cells to wait until the others have resolved the solution 
in preparation for the next time step.  This coupled with nonlinear elements will cause the overall 
solution to slow down to remain in lock-step with the simulation clock. 
 
 
Systems Of Partial Differential Equations 
 

 Many problems require solution to systems of partial differential equations, e.g., fluid or 
gas flow, molecular structures, etc.  In the case of “fine grain” problems described in Chapter 9, 
one may break the problem into a large number of cells, where each cell is run on a separate 
processor.  In this case, sub-vectors are shared between cells, typically in a 3D array.  Using this 
approach, each cell may solve a set of equations that relate the physics within the cell to the 
changes at the boundary surfaces.  Again, superposition may be used to resolve linear changes.  
Multiple iterations may be necessary to resolve nonlinear effects within an adjacent cell, slowing 
down the process to maintain lock-step with the simulation clock. 
 

 When the number of cells exceeds the number of processors, a hierarchy of cells may be 
created where each higher level cell resides on a processor, and each face shares a vector of 
information that represents all of the sub-cell interfaces with the adjacent face in another cell.  
This approach has been used parallel processor versions of FORTRAN using a technique called 
tiling, where cells may be grouped as tiles in multiple dimensions, also described in Chapter 9. 
 
 
Discrete Event Simulation 
 

 When problems require complex decision processes that are not easily formulated using a 
mathematical framework, one must use a discrete event approach.  In this case, events are 
scheduled to occur in the future based upon the current state of the system.  Examples are 
simulations of communication and control systems.  Simulation of fixed-infrastructure networks 
is similar to that of an electrical network except that one must implement algorithms that 
typically receive, process, and transmit messages.  The processing can be substantial, involving 
complex decision algorithms.  As the algorithm proceeds, future events may be scheduled that 
invoke other processes in the system.  We note that cell phones fall into the category of fixed 
infrastructure networks since they are all connected to a fixed base station in the network. 
 

 At first, this approach may appear more complex.  However, one can more easily 
represent complex systems using code that resembles (can be identical to) that in the real system.  
In addition, the simulation clock may jump far ahead if nothing is happening in between, saving 
much time. 
 

 One of the most important factors differentiating discrete event simulation is the state 
vectors one deals with.  In the General Simulation System (GSS), [67], instead of being vectors 
of numbers, they are generalized state vectors, meaning that they hold words or general alpha-
numeric data as well as numbers.  Most importantly, the various sub-state vectors of a simulation 
are defined in terms of hierarchical data structures, typically containing many levels of hierarchy 
that can be moved and addressed directly in many ways.  Any element of a state vector may be 
addressed directly by a process that contains English-like statements that engineers and scientists 
can read and understand without knowledge of programming. 
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 Most important is the separation of data from instructions, so that one can clearly see 
what processes share what data.  This provides the ability to produce architectures using 
engineering drawings where access to data is defined by connect lines on the drawing.  This 
provides direct visualization of the independence properties of modules, precisely what is needed 
to produce software architectures that maximize the mapping of inherent parallelism in a system 
onto the hardware of a parallel processor. 
 
 
Nonstationary Connectivity 
 

 As an example of discrete event simulation, consider the military planning problem, 
where one may have hundreds of aircraft flying over a large land area, all integrated in a 
complex scenario.  Each aircraft may have sensors, communication systems, weapon systems, 
etc., that are all modeled in detail.  Similarly, there may be many ground vehicles moving on 
mountainous terrain, some of which may be targets for the aircraft.  Although some of the 
movement may be predetermined by fixed scenarios, most of the movement may occur based 
upon unfolding events and the decision processes in the communication and control systems. 
 

 As the simulation unfolds, sensor and communication systems on a given platform may 
be connected to different platforms at different times.  This is the nonstationary connectivity 
case.  This problem appears to be a significant stress case for parallel processing.  In fact it 
presents an excellent case for understanding the various problems associated with making 
maximum use of parallel processors. 
 
 
Processor Utilization Efficiency 
 

 Percent processor utilization efficiency can be measured by taking the ratio of the run-
times on a parallel processor over that on a single processor and multiplying it by 100/N, where 
N is the number of processors used in the parallel case.  To obtain 100% processor utilization 
efficiency, all processors must be working at the efficiency level of a single processor 100% of 
the time.  When some processors are idle - in a wait state while others are working - utilization 
efficiency drops.  Only embarrassingly parallel applications get close to 100% processor 
utilization efficiency.  Even applications that have inherent parallelism at a 90% level will not 
get close to 90% processor utilization efficiency because of the overhead contained in the current 
software approaches used for parallel processing. 
 
 
Non-Linear Problems 
 

 The example described above is a highly nonlinear problem, where small changes in a 
scenario can produce huge changes in the outcomes.  To model this accurately requires high 
resolution models and time scales.  To take advantage of huge variations in the required accuracy 
of time scales - as a function of time - one can use discrete event simulation.  Although this 
technology was developed by Gordon, see [63], [64] and [65], in the early 1960s, it is just 
starting to be used in engineering.  This allows events to be scheduled in future time based upon 
the current unfolding scenario.  In the simulation examples used here, the time between events 
may vary from microseconds to minutes depending upon where one is in a scenario. 
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 With this type of problem, synchronization of models running on different processors 
becomes complex.  However, the approach described here removes concern for this 
synchronization from the simulation designer. 
 
 
Non-Stationary Problems 
 

 The example described above is also a highly non-stationary problem.  As platforms 
move on the ground, in the air, and in space, they try to communicate.  Communications will 
depend upon the power level of the signals they receive through their antennas.  These power 
levels will depend directly on various factors, including terrain blockage, antenna gain as a 
function of orientation, distance, etc.  As they move, these factors are changing making their 
connectivity (ability to communicate) change.  Thus a platform that can communicate with a set 
of platforms now may be communicating with a different set of platforms later.  Thus the 
connectivity matrix is changing with time.  If one tries to place platforms on processors that are 
close to each other based upon the connectivity matrix, then one must be prepared to migrate 
these platforms during the simulation based upon the changing connectivity. 
 

 This problem is prevalent in chemical and biological simulations, where molecules or 
cells are in motion relative to each other.  Again, the effects of one cell upon another depends 
upon the relative positions of each, and this must be tracked until they are far enough apart. 
 
 
Meeting The Requirements 
 

 To properly represent mission outcomes, one must send the message traffic that 
determines the success of those mission threads that are critical to completion of a mission.  For 
example, sensor-to-shooter loops typically involve multiple platforms and multiple messages 
between platforms.  When multiple messages are sent during the same time period within a given 
area using a given part of the spectrum, each receiver trying to receive a message may be hit with 
power from others.  Mutual interference occurs when the desired message cannot be received 
because of additional power hitting that receiver’s antenna, thereby reducing the Signal-to-Noise 
Ratio (SNR) at the intended receiver below a threshold.  This is exacerbated in the presence of 
jamming, where reception may not occur just because of other noise sources. 
 

 Based upon considerable experience, simulations with hundreds of platforms and heavy 
scenarios will not likely run nearly as fast as real time (they may run 10 times slower than real 
time depending upon many factors).  Requiring more than 20 hours to run a single simulation of 
a 1 or 2 hour scenario is unacceptable.  Furthermore, when using the data from one or more prior 
simulations to determine changes to the next simulation scenario, the simulations are no longer 
independent.  Thus they cannot be run concurrently as separate independent tasks. 
 

 Based upon a number of factors, we have concluded that it will likely take more than 250 
HPC processors to adequately support assessments of plans using current approaches, an 
acceptable range for this application.  Using the technology described here, it is expected that 
this task can be performed using a 32 processor PC.  We do not expect current approaches to 
parallel processing to come close to matching this capability.  Furthermore, based upon recent 
experience, running times on a single processor using Windows or Linux are much longer than 
what we expect from a single processor using the VisiSoft approach. 
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UNDERSTANDING CURRENT SOLUTIONS 
 
Prior Approaches 
 

 Hardware designers have succeeded in producing parallel and distributed processor 
computers with theoretical speeds well into the teraflop range.  However, the practical use of 
these machines is extremely limited except on special problems.  The inability to use this power 
is due to the difficulties encountered when trying to translate real world problems with a high 
degree of inherent parallelism into software that makes effective use of highly parallel machines.  
This has been described by numerous authors over many years, see for example [8], [13], [103], 
and [108]. 
 

 Solutions to the parallel processing problem tend to skip over the software piece of the 
problem, going from application requirements to hardware architecture.  The word architecture 
implies hardware in the parallel processing literature.  The words “software architecture” rarely 
appear, and then the meaning is nebulous.  Software design is not much more than an 
afterthought relative to the size of the hardware design effort. 
 

 Most parallel processing hardware vendors have worked to take existing “codes” and 
split them at run-time to take advantage of a parallel processor.  This implies that, if code 
sequences are invoked in a stationary manner, and memory access is also stationary, then a 
reasonable solution may be had.  But without software architectures that are designed to take 
maximum advantage of the inherent parallelism of a system, one cannot expect to do much better 
than a naive model.  If one uses tiling as described above, then a run-time system may be able to 
reorganize the placement of tiles in memory to improve run time speed.  But if tiles are not an 
appropriate representation of the physical system, this approach will not suffice. 
 

 However, most applications do not fit this model - they are highly time correlated based 
upon the unfolding of future nonstationary events.  This can only be determined by the software 
or simulation architect - beforehand.  This requires a new approach to building software and 
simulations as well as a run-time environment that is tied to the development environment. 
 
 
Requirement For Special Programming Skills 
 

 Current approaches to building simulations on parallel processor machines have not 
satisfied the above requirements except in special cases called embarrassingly parallel (e.g., 
Monte Carlo analyses where each simulation may be run as an independent task).  More 
generally, software development for parallel processors incurs a huge time and cost increase.  
This is compounded by the fact that the problems requiring large processor power are themselves 
complex, and best (often only) understood by subject area experts. 
 

 For example, a communications engineer trying to design a specific set of algorithms, to 
implement a very complex set of protocol standards, has difficulty just describing his problem 
using graphic diagrams with plain English text.  To constrain him to describe his problem in an 
esoteric programming language is difficult.  To force him to learn the language of a system 
programmer is unlikely.  To further burden him to describe his problem so that it runs efficiently 
on a parallel computer makes the current approach intractable. 
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 One is then led to an approach that augments the engineering staff with parallel processor 
programmers who perform problem translation for the computer.  However, it is well accepted in 
most engineering departments that, when programmers are used to translate an engineer's 
problem to a computer, problem solution becomes a process whose length increases 
exponentially with problem complexity.  Finally, translation onto a parallel processing machine 
currently requires very special programming skills that are commensurably scarce and expensive. 
 

 This is why engineering departments invest heavily in Computer-Aided Design (CAD) 
tools that they interface with directly - on their own terms.  These CAD tools provide interfaces 
that are tailored to their problem and automatically generate highly efficient computer code.  We 
believe that this is the only solution to commercialization of parallel computing. 
 
 
MEASURING VALIDITY 
 

 When testing multiple pieces of equipment that interact, one quickly realizes that 
experiments yielding an identical result are often difficult to repeat.  Mechanical systems are 
examples where tolerances must be considered as part of the design specification.  Real time 
control systems must be designed for large variations.  Courses in optimal and stochastic control 
theory deal directly with this topic.  Uncontrolled variations represent a physical phenomenon 
that must be resolved using sound engineering principles, independent of computers or software.  
Engineers must negotiate with product managers regarding measures to be used to determine 
whether or not requirements are met.  This implies that various measures of merit, including 
statistical measures of performance and effectiveness, must be agreed upon - up front. 
 

 Validity measures are critical to the design of event driven systems, e.g., real time control 
and communication systems.  Engineers designing such systems typically understand the details 
of the system requirements better than anyone.  They must have detailed knowledge of where 
and how one can trade off product functionality, cost, reliability, supportability, etc.  Without 
such knowledge, they cannot ensure that the systems they create will produce results that meet 
validity measures.  This is addressed in Chapter 6. 
 
 
IMPROVING PRODUCTIVITY AS WELL AS CONCURRENCY 
 

 The paper by Anselmo and Ledgard, [2], describes the basic properties of software that 
are required to enhance the ability to produce it, and more importantly, to support future 
upgrades.  Two key properties - independence and understandability - help to ensure the 
reusability and scalability of software modules.  These same properties provide the basis for 
designing software architectures that take effective advantage of the inherent parallelism of a 
system and realize the potential concurrency at run time.  The tools used to build that software 
must ensure that these properties are easily achieved.  These tools exist in the CAD environment 
described here. 
 Our objective is to minimize the time to build and support a software product while 
meeting constraints on functional requirements, quality, run-time speed, accuracy of results, and 
budgets.  We leave selection of these constraints to marketing, user groups, and top management.  
Our goal from a productivity standpoint is to minimize the time to create a new module or 
modify an existing module.  This is the software technology issue, the subject of our focus. 
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DEALING WITH INCREASING SOFTWARE COMPLEXITY 
 

 Recent papers describe the need for an engineering approach to overcome the barriers in 
dealing with increased software complexity, see [4], [21], [54], [62], [91], and [111].  To 
accomplish this goal, we must draw on engineering principles that can be used to build software.  
The principles suggested in the above referenced papers call for techniques such as CAD tools 
for software, and an approach to modeling the architecture of software systems similar to that 
used in hardware design. 
 

 Such a technology already exists.  Having been developed and refined since 1982, it has 
been described by Anselmo and Ledgard, [2], among others,.  This technology was initially 
developed as the General Simulation System (GSS), used for simulating complex engineering 
design and building planning tools that require embedded discrete event simulations.  This 
technology is based upon engineering principles and CAD tools used to produce complex 
electronic circuit designs.  Chapter 5 provides an overview of the underlying principles, 
implementation, and use of that approach.  It encompasses a new concept - software 
architecture, and the use of engineering drawings to describe that architecture.  This architecture 
has no relation to flow charts or other symbolic approaches that merely represent code.  This 
technology provides for the design of modular system architectures using measures of 
independence and understandability. 
 

 For large networks, the number of state variables may be in the thousands.  Solving worst 
case design problems involves multiple optimization runs that may require hundreds of 
simulations each.  Each simulation may involve thousands of nonlinear differential equations.  
Speed and accuracy are the driving forces in designing these simulations.  They are also the 
driving forces that have evolved this CAD development environment. 
 

 The underlying problem is to determine: What is required to improve the way we build 
software?  To be more specific, what are the factors that affect the time to build and time to run a 
large complex piece of software?  This sounds like a straight forward problem.  Why hasn’t it 
been solved, especially after so many well known people in the field have complained about it? 
 

 Conducting experiments to determine the best languages or software development 
environments is not simple.  In fact, it is fraught with potential pitfalls.  There are multiple 
reasons.  First, there is a wide range of software applications, from personal to commercial, to 
industrial, to government and military.  Funding agencies from the last two categories have most 
likely invested the lion’s share of the money into investigating approaches to building software.  
In addition to being prone to politics, neither of these categories contains managers who are 
personally pressed to minimize the time to build or run an application.  Their personal success is 
not on the line - in nearly the same manner - as the owner of a small private software company.  
The small company must compete for sales of large packaged products - based upon price and 
performance.  Their owners are concerned about personal survival.  Government projects are 
reimbursed based upon cost - by the taxpayers.  Management salaries are typically valued in 
proportion to the size of their budgets, of which the largest corporations win a growing share.  
Because of their political situation, they are also prone to voicing strong opinions. 
 

 Conducting experiments to measure the run-time speed of a reasonably large complex 
software system is much more simple than measuring productivity, but also fraught with 
problems.  However, given the proper scientific environment, this can be accomplished. 



Software Theory                   Page 2 - 14  

Why Hasn’t The Problem Been Solved? 
 
 After reviewing the history of programming languages, it is clear that Henry Ledgard’s 
article in the year 2000, The Emperor with No Clothes, [89], addresses a major barrier.  He 
quoted W. Edwards Deming (father of quality control) who stated “If you can’t measure it, you 
can’t improve it.” Ledgard’s message: “Without measures from repeatable experiments, software 
is not a science.”  This same point was made 10 years earlier by David Parnas, [106].  
Considered by most as the father of Computer Science, Parnas was a strong promoter of the 
College curriculum.  However, in later years, Parnas said: “most CS PhDs are not scientists; they 
neither understand nor apply the methods of experimental science.”  These views are hard for the 
software and academic world to accept.  Yet both authors are at the top of the list of people 
knowledgeable in programming language design and have lived in the academic community. 
 

 Secondly, measuring productivity is difficult.  One must build a sufficiently large and 
complex system to understand the myriad of factors associated with productivity.  Given that one 
can measure it, one must still compare competing approaches.  Performing such an experiment 
on a sufficiently large scale is prone to many questionable factors.  Yet anyone running a 
software company that is building sufficiently large and complex software is constantly engaged 
in many such experiments.  However, one must be driven by pure economics to fairly conduct 
trials and take meaningful measurements. 
 

 Finally, the VisiSoft CAD environment that provides the dramatic gains in productivity 
as well as speed is based upon mapping the inherent parallelism in an application system into 
Independent Modules.  This is accomplished by designing software architectures using 
engineering drawings, and a language that has been carefully designed to support these facilities.  
This is a huge change from the current approach to building software, and is faced with a 
correspondingly huge resistance to such change.  But the benefits can be shown easily by 
experiment, measurement, and a fair comparison of results. 
 

 Scientific measurements may be difficult to obtain.  That does not stop sincere scientists 
from determining ways to obtain them.  An example is the confirmation of Einstein’s Theory of 
Relativity.  Einstein waited 15 years before his General Theory of Relativity was confirmed by 
an experiment that required an eclipse of the sun.  Various experiments were set up at those rare 
time intervals (typically many years apart) and at specific spots on the earth where the bending of 
light rays around the sun could be photographed.  But these failed to materialize multiple times 
because of cloudy weather.  (In those days one could not get beyond a cloud covered atmosphere 
to look at an eclipse.)  Finally the weather cooperated and separate teams of scientists performed 
the experiment, confirming the accuracy of Einstein’s predicted results. 
 

 The approach used here is to address this problem in pieces, specifically those that have 
been part of huge complex software systems, covering commercial data management and 
Computer-Aided Design with heavy duty graphics, to language translators and parallel processor 
operating systems.  Experiments are defined later in the book that can be conducted at any 
academic institution seriously looking to understand the problem and  seek its solution. 
 

 Difficult scientific measurements are performed when a sufficient number of concerned 
scientists are seeking the truth about a controversial phenomena that they are investigating.  Even 
then, there is ample history of resistance to change (Galileo was jailed for saying the Earth 
revolved around the Sun). 
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Why Is There Resistance To Accept The Truth About Technology? 
 

 There have been various books written on this issue.  Two of them are well cited in the 
literature.  These are Thomas Kuhn’s The Structure of Scientific Revolutions, [85] and Clayton 
Christensen’s, The Innovator’s Dilemma, [46].  Both authors cite the same basic factors: 
 

• Not Invented Here - Known as the NIH factor, this is harbored in exclusive private, 
government, or academic research laboratories where people are getting paid large sums 
to come up with their own solutions to critical technology problems. 

 

• Job Security - People have spent time learning, using and becoming adept at current 
technology, whereas the new technology eliminates the need for their special expertise.  
In cases, the new technology may eliminate a major portion of the profession. 

 

• Financial Competition - Huge investments exist in the current technology, and these are 
at risk of being wiped out.  Large corporations and investment houses have been known 
to go to Congress to get laws passed or standards imposed to prevent the use of new 
technology. 

 
 The above bullets all support the theme that the approach that currently exists is the best 
possible approach (don’t change horses in mid-stream).  These people do not want to hear the 
truth about the myth - that the current technology must be the greatest (it may have come out of 
one of the world’s foremost research institutions).  That is - unless they see a personal gain.  In 
the end, this may be motivated by the handwriting on the wall - for a big potential loss. 
 
 
LEARNING FROM HISTORY 
 

 Those seeking to make contributions to improve a technology generally start by learning 
the history.  As in most fields of technology, the computer field is rich in history.  So we will 
start with a description of as much of that history that we believe to be pertinent.  The next 
chapter is devoted mainly to the development of the computers, i.e., the hardware.  The 
following chapter is devoted to the history of software, and principally the languages that 
evolved to build applications in software. 
 

 In fields of technology, advancements are typically based upon prior history.  When those 
working on advancements read the history, they typically base their new theories on the prior 
documented results.  If the results are not correct, or the presentation not true, the serious 
researcher may waste much time going down a wrong path.  This is why the field of science is 
based upon repeatable experiments, where independent (unbiased) researchers repeat the 
experiments to determine if the results are valid. 
 

 In general, the history of technology is recorded in the literature.  In most fields of 
science, the literature contains papers that document proposed theories, and more importantly the 
results of experiments that prove or disprove the correctness of portions if not all of a theory.  
This is aimed at ensuring that the history presented is true.  It is the desire of all serious 
researchers to avoid the problems encountered, and time wasted, learning from incorrect history.  
Although many years may go by using the wrong history, it is generally true that the real history 
is eventually uncovered.  On this note, we encourage all readers to be seekers of the truth and 
contribute to the real history. 
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 Science tries to avoid the potential derailments - driven by money & marketing.  But one 
must be aware that the biggest investments in languages have been put into C, C++, C#, and Java 
(C-Based languages).  Pronouncements of greatness have been made based upon promotion, 
appeal to style, and popularity - by prior giants, e.g., AT&T and SUN (sometimes referred to as 
the political approach).  This is all at odds with the measures of Hard Science. 
 

 But of all the issues discussed above, we must ask the key question: What are we trying 
to accomplish?  Clearly it is to make software easier to build.  But what does that mean?  How 
do we measure it?  What are the problems people want to solve?  How can we define measures 
of approaches to solutions if we have not clearly defined the problem? 
 

 As it turns out, there are many types of problems where software solutions apply.  Some 
are easy to solve.  For the easy problems, the solution approach will likely not make much of a 
difference.  What some people consider hard problems, others may consider simple.  Also, the 
Beginner looks at the performance of a Professional and says “That looks simple.”  The 
Intermediate looks at the same performance and says “How does he make it look so simple? 
 

 Reading the literature, one often sees snippets of code being applied to a problem.  This is 
often done because the nature of the literature does not permit publication of what may be a huge 
amount of background material.  Without sufficient background, one may not be able to 
appreciate the context of a given solution.  This may be the reason that solutions to problems 
involving large complex systems are hardly published, except internal to the organization 
developing the system.  The bottom line is that we must take a reasonable look at the myriad of 
problems that make up the “Software Problem.” 
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CHAPTER 3 
 

 THE EVOLUTION OF COMPUTERS 
 
 
 

  
 

Figure 3-1.  From Tabulator to Main Frame to Parallel PC. 
 
 
 
PERTINENT HISTORY 
 

 Computers have gone through significant changes since their beginnings in 1906, a year 
most programmers would likely question.  It started with the predecessor to the  IBM Tabulator 
using a programmable board (lower left corner in Figure 3-1).  The Tabulator was an electro-
mechanical device invented and patented in 1889 by Herman Hollerith for the 1890 U.S. Census.  
It was an essential part of the computing scene for nearly a century.  Starting with the 1906 
model, “Programmers” had to account for timing and synchronization when wiring the boards 
that implemented the instructions.  Their concerns covered the sequences of electrical signals and 
timing of mechanical actions, including the resulting delays and race conditions that had to be 
considered when wiring the boards that implemented the instructions.  Although not clearly 
differentiated at the time, they were really doing logical design.  The reason was that, back in 
those days, computers only stored numbers (and later letters).  The instruction sequences were 
contained on the boards wired by the programmers. 
 

 Because the mechanical moving parts in tabulators were slow, it many days to do large 
calculations.  This led to the ENIAC, the first all-electronic version, built in the Electrical 
Engineering Department at the University of Pennsylvania (1943-1945).  Designed by Dr. John 
W. Mauchly and J. Presper Eckert, Jr., its internal memory was used only for storing binary 
coded numbers.  The instructions still used wired programmable boards.  Before the ENIAC was 
completed, Echert and Mauchly were improving the design, looking to bring the instructions into 
the same memory as the data.  However, at that time, memory was quite limited and the search 
was on to find ways to increase memory. 
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The Von Neumann Architecture - A Programming Breakthrough 
 

 As electronics replaced mechanical devices and new devices were conceived to expand 
memory, John Von Neumann, from the Institute for Advanced Studies (IAS) at Princeton 
University used the new memory to develop an instruction set that would support his work on 
solving the shock wave problems for nuclear bomb calculations.  His instruction set, combined 
with Eckert and Mauchly’s concepts on computer architecture, moved the instructions from 
wired boards into the same memory that previously stored only data. 
 

 This important breakthrough in computer programming was described in a paper by von 
Neumann, see [148], that contained a plan for the EDVAC, a follow up to the ENIAC,.   The 
instruction set, to be stored in memory along with the data, became known as the Instruction Set 
Architecture (ISA).  The ISA was driven by von Neumann’s application requirements to solve 
sets of differential equations using discrete time difference equations and binary numbers.  
Implementation of this theoretical paper dramatically simplified computer programming.  The 
concept was implemented to a very small degree in a later version of the ENIAC, but in that 
modification the instructions were still fixed, implemented by switches instead of cables.  As a 
result, they were not necessarily sequenced in order, causing reliability problems due to timing. 
 

 The first computer design was implemented in the MANIAC, built at the Princeton IAS.  
It was aimed at supporting continuation of the Manhattan project to develop the Hydrogen bomb 
at Los Alamos, NM.  This new paradigm forced programs to follow a sequence of instructions, 
resulting in the independence of sequential operations.  Timing and synchronization within a 
given instruction were left to the logic designers of the machine.  Timing between instructions 
was no longer a programmer concern.  This inherent independence property provided a great 
programming simplification, ushering in dramatic increases in software size and complexity. 
 

 One of the first fully programmable “von Neumann architecture” computers was the 
PENNSTAC built at the Pennsylvania State University (1953-1957).  The PENNSTAC was 
programmed by entering instructions into its large drum memory (donated by IBM) using a 
flexowriter (a souped-up teletype) and printing them out for review.  Programs could also be 
punched on paper tape for storage and subsequently modified off-line. 
 

 The instruction set on the PENNSTAC was reasonably sophisticated for its time.  
Instructions could modify themselves - and the program - on the fly.  A course in logic design, 
taken by author Cave, required writing programs in 1s and 0s (on standard binary coding sheets). 
 

 Mnemonic code translators quickly appeared so that instructions were designated using 3 
letter labels, and memory locations were specified in decimal.  Data could also be specified in 
terms of decimal numbers or letters.  Large numbers had to be handled by the programmer using 
a pair of numbers.  The mantissa was used so that the first bit was always in the left most 
position to maintain accuracy.  The number of shift-left operations was tracked using a scale 
factor, a form of binary exponent. 
 

 Programs containing both data and instructions could be loaded from paper tape into the 
machine to run.  Additional sets of data could be loaded through paper tape once the program 
was loaded and running.  This was a major breakthrough in programming, allowing relatively 
large complex programs (for that period) to be built and stored for future use, including the use 
of subroutines that could be patched into multiple programs.  Programmers kept their routines on 
paper tape - wrapped in rubber bands and hung on nails in a board - next to their desks. 
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THE NEW ENVIRONMENT 
 

 Figure 3-2 illustrates the parallelization of platforms that has evolved since the early days 
of large scale computing.  Most computers today may be viewed as parallel platforms 
communicating with each other.  Each platform is managed by its own OS with tasks that are 
independent of those on the other platforms.  Except for minor communications between some of 
them, they typically share files.  From manufacturing to retail, businesses depend upon platforms 
tied via networks.  People at the cash register do not want to wait more than a few seconds to 
complete a sales transaction.  Time is money.  This requires fast communications. 
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Figure 3-2.  The parallelization of platforms. 
 
 
 
GETTING CLOSE TO THE MACHINE 
 

 Looking behind each platform in Figure 3-2 we find a “machine”.  There is growing 
agreement in the literature about where the “machines” are headed.  Most of the recent literature 
is looking at multi-core chips, because that is what is being manufactured.  The new chips offer 
multiple processors (cores), albeit each may be slower than a fast single processor.  As an 
example, these chips may be grouped onto boards with 32 processors.  An example is depicted in 
Figure 3-3.  In the case of High Performance Computers (HPCs), Boards are then grouped into 
trays, trays into racks, and racks interconnected.  This is different from the multiple server 
environment because all processors are managed using the same OS.  Writing a single task to run 
under a Single OS (SOS) and effectively use multiple processors is a new problem to this 
market. 
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Figure 3-3.  A parallel processor computer board. 
 
 
 Then there is the engineering market where hundreds of processors have been put 
together under a SOS parallel processor to run large scale simulations.  This is somewhat more 
difficult.  One has to maintain synchronization with a simulation clock, a much more tedious 
problem than just synchronizing with a real-time clock.  Unless synchronization with the 
simulation clock is maintained, simulation results quickly become chaotic - as well as invalid, 
see [114].  We also note that, in the case of real-time simulations, the simulation clock must be 
synchronized with the real-time clock. 
 

 Many authors have documented experiments using large numbers of processors to run a 
single large scale simulation.  This provides a significantly different viewpoint from that of 
managing two, four, or even eight processors.  It is a viewpoint that magnifies the difficulties in 
approach.  Much test data exists for various schemes designed to solve this problem.  The results 
have been counter-intuitive as illustrated in Figure 3-4.  In most cases, speed multipliers fall off 
quickly if not going fractional (faster to run on a single processor).  This is because of the level 
of complexity that must be dealt with, and the totally different space of solutions one must 
consider.  The result is that most parallel processor suppliers are no longer in that business.  
Except for special applications, building software to take advantage of their hardware has been 
much too difficult. 
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Figure 3-4.  Efficiencies of different software approaches to SOS parallel processors. 
 
 
 What is more important is that programming approaches that make software slower on 
single processor platforms are going to make things much slower much faster on a SOS parallel 
processor (an exponential form of Wirth’s Law).  Piling layers of abstraction on top of the 
existing layers moves us further from the machine faster. 
 

 Figure 3-2 embodies the embarrassingly parallel case.  Tasks are restricted to a single 
processor.  Programs follow the sequential nature of the Von Neumann architecture.  Transfers 
between processors are simplified by the use of Inter-Processor (IP) communication protocols.  
In the SOS parallel processor of Figure 3-3, one is confronted with Efficiency_3 in Figure 3-4.  
We will explain this problem and its solution below. 
 

 Before addressing the problem of SOS parallel processors, we must understand the next 
layer down, the basic processor itself.  If we are not close to the single processor, then with N 
processors we are going to be much further removed.  We must map software into one processor 
effectively, assuming that we are going to multiply it by hundreds.  If we are not thinking in 
terms of using hundreds, we are not working in a space that will achieve an effective solution. 
 
 
Understanding The Single Processor 
 

 Almost all R&D money spent on parallel processing to date has been on hardware, with 
software an afterthought.  Going back to the Holland Machine in 1958, [74], hardware designers 
have tried to produce new architectures that improve on Von Neumann’s original design.  
Instead, simplicity of programming has caused this basic design to evolve over the past 50 years 
to the latest chips as illustrated in Figure 3-5.  The most significant architectural changes are the 
move from words to bytes (IBM 360), and the separation of data memory from instruction 
memory (PC on a chip).  Although other benefits were realized, the driving force behind both 
changes was speed. 
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Figure 3-5.  Illustration of the “new” Von Neumann architecture. 
 
 
 Behind most every platform today is a processor similar to that illustrated in Figure 3-5.  
Speed is determined by a number of factors.  Referring to Figure 3-2, applications consist of 
functions that end users want to perform.  Users generally work interactively on client and 
graphics platforms.  In the client server market, application platforms process client input data 
using databases and return outputs to client and graphic platforms as well as updating databases.  
Most factors affecting speed are associated with transferring data (communications). 
 

 In band-limited systems (computers and busses), minimizing data transfer times implies 
minimizing the data transferred.  In Figure 3-2, copies of databases are common, and 
transactions are identified by simple codes and numbers packed into records for transmission.  
This implies designing data structures that minimize the data transfers required to perform the 
desired functions.  Transferring programs (instructions) is avoided when speed is important. 
 

 Using a single processor, multiple tasks may run in virtual concurrency, with the OS 
managing utilization of the processor based upon task priorities and resources requested from 
each task (e.g., memory, I/O devices, etc.).  The OS swaps blocks of instructions in and out of 
instruction cache and pages data in and out of data cache.  Swapping and paging is done based 
upon where things reside (the context) in the memory hierarchy (cache, RAM, disk, etc.). 
 

 But one must put these delays and time-frames into perspective.  In the case of interactive 
systems, response times of milliseconds (if not seconds) are typically sufficient.  When looking 
at the difference between memory boundary crossing delays, differences range from 
nanoseconds to microseconds.  To appreciate the meaning of these delays, one must gain a 
perspective on the difference between the effects of milliseconds, microseconds, and 
nanoseconds at a particular point of interest in the processing cycle. 
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BEYOND THE SINGLE PLATFORM 
 
Definitions 
 

It is clear from the definitions provided below that the hardware architecture for a parallel 
processor must be much different from that of a server. 
 
Server Systems - These typically support large telecommunications requirements for transaction 
processing and large database management applications.  A large server system must interface 
with huge I/O facilities, including networks of workstations and big disk management.  Servers 
are composed of large numbers of processors, where each processor is typically running multiple 
tasks with fat communication channels to fast I/O, including teleprocessing channels and big disk 
facilities.  Applications include large commercial data processing, huge database management 
including query, and remote teleprocessing and cloud type applications.  It can also support 
embarrassingly parallel applications defined below. 
 
Parallel Processors - These are required to support true parallel processing applications as 
opposed to embarrassingly parallel applications (see below).  Parallel processor applications 
have substantial inherent parallelism, i.e., elements that operate independently, that can be put 
into separate software modules.  They require a large number of processors running in parallel 
with these independent modules to meet the time constraints for a single task.  They require 
limited one-way I/O (typically output after initialization).  They typically require intensive 
internal processing of mathematical systems or decision processes that are processed in parallel.  
Examples of parallel processor applications are EM wave simulation, meteorological simulation, 
and fluid dynamic simulations (e.g., fluid flow through multiple container surfaces; moving 
particle physics; and dynamic biological, and chemical particle interactions). 
 
Embarrassingly Parallel Applications - These may be broken into multiple separate tasks 
running on separate processors.  Once they start to run, they need little if any communication 
between processors.  They can be run as fast on a server, or a cluster of PCs, as on a true parallel 
processor.  Scientific applications, e.g., Monte Carlo simulation and fast approaches to large 
scale Linear Programming (LP) are embarrassingly parallel.  These applications are poor 
examples of the requirements for Parallel Processors.  However, they are often used by those 
pushing fast server or cluster environments. 
 
 At this point we must differentiate between Input/Output (I/O) transfers, i.e., memory to 
I/O devices, and memory-to-memory transfers that occur in a typical server environment as 
shown in Figure 3-6.  Figure 3-5 illustrates the processor CPU and on-chip memory only.  
Additional devices, including further hierarchies of memory as illustrated in Figure 3-3, may 
surround the single platform chip.  Large blocks of instructions that use local memory transfers 
can be processed fast compared to a single I/O instruction.  In these cases, the OS can determine 
when swapping and paging among tasks are effective.  Because I/O transfer delays are easily 
isolated with good software architectural approaches (described later), our interest here is the 
speed of internal processing in a large single task that would run on parallel processors. 
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 As a single task grows in size, swapping and paging may occur when it is the only task 
running on a single processor, with or without I/O transfers.  It is not unusual for large tasks to 
use huge data spaces that require many gigabytes of storage.  Transfers across memory hierarchy 
boundaries using multiple communication busses may incur relatively significant increases in 
delay.  These are caused by speed differences in memory types as well as transfer delays on the 
interchange busses. 
 

 In the case of a single task on a single processor, transfers across memory boundaries can 
have a significant impact on speed.  To maximize speed, the OS attempts to map out memory in 
a way that minimizes swapping and paging.  This implies predicting what blocks of memory will 
be used beyond the current block of instructions.  However, programs containing complex sets of 
algorithms that deal with large blocks of data are only understood sufficiently by the software 
designer - not the OS designer. 
 

 When dealing with large discrete event simulations of the type required by the authors, 
the use of memory is somewhat unpredictable.  This is due to the non-stationary nature of the 
scenarios that depend upon interactions between processes.  This problem and its solution will be 
explained further in Chapter 14.  However, with current approaches to programming, it is 
doubtful that even a good software designer can make such predictions.  Expecting such 
predictions from the OS is folly.  Depending upon stochastic time constants, migration may trail 
far behind the applicable statistics. 
 

 When considering applications that may run on parallel processors attached to a server 
environment as shown in Figure 3-6, one must consider an OS design that best supports the 
different applications.  For example, when using a large number of parallel processors, it is best 
to exclude direct connections to I/O devices from the parallel processor environment, and deal 
with these devices through a server.  This allows the server to manage moves of large blocks of 
memory to and from these devices without slowing the parallel processing task.  If the software 
architecture on the parallel processor can identify one-way transfers, then reading files for 
initialization and writing files for output can be serviced without slowing down the heavy 
processing burden.  This is also true when producing significant data output to a graphics 
workstation. 
 

 Figure 3-6 illustrates a scenario where three parallel processing tasks are running 
concurrently on different sets of processors.  These tasks may be managed by different servers 
that interface with different I/O devices.  We note that the number of servers and parallel 
processors in the figure may be small compared to some actual environments.  However, we 
expect that the parallel processor part of that configuration will fit in a tightly coupled set of PC 
boxes (if not a box the size of a PC) within a year or so, implying the Personal Parallel Computer 
(AKA the Parallel PC) will solve most real parallel processing problems. 
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Instruction Set Architectures 
 

 This chapter started with a description of the first stored program computer that opened 
the door to the huge world of software.  Although von Neumann generally left logic design to the 
engineers, he was given the credit (rightly so) for the architecture that, still today, is known as 
the von Neumann architecture.  What he contributed was the definition of the instructions to be 
implemented by the hardware, an approach that became known as the Instruction Set 
Architecture (ISA).  Although computers are defined by their instruction set architectures, the 
hardware implementation can vary to maximize speed, minimize power dissipation, and 
minimize cost. 
 

 Going back to the 1980s, Silicon Graphics Inc. (SGI) was created based upon a similar 
concept applied to graphics and visualization.  The original language, SGI-GL, was developed by 
James Clark and his team while he was at Stanford.  That team fostered the start of SGI.  Their 
Geometry Engine was the hardware that supported the higher level graphical instructions (the 
ISA).   In this case, the graphical ISA defined the requirements for the logic and hardware design 
that implemented complex 3D transformations and data pipes to speed the production of 
dynamic graphical images on a computer screen. 
 

 While Clark was Chief Technology Officer at SGI, the SGI team learned more about the 
requirements for graphical software, and SGI-GL was replaced by what is known as Open-GL.  
Open-GL expanded the language facilities while greatly improving and simplifying the language 
interface from a user-functional standpoint.   Open-GL is now the standard ISA for fast graphical 
computation and display, and is implemented differently by various graphics chip manufactures. 
 
 
Application Space Architectures 
 

 Why can’t large complex software systems be decomposed into independent modules 
that run concurrently on relatively standard processors that share memory?  The answer is “They 
can!”  But, as stated by top engineers referenced above, this requires acceptance of a disruptive 
technology, i.e., a totally new approach to designing software.  Without an Application Space 
Architecture (ASA) - the equivalent of von Neumann’s ISA for parallel machines - new 
approaches to hardware continue to ignore history. 
 

 The parallel processor applications enumerated above all have different software design 
requirements.  The spaces required to minimize complexity of their algorithmic solutions are all 
different.  Representing these problems requires hierarchical data spaces and discrete event 
spaces - as well as continuous and discrete time spaces - all in the same application.  To support 
this translation requires an extension of mathematics that helps one to conceive the design of 
these spaces and corresponding decision processes.  The application software must also invoke 
synchronization facilities for sharing temporally independent data spaces that only application 
area experts will understand.  Software development must be easy for these experts.  Given a 
language that implements these facilities, one is on the road to determining the requirements for 
parallel processor hardware design. 
 

 The ASA presented here covers a broad set of applications that can be tailored to a well-
defined hardware architecture, while leaving the door open to those who can afford hardware 
architectures tailored to specific applications. 
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CHAPTER 4 
 

 THE EVOLUTION OF SOFTWARE 
 

 
 

 
 

 
Authors’ note:  In presenting the history below, we emphasize two important ideas in software.  
First is “independence”, by which we mean the ability to make modifications to a software 
module without affecting other modules.  Second is “understandability”, by which we mean the 
ease with which a programmer can read and change a portion of software written by another. 
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IN THE BEGINNING ... (circa 1955 - 1975)   -  DRAMATIC SPEED IMPROVEMENTS! 
 
 Back in the old days we wired boards.  After the big breakthrough, we wrote code in ones 
and zeros - using binary coding sheets.  To be a programmer, one had to understand the machine.  
Programming required knowing the memory layout,  program counter, registers, arithmetic 
instructions, control instructions, I/O instructions, etc.  Writing a simple program was not easy.  
One had to define what was in each memory location and clear registers before they were used.  
Figure 4-1 illustrates the format of a program.  This example is for a fictitious, but simple, single 
address machine with an A register. For example, OP Code 1000 cleared the A register to zero 
and then added the contents of the specified memory address, e.g., 13, into A (in this example, 
location 13 contains the value 25). 
 

 Notice “the separation of data from instructions”.  The data could be put anywhere.  The 
instructions had to follow in sequence, unless a transfer (GOTO) was used. 
 

MEM 
LOC 

OP 
CODE 

MEMORY 
ADDRESS 

COMMENTS 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 

1000 
1001 
0010 
1010 
0111 
1110 
1100 
1001 
0011 
1111 
0011 
1111 

00001101 
00001110 
00001111 
00010000 
00001110 
00001011 
00000010 
00001111 
00000000 
 
00001111 
 

CLEAR AND ADD [13] TO A 
ADD [14] TO A 
READ TAPE INTO 15 
SUBTRACT [16] FROM A 
STORE A IN 14 
TRANSFER TO 11 IF A IS NEGATIVE 
TRANSFER TO  2 IF A IS POSITIVE 
ADD [15] TO A 
PRINT A 
STOP 
PRINT [15] 
STOP 

13 
14 
15 
16 

000000011001 
000000011010 
000000000000 
000000110010 

25 
26 
0 
50 

 
Figure 4-1.  A computer program written in binary. 

 
 
 We note that, during this era, use of the binary number system started to become wide 
spread.  Every binary string could be treated as a letter or string of letters, even though it 
represented a number.  Claude Shannon used this in his “mathematical theory of 
communications”, [130], where he defines measures of error.  In a later chapter, we provide an 
extension of mathematics, one that includes words, and IF ... THEN ... ELSE conditions. 
 

 Working in the binary number system was not the most difficult problem.  Modifying the 
program was the real challenge.  Consider that one wanted to put a few additional instructions 
into this program starting at memory location 8.  Then, all entries from there down would get 
new memory addresses, implying that every reference to them must be changed, a real mess!  
Even if one was clever enough to insert a GOTO to some higher location with new instructions, 
one still had to move the old instruction in 8 to the new location, and put another GOTO at the 
end of the new sequence (to get back).  Time spent debugging these changes and random jumps 
was immense.  The important lesson here is that all lines of code were dependent upon the 
sequence, and thus each other.  This lack of independence made change very difficult. 
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The Properties of Understandability and Independence 
 

 Back in those days, computers were used by engineers and mathematicians trying to 
solve real problems.  Programming was not their interest.  Their concern was how long it took to 
get a program running correctly, and then how long it took to run.  It was not unusual for those 
people to complain about the stupidity of the machine.  But for large problems, it was still much 
faster than using a hand calculator.  It didn't take much time for these end users to start writing 
translators to make it easier to write programs.  This implied making them more readable, and 
therefore more understandable.  The first simplification was the use of mnemonic code 
generators, using names for Op Codes (e.g., ADD) and using decimal numbers for addresses 
(e.g., 65 instead of 01000001). 
 
 
THE JUMP TO ASSEMBLY LANGUAGE 
 

Indirect Addressing 
 

 Mnemonic code generators quickly evolved into the next productivity improvement: the 
assembler.  Each machine had its own assembler that did much more than mnemonic code 
translators.  The first assemblers provided indirect addressing, allowing the use of symbols 
instead of specific numeric addresses.  With indirect addressing, actual addresses were 
determined by the assembler and loader at run-time.  This was a major improvement - even for 
smaller programs - where labels were referenced instead of actual memory addresses, see Figure 
4-2, allowing one to insert lines of code without changing the referenced addresses.  
 

LABEL OP 
CODE 

MEMORY 
ADDRESS 

COMMENTS 

 
RESTART 
 
 
 
 
 
 
 
 
END2 
 

CLA 
ADD 
RDT 
SUB 
STO 
TRN 
TRU 
ADD 
PRN 
STP 
PRN 
STP 

X1 
X2 
Y1 
Y2 
X2 
END2 
RESTART 
Y1 
A 
 
Y1 
 

A = X1 
A = A + X2 
READ TAPE INTO Y1 
A = A - Y2 
X2 = A 
TRANSFER TO END2 IF A IS NEGATIVE 
TRANSFER TO RESTART IF A IS POSITIVE 
A = A + Y1 
PRINT A 
STOP 
PRINT Y1 
STOP 

X1 
X2 
Y1 
Y2 

25 
26 
 0 
50 

 
 
 
 

 
Figure 4-2.  A computer program written in early assembly language. 

 

 
Subroutines And Relative Addressing 
 

 As programs grew in size, it became desirable to split them up into separate sections.  
This led to the separation of programs into subroutines, with provisions in the assembly language 
for calling to them by name and returning automatically.  Programmers also had to specify a 
starting (MAIN) routine.  This required relative addressing where the addresses within a routine 
were relative to the first address in that routine.  Multiple routines were assembled and linked 
together with all real memory addresses determined by the assembler. 
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Linking And Loading 
 

 Relative addressing allowed programmers to add or change one or more routines and then 
reassemble them with the others.  Using a program loader to run the program, one could typically 
specify the starting memory address.  The program was then loaded into memory.  As many 
subroutines became more reusable in different applications, programs grew even larger, leading 
to another problem.  All routines belonging to a program had to go through the assembler to link 
and load.  As main memory became larger, making a simple change to a single routine still 
required the whole program to be reassembled and loaded. 
 

 This led to the separation of functions, namely language translation, linking subroutines 
together replacing the relative addresses, and loading the program into memory ready to run.  
These functions were separated off from the assembler into a Linker and a Loader. 
 

 A single subroutine could be assembled independently of the rest into a binary ‘object’ 
module.  The linker would link the object modules (binary routines) produced by the assembler 
into a linked object module containing all of the routines where all addresses were resolved 
relative to the top routine of the linked module (MAIN).  When the program was totally linked, 
the loader would load the program with real memory location addresses starting at a pre-assigned 
starting memory location. 
 

 As linkers became more sophisticated, they could link object modules that had already 
been linked with those not yet linked.  This provided for libraries of linked object modules that 
were already assembled and partially linked into different programs relative to a top routine.  
This allowed for libraries to be shared as linked object modules so that the source code was 
controlled by a single developer.  This allowed application programmers to use complex library 
modules that were well documented, well tested and reliable.  These object modules resided as 
independent entities in library pools that were scanned during a subsequent link stage. 
 
 
Floating Point Arithmetic 
 

 In these early days, programmers had to provide for overflows and underflows when 
using multiply and divide instructions.  This required storing a scale factor along with the 
number to track the position of the decimal point.  This corresponded to the number of shifts - 
left or right - required to maintain a binary exponent that ensured the mantissa was stored with 
the most significant bit in the highest bit position.  As transistors came into use and logical 
designers started using Computer-Aided Design (CAD) systems, instruction sets became much 
more sophisticated.  For example, real numbers could be specified directly and manipulated with 
automatic handling of exponents as well as providing maximum accuracy.  For scientific 
computation, this provided major improvements in productivity. 
 
 
A STRONG DRIVE FOR IMPROVED PRODUCTIVITY 
 

 With indirect and relative addressing, new code could be added anywhere using labels for 
reference and relative addressing for subroutines.  Productivity shot way up.  Having written 
many programs without these assembler facilities, one understood how such user-oriented 
language changes could provide substantial reductions in the time required to produce reliable 
programs. 
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 In these early days, most of the people writing programs were end users, typically 
engineers, mathematicians or accountants who were experts in an application.  To them, 
computers were a tool to produce solutions.  They were driven by their own productivity, i.e., the 
time it took to solve their real problem.  They wanted to minimize their time spent writing 
programs.  Anything they could do to reduce this time was sought and used.  Productivity was 
clearly measurable based upon one’s own experience.  This drove rapid improvements in the 
ability to write, debug, and run programs.  These improvements were quickly shared.  This 
created the ability, and therefore desire, to solve even bigger and more difficult problems. 
 
 
Overlays 
 

 As more memory became available, computer programs quickly grew in size to meet 
application speed demands.  Disk and drum memories became sufficiently reliable so that larger 
programs could be stored on these external devices for days.  Programs could be loaded rapidly 
into main memory when they were needed.  However, internal memory was expensive and 
scarce.  As program sizes grew, they quickly exceeded the internal memory of the machine.  The 
ability to overlay modules that were no longer needed soon became a necessity.  This was 
particularly true for handling sequential I/O devices such as tape file input and output routines.  
Large input files were read, databases processed, and large output files written. 
 

 This led to the desire to overlay memory containing routines that were no longer being 
used, with those routines that were needed but sitting out on disk.  This required changes in the 
design of instructions so they could use pointers to a base address used by relative addresses at 
run-time.  When routines were brought into memory, the base address was assigned the starting 
location of a real memory address that was followed by sufficient free memory to store the 
overlay.  The base address was loaded into a relative address register so that all instructions or 
data referenced within that overlay were relative to its base address. 
 
 
Run-Time Memory Management 
 

 As overlays became popular, application programmers had to lay out the patchwork of 
where routines were best mapped into memory.  This was solved using memory managers 
implying that the real memory starting addresses of the overlays remained undecided until they 
were loaded into memory.  It was still up to the application programmer to design the overlays 
accounting for the splitting and reuse of functions and corresponding memory sizes.  This 
provided for spatial independence of overlays, relative to where and when they were mapped 
into main memory, making the memory management much easier while programs ran much 
faster.  Overlay programs became a general requirement that led to the Operating System (OS).  
Other functions, e.g., identification and management of files on disk, and running a sequence of 
tasks as part of a job stream created the need for OS level functions. 
 

 A growing list of library routines created the next problem, that of duplicate names.  To 
this day, the problem of duplicate library names, amplified by flat file object libraries and very 
simple library managers and linkers, plagues a growing part of the programming world.  This has 
led to a lot of band-aids in programming languages to cover up problems that are best solved at 
the software environment level.  These solutions are addressed in subsequent chapters. 
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THE GREAT LANGUAGE PRODUCTIVITY BREAKTHROUGHS 
 

 Computers were a scarce commodity in the early days and people lined up to use them.  
Anyone wasting precious machine time to get programs running was marked.  Then came the 
first compilers ( FORTRAN and COBOL circa 1960).  This split the programmers into two 
groups: the assembly language generalists, and those working to get answers to their application 
problems.  Having written a significant amount of scientific code in binary, and then using a 
relocatable assembler, it was obvious how languages could help solve problems much faster. 
 

 Back then, no one argued the use of binary coding as being more efficient than assembly 
language programming.  Too many people were familiar with both, and how run-time speed was 
greatly influenced by managing memory.  Today, few people understand the tremendous short-
comings of assembly language.  They have little experience with the difficulties in the layout of 
and access to large data hierarchies that dramatically improve speed.  They are prone to believe 
that lower level languages are more efficient.  When compared to a good high level language, 
this is easily proven to be totally false. 
 

 With the advent of the mainframe, one had to go to the programming shop to get large 
programs written.  This did not sit well with computer engineers developing CAD systems and 
complex scientific programs.  The programming shop also had priority over machine time - day 
and night.  Engineers could only get time at night, typically implying one shot in 24 hours.  That 
meant putting in 3 or more runs each night.  Using compilers was essential in this limited 
environment.  Yet the programming group refused to write in FORTRAN or COBOL, saying 
“efficient” code could only be written in assembler! 
 

 This logic implied that writing in binary should be even more efficient.  Even after the 
belief in assembly language proved totally false, the assembler programmers refused to give it 
up.  What was their motivation?  To get programs written by the programming group, one had to 
allocate money - in the form of time cards.  They were paid by the hour.  When the number of 
jobs started to dwindle, they spread their time on each job.  Improving productivity was not of 
interest. 
 
 
FORTRAN - A Big Jump In Engineering Productivity  
 

 The desire to make the programming job easier led to a major step toward making the 
machine do more of the work of understanding the language of humans.  People writing 
programs to solve large sets of mathematical equations were the first to invent a more 
understandable language and corresponding translator - the FORmula TRANslator 
(FORTRAN).  FORTRAN shifted the burden of translation from the person writing the program 
onto the compiler writer.  Productivity went way up because of a number of factors. 
 

• One person could understand much more easily what another person wrote (or what 
that same person wrote a year ago).  Equations were written directly - as in a math 
text.  Conditional statements were easily understood.  This allowed a large program 
to be constructed with a team effort.  It also allowed completion of an effort and 
reuse of code without the original author. 
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• Many errors endemic to assembly language disappeared.  Probably the most 
common was scribbling on instructions (and immediately the rest of memory.)  
FORTRAN took away the Von Neumann facility of being able to write instructions 
that modified themselves.  This was backed up by the OS. 

 

• More and more smarts were built into the translation process as people compared 
what it took to be more productive.  These included improved syntax, various forms 
of error checking and prevention, run time messages, etc. 

 

 It is interesting to note that many programmers of the day looked askance at FORTRAN, 
disagreeing with the above bullets for various "technical" reasons.  One of these was efficiency 
of the code produced, until it was recognized that it was a rare programmer who could do as well 
as the designers of automatic code generators.  In spite of this resistance, FORTRAN became 
one of the best examples of improved run-time speed and also the following:  
 

 When understandability takes a leap, so does ease of change, and thus productivity. 
 

 Anyone racing to build computer programs to solve mathematical problems quickly got 
on board the FORTRAN train.  If they didn't, they couldn't compete and were left behind. 
 

 For people building data processing systems, FORTRAN left a lot to be desired.  It was 
cumbersome to work with files, particularly those with complicated record structures.  The 
FORTRAN FORMAT statement is a quick way to get listings of columns of numbers and some 
alphanumeric data, but there is no friendly mechanism for creating the complex data structures 
necessary for dealing with large data files.  Even the data structure capabilities existing in 
advanced versions of FORTRAN today leave much to be desired. 
 

 Another major problem with FORTRAN is the fall through approach to coding that is a 
carry over from assembly language coding.  Every line depends upon where it falls in the 
sequence.  Labels exist for looping and GOTOs but, in general, one cannot isolate blocks of code 
inside a subroutine and move them around without great difficulty.  An example of a very 
efficient sorting algorithm, published in the ACM Journal in 1969, [135], is shown in Figure 4-3.  
This algorithm is very efficient at sorting, using a clever algorithm with a sophisticated 
mathematical background.  But unless one is familiar with the implicit statistical methods for 
sorting referenced in the paper, one is hard pressed to understand the underlying algorithm. 
 

 The example in Figure 4-3 is not meant to reflect poorly on the excellent work of the 
author.  Rather it is a reflection on style and practices of some programmers in that era.  Note 
that, to save time, GOTO's are used to replace DO loops.  This accentuates the fall through 
approach.  As an exercise, try putting this example into a flow chart.  Note also the Spartan use 
of identifiers. 
 

  This program also exemplifies "economy of expression."  A minimum number of 
keystrokes is required to retype it from the journal - an important consideration of the general 
programmer.  One can also imagine being assigned to make changes to a five to ten page 
subroutine of this nature - clearly a humbling experience for a rookie.  We strongly suggest that 
economy of expression is inversely correlated with the overall life cycle economics of a large 
software product.  We believe that this is easily verified by experimental evidence, e.g., that 
reported by Fitsimmons and Love, [57], Ledgard et al, [88], and Sitner, [136]. 
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      SUBROUTINE SORT(A,II,JJ) 
 
C  SORTS ARRAY A INTO INCREASING ORDER, FROM A(II) TO A(JJ) 
C  ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO 2**(K+1)-1 ELEMENTS 
      DIMENSION A(1), IU(16), IL(16) 
      INTEGER A, T, TT 
      M=1 
      I=II 
      J=JJ 
    5 IF(I .GE. J) GO TO 70 
   10 K=I 
      IJ=(J+I)/2 
      T=A(IJ) 
      IF(A(I) .LE. T) GO TO 20 
      A(IJ)=A(I) 
      A(I)=T 
      T=A(IJ) 
   20 L=J 
      IF(A(J) .GE. T) GO TO 40 
      A(IJ)=A(J) 
      A(J)=T 
      T=A(IJ) 
      IF(A(I) .LE. T) GO TO 40 
      A(IJ)=A(I) 
      A(I)=T 
      T=A(IJ) 
      GO TO 40 
   30 A(L)=A(K) 
      A(K)=TT 
   40 L=L-1 
      IF(A(L) .GT. T) GO TO 40 
      IT=A(L) 
   50 K=K+1 
      IF(A(K) .LT. T) GO TO 50 
      IF(K .LE. L) GO TO 30 
      IF(L-I .LE. J-K) GO TO 60 
      IL(M)=I 
      IU(M)=L 
      I=K 
      M=M+1 
      GO TO 80 
   60 IL(M)=K 
      IU(M)=J 
      J=L 
      M=M+1 
      GO TO 80 
   70 M=M-1 
      IF(M .EQ. 0) RETURN 
      I=IL(M) 
      J-IU(M) 
   80 IF(J-I .GE. 11) GO TO 10 
      IF(I .EQ. II) GO TO 5 
      I=I-1 
   90 I=I+1 
      IF(I .EQ. J) GO TO 70 
      T=A(I+1) 
      IF(A(I) .LE. T) GO TO 90 
      K=I 
  100 A(K+1)=A(K) 
      K=K-1 
      IF(T .LT. A(K)) GO TO 100 
      A(K+1)=T 
      GO TO 90 
      END 
 

Figure 4-3.  Example FORTRAN program published in CACM in the late 60's. 
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COBOL - A Big Jump In Data Processing Productivity  
 

 Although FORTRAN has come a long way since it was first offered, many problems still 
exist, causing it to be used less and less each year.  The problems described above caused the 
desire for a new approach early on, particularly for large data processing programs, and a new 
language was produced in the early 60's to fit the bill.  This was COBOL. 
 

 It is instructive to leave the scientific community and look at the commercial software 
industry at a slightly later period in time.  After observing the huge productivity gains provided 
by FORTRAN for the scientific community, computer hardware vendors realized that it was 
software that was costing clients lots of money.  To be competitive, they had to provide support 
software that improved programmer productivity to compete in the commercial markets.  IBM 
and UNIVAC were leaders in this area, with various languages to cut programmer time.  This led 
to a combined effort by a number of computer manufacturers to come up with a standardized 
approach to complex data systems that would gain significant improvements in productivity. 
 

 The result was the most significant breakthrough in programming for the commercial 
(business) market - the COmmon Business Oriented Language (COBOL)  - circa 1960.  COBOL 
provided major breakthroughs in language design.  The importance of using hierarchies to 
control large complex databases became evident with COBOL’s hierarchical data structures and 
hierarchical rule structures.  In fact, code reads almost like English.  COBOL hit the New York 
metropolitan area like a bomb.  Software groups that were pressed with huge workloads were 
looking to get applications up faster, and to enhance them much more easily.  This was 
particularly true when debugging programs written by another author.  This split the business 
programmers into two groups.  This time it was the managers versus programmers who were 
saying that programs had to be written in assembler to be efficient. 
 

 But back then, managers of software groups had come up through the ranks and 
recognized the problem.  It was job security.  It did not take long for them to hire high school 
graduates who wrote COBOL code that was better than assembly code produced by experienced 
programmers, in terms of quality, enhancability, and running times.  Programmers who refused 
to write in COBOL were soon gone, replaced by much less expensive high schoolers.  
Programmer productivity soared.  COBOL took over 80% of the world’s code by the 1980s.  
 

 Learning COBOL was relatively easy.  Programmers were soon divided into different 
skill sets.  Some rose to be systems programmers.  Others rose to be system designers.  Some 
moved into management.  The need to move up the chain was imperative if one wanted to justify 
a higher salary.  Programmers became relatively inexpensive, up until the 1980s. 
 

 The COBOL language was developed by experienced programmers to achieve a common 
goal - build a language that humans could easily understand, one that could read close to plain 
English, see [15].  To the extent that COBOL quickly became owner of approximately 80% of 
the world's code for about two decades, it was the most successful programming language ever 
devised.  An October ‘95 article in Inform, [76], cites studies by IDC, Gartner, and Dataquest 
that showed COBOL still accounted for over 53% of all applications in the world, 80% of all 
business applications, 50% of all new business applications, and 5 billion lines of new code 
added each year.  This is because of its ability to improve real economic measures of 
programmer productivity, where it counts -  in the maintenance phase of a life cycle.  And these 
improvements are clearly due to its understandability and the ability of its users to map out and 
access memory in a way that substantially improves run-time speed as well as productivity. 
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 Yet, no language has been more maligned by a vocal segment of the programming world 
than COBOL, most of whom do not relate to the productivity motive.  This is not a new 
phenomenon.  As stated above, in the 1960s when the financial industry in New York City was 
going through conversions to new IBM-360s, costs to upgrade software were going through the 
roof.  This was because experienced programmers insisted that accounting applications could 
only be written efficiently in assembly language.  What they were really concerned about were 
armies of high school graduates that were marching into Manhattan and dramatically lowering 
the cost of building new software using COBOL that was machine independent. 
 

 Data processing managers had to fight to dislodge their company’s software assets from 
the hands of the assembly language programmers and turn them over to a younger, less skilled 
workforce who could write code that everyone could understand.  In that highly competitive 
economic environment, it was only a matter of time. The cost of software development and 
support plummeted, and the leftover money was spent developing more sophisticated 
applications. 
 

 As scientists, we cannot ignore the success of COBOL.  We must understand the facts 
behind its ability to cut costs and improve productivity.  Certainly, one cannot contest the 
readability of COBOL relative to any other language.  Greater readability leads directly to 
understandability.  Next, COBOL implemented the one-in one-out control structure advocated 
years later by Mills, [102].  The objective of this control structure is to eliminate "waterfall" or 
"fall through" code, providing a hierarchy of blocks of instructions within a subroutine.  This 
additional layer of hierarchical structure serves to increase the understandability of subroutines, a 
feature that does not exist in other languages.  However, as we will describe below, the COBOL 
implementation hindered certain desired improvements in logical clarity. 
 

 COBOL's ability to process data has been unsurpassed.  The most important factor in data 
handling is the hierarchical data structure.  COBOL allows a user to organize data structures the 
way one wants to see it, hierarchically - by logical organization - not by type.  Furthermore, 
What-You-See-Is-What-You-Get (WYSIWYG) in memory.  There is no such thing as "word 
boundary alignment" behind the scenes.  Most programmers did not understand the importance 
of this feature unless they had done sufficient character string manipulation or data processing 
using a character oriented language.  If one has never had this feature, one cannot appreciate it.  
It's what allows one to do group or subgroup moves from one data structure into another, e.g., 
moving part of a message or record, defined as all character data, into a template defining each 
field.  It provides for redefinition of data areas so that they can be looked at using different 
templates or filters without moving the data. 
 

 These language features all equate to major improvements in speed as well as 
productivity.  Any language that permits word boundary alignment to go on behind the scenes 
destroys these features.  Until the VisiSoft system described below, no language has provided 
these data structure facilities nearly as well as COBOL. 
 
 
Caveats - Some Of COBOL’s Short Comings 
 

 We must also learn from the weak points of COBOL.  The most obvious is the lack of 
scientific data types and the handling of equations.  Although these short comings were 
overcome with some versions of the COBOL compiler, they were the main reasons for it being 
shunned by the academic world. 
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 Another problem is the approach to breaking large programs into subprograms.  This is a 
result of COBOL’s heritage of sequential batch oriented jobs.  Although COBOL provides a 
subprogram capability, it is not easily used.  This has led to extremely large COBOL routines 
that become difficult to change and maintain. 
 

  The reason that COBOL programs are not easily broken into subprograms is subtle.  
COBOL’s sharing of data structures between subprograms by pointer is clearly superior for 
speed compared to passing individual data elements.  However, the mechanism for accessing 
data structures poses a problem since each structure must be declared in "Working Storage" 
before it can be used by another subprogram, where it then must be declared in a "Linkage 
Section."  These two classes of declarations impose a constraint that makes it difficult to 
structure, and especially to restructure, an architecture.  It is amplified by the requirement that, in 
a calling chain, if any routine down the chain wants access to the structure, it must be declared in 
all routines along the way.  One cannot switch or discard the “MAIN” routine without a big 
upheaval. 
 

 As indicated above, COBOL contains a one-in one-out control structure as advocated by 
Mills.  However, the implementation via the PERFORM paragraph statement does not preclude 
the waterfall from one COBOL paragraph to the next, hindering the ability to achieve the desired 
level of logical clarity.  Another implementation “feature” allows programmers to PERFORM 
sequences of paragraphs, further maligning potential clarity.  These sequences become especially 
difficult to follow when they are exited by GOTO statements that can jump control anywhere, 
including the middle of another sequence somewhere else in a large subprogram.  This problem 
is exacerbated by COBOL’s unusually large subprograms. 
 

 In parallel with the development of compilers was the Operating System (OS) to aid in 
managing machine resources to run independent tasks.  We have italicized the word independent 
because it is a key property supporting ease of management - and particularly the allocation - of 
resources.  These facilities allowed computers and software to grow to be huge. 
 
 
Flow Charts 
 

 Because of the difficulty in understanding binary and assembler code, and particularly the 
instructions for transferring control, programmers created the flow chart.  When using boxes, 
diamonds and other symbols to illustrate functions and decisions, a symbol on the flow chart 
typically encompassed multiple instructions.  So the number of lines of code was larger than the 
number of flow chart symbols.  These advantages disappeared with understandable languages 
and improved control constructs.  With COBOL, flow charts became a burden instead of an aid. 
 
 
The Tower Of Babel - Programming Languages 
 

 Although we have only discussed FORTRAN and COBOL, many other early languages 
had their impact on the software development process.  Some of these languages have had 
substantial followings during certain time periods, but none have matched the long-term success 
of FORTRAN and COBOL.  ALGOL was developed in the early 1960s, partly as an algorithm 
specification language, one that could be used to specify the details of computer architectures.  It 
was the language used for papers in the Association of Computing Machinery (ACM) Journal.  It 
was the principal language of the Burroughs 5500, one of the earliest time-sharing machines. 
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 SIMULA was another early language, used for simulation.  Although hardly used in the 
U.S., it is referenced frequently because of its discrete event language relationship to the design 
of operating systems.  PL/1 was IBM's answer to provide one language to take the place of 
COBOL and FORTRAN, a noble goal.  However, it was never close to COBOL from a 
readability standpoint, it had no instruction hierarchy.  Also, it had so many options for declaring 
data that potential ambiguities made programs very difficult to understand and debug. 
 

 APL is a good language for solving vector/matrix equations, but is scientifically oriented.  
PASCAL and BASIC were utilized in the academic community, but never reached the level of 
use of COBOL or FORTRAN.  We will simply mention that each of the U.S. Department of 
Defense services invented its own language: TACPOL (the Army), CMS2 (the Navy), and 
JOVIAL (the Air Force).  Each language was "justified" based upon the unique requirements of 
its particular military environment.  That is, until Ada came along and the U.S. Department of 
Defense mandated the use of Ada to replace them all.  But, it did not even get as far as PL/1. 
 
 
BEYOND 1980 - A MORE RECENT HISTORY 
 

 As stated above, software technology increased dramatically from 1960 to about 1980.  
These increases were clearly due to improvements in the programming environment caused by 
demands of people solving their own application problems.  These people were not schooled in 
programming nor paid by the hour to write code.  They forced the sequence of events described 
above, starting with binary coding and ending with FORTRAN and COBOL, causing huge 
breakthroughs in language design to improve runtime speed as well as productivity. 
 

 Fast forwarding to 2013, the software world has totally changed.  One now reads articles 
based upon measured data describing huge declines in software productivity since the 1980s, 
see [2] - [4], [6], [15], [19] - [21], [24] - [26], [48], [50], [52], [66], [69], [89], [111], [117], 
[136] - [139], [141], [146], and [155].  These articles also describe project failures after 
substantial investments, causing management to hold off on large projects because of the high 
risk of failure.  Projects have been reduced in size, yet productivity still declines. 
 

 Yet the power of computers has grown substantially since the early 1980s, and computer 
costs have dropped dramatically.  The advent of the PC has taken the field from large numbers of 
people sharing a computer, to just a few people sharing a PC with substantial speed and memory 
to the point where, today, many programmers now have more than one powerful PC available for 
their own use.  Computer clock rates also soared from the 1980s to 2005.  Yet, according to 
Niklaus Wirth’s law during that period, “Software gets slower faster than hardware gets faster”. 
 

 Fast disk storage has grown from 10s of megabytes to terabytes on a PC (100,000 fold).  
Today it is normal for a programmer’s PC to have 4 Gigabytes of cache memory and a terabyte 
of fast semiconductor RAM.  This should have driven most of the programming concerns since 
the early 1980s to no concern at all. 
 

 Another area of major improvement since the early 1980s is the availability of 
programming aids, e.g., full screen editors with extensive search and replace facilities, special 
debugging tools, graphical facilities for accessing files, etc.  Considering all of these facilities, 
coupled with dramatic improvements in computer speeds, memory sizes, availability, and project 
sizes being held down, one would expect programmer productivity to have soared. 
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 In the last two decades, almost all industries in the U.S. have had positive productivity 
growth, with computer chips being the highest. But in fact, productivity in software has declined 
more than in any other industry.  These facts are substantiated in multiple research studies, see 
the following references again:  [2] - [4], [6], [15], [19] - [21], [24] - [26], [48], [50], [52], [66], 
[69], [89], [111], [117], [136] - [139], [141], [146] and [155]. 
 

 Of major concern today is the movement of software development and support offshore 
to places like India, China, etc., where labor rates are extremely low compared to the U.S.  This 
is clearly the result of the negative changes in software productivity. 
 
 
Declines In Speed As Well As Productivity 
 

 So what has happened to software, a field that was looking great going into the 1980s?  
Why has it turned around?  And why have speed and productivity measures been going down 
ever since?  There are a number of factors, and they all correlate directly to what has become a 
dramatic decline in the ability to develop and maintain software. 
 

 When one compares the history of events since the 1970s, the downturn came about with 
the upturn in use of the C language (by C we imply the inclusion of C++, C#, Java, Python, and a 
host of other derivatives of the C language).  When one looks at the data on productivity, it is 
clear that the decline in software productivity correlates directly with the increased use of 
C-based languages. 
 

 If one reads the literature of the 1970s, one finds many papers on language principles 
affecting programming productivity.  These papers made scientific comparisons at the construct 
level, with arguments why a given approach was better.  Coming out of Bell Laboratories, one 
would believe that the C language was aimed at improving programming technology.  
Fortunately, most of the true history of C is documented in various AT&T and Bell System 
Journals.  Upon reading that history, one finds that C was not initiated as a Bell Labs project and 
never intended to be a real programming language.  Important principles for improving software 
described in the literature of the 1960s and 1970s were ignored.  See Anselmo, [3]. 
 

 This has led to tailoring programs for multiple processors (cores), and corresponding 
facilities for “threads” that are not oriented toward large scale (hundreds of) parallel processors.  
As a result, programmers are back to the EDP board mindset, worrying about timing and 
synchronization of threads.  They are not concerned with planning a huge task to run on 
hundreds (or possibly thousands) of processors.  With the EDP mind-set as a reference frame, 
automation has not been a concern - at least until now, as complexity multiplies, see [144] 
and [145].  It’s time to learn the true history of C-based languages. 
 
 
A New Era - The True History of C-Based Languages 
 

  In the first sentence of the preface of their book, The C PROGRAMMING 
LANGUAGE, [81], Kernighan and Ritchie state that "C is a general-purpose programming 
language which features economy of expression, ...   C is not a 'very high level' language, nor a 
'big' one, ..."   In the second paragraph of CHAPTER 0: INTRODUCTION, it states that "C is a 
relatively 'low level' language." 
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 When reading the history written by the people from Bell Labs, see [3], [4], [81], [119], 
and [120], one finds that C was designed to quickly port a game played by a small group of 
researchers waiting to be assigned to a project.  The design goals were made clear by the original 
designer, Ken Thompson: (1) Use a Spartan syntax to keep the compiler simple to write; and (2) 
Keep the compiler small to fit in the PDP 7’s tiny memory.  It was never intended to be a real 
programming language. 
 

 The following quotes are taken from Peter van der Linden’s book: Deep C Secrets, [147]. 
 

C is quirky, flawed, and an enormous success. 
 

   -  Dennis Ritchie, one of the original authors of C 
 

C makes it easy to shoot yourself in the foot.   C++ makes it harder, 
but when you do, it blows away your whole leg. 

 

   -  Bjarne Stroustrup, the father of C++ 
 

 Apart from the OO concept, there are many reasons why C-based languages are difficult 
to understand.†  We refer again to van der Linden's book, [147], on the use of C and C++ in a 
production environment at SUN, where he questions the placement of the burden of translating 
code.  Should it be on the programmer, or on the language translator?  On page 64, he states: 
 

"C's declaration syntax is trivial for a compiler (or a compiler-writer) to process, but hard for the 
average programmer.  Language designers are only human, and mistakes will be made.  For 
example, the Ada language reference manual gives an ambiguous grammar for Ada in an appendix 
at the back.  Ambiguity is a very undesirable property of a programming language grammar, as it 
significantly complicates the job of a compiler writer.  But the syntax of C declarations is a truly 
horrible mess that permeates the use of the entire language.  It's no exaggeration to say that C is 
significantly and needlessly complicated because of the awkward manner of combining types." 

 
 
QUOTES FROM PEOPLE WITH REAL SOFTWARE EXPERIENCE 
 

 In 2001, Larry Constantine wrote: 
 

 “Continued and rapid growth in the power of hardware has not only enabled new 
applications and capabilities, but has permitted sloppy, unprofessional programming to 
become the virtual standard of business and industry.  Hardware has allowed the 
software profession to avoid growing up, to remain in an irresponsible adolescence in 
which unstable products with hundreds of thousands of bugs are shipped and sold en 
masse.”    -- Larry Constantine [48] 

 

He was correct.  But as described below, the programmers are now dragging down the hardware 
guys.  In a Software Special Report, [25], Business Week posed the question "Can the U.S. Stay 
Ahead in Software?"  This article described the growing number of software engineers and 
programmers in other countries whose price per hour is less than 1/3 of their equivalent in this 
country.  Thus, the cost of software development in foreign companies could be much less than 
their U.S. counterparts, even if they were not nearly as efficient at it. 
 
 
                                              
† A common joke is: C is a write-only language.  One programmer writes it and no one else can read it. 
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 In that same article, Lim Joo-Hong, deputy director of research at Singapore's NCB 
brought out one of the major factors - "Software only needs people.  There is little need for a lot 
of other resources."  In that same article, Edward Yourdon, publisher of the monthly newsletter 
American Programmer in New York warned that cheap labor abroad could begin to make low-
level programming jobs in the U.S. obsolete.  He was quoted as saying "The only thing that has 
prevented it from becoming a crisis so far is that the software industry is growing so fast that we 
haven't seen many jobs taken away."  The article further warned "Without such entry-level jobs, 
the U.S. won't be able to employ large numbers of computer science graduates, further 
discouraging careers in the field."  
 

 But look again.  While hardware engineers produce great feats, tearing down barrier after 
barrier, looming problems in software are hiding behind them.  Quoting Marcus Ranum, [117], 
 

 “...I see that Microsoft, Intel, and AMD have jointly announced a new partnership to help 
prevent buffer overflows using hardware controls.  In other words, the software quality problem 
has gotten so bad that the hardware guys are trying to solve it, too.  Never mind that lots of 
processor and memory-management units are capable of marking pages as nonexecutable; it just 
seems backward to me that we’re trying to solve what is fundamentally a software problem using 
hardware.  It’s not even a generic software problem; it’s a runtime environment issue that’s 
specific to a particular programming language.” 

 

 Ranum’s article is just one example.  There is a large group of people experienced in both 
sides of the computer field - hardware and software - saying the same thing.  More importantly, 
the statistics on productivity show that the software industry has been going downhill every year.  
But that is not the worst of it.  To take advantage of a large number of parallel processors 
requires a new approach to operating systems.  And here, it seems that we can’t even get it right 
for a single processor. 
 

 Articles about Microsoft’s problems with its new Vista operating system bear this out.  In 
the Sept. 2005 Wall Street Journal, Guth, [69], describes Microsoft’s delays in its effort to come 
out with Vista, a new version of the Windows operating system.  It quotes Microsoft executives 
saying that there was no architecture! 
 

 This article was followed up by Cusumano in the ACM, [50], where he talks about the 
gridlock occurring on the Vista project, stating: 
 

 “We now know that the chaotic ‘spaghetti’ architecture of Windows ... was one of the major 
reasons for this gridlock.  Making even small changes in one part of the product led to 
unpredictable and destabilizing consequences in other parts since most of the components were 
tied together in complex and unpredictable ways.” 

 

 It should be apparent that creating spaghetti code in software is the opposite philosophy 
of designing independent modules in hardware.  If one must replace a hardware module in a 
production environment, that module must be maximally independent from the other modules in 
the system.  Then one can pull it out and replace it with a new module.  Equally important is the 
ability to replace the guts of a module with a new design, using new parts, and still be able to 
plug that new version into existing systems in the field. 
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 But it now appears that we are already into an era where the computer field is constrained 
by software problems that present barriers to using new hardware technology.  To counter this 
problem, we must do a reversal on our approach to developing and supporting software.  And 
this approach must be based upon a new paradigm that takes full advantage of all that hardware. 
 

 Finally, many experienced people on the sidelines have been saying that the movement to 
C-based languages and OOP over the past three decades has been a great step backwards for the 
U.S. software industry.  The feature article of a 1994 issue of Upside Magazine interviewed five 
leading technologists to get their view on the future world of technology in the year 2000.  The 
questions covered broad areas of communications and automation.  One of the questions was 
“What advancement will be the biggest disappointment?”  Surprisingly, Gordon Bell, architect of 
DEC’s VAX family, and John Warnock, CEO of Adobe Systems had the same answer - Object-
Oriented Programming!  Warnock said  “I think the whole object thing is a red herring.” 
 

 The programming productivity problem was highlighted by Paul Strassmann, former 
Assistant Secretary of Defense for C3I, at a 1992 Ada Symposium at George Mason University, 
see [141].  There he described the necessary transition of the software industry in his speech 
"From a Craft to an Industry."  He presented the results of a study on the resistance to change in 
the mode of production of software by what he termed the "loner programmers," the people that 
every computer installation has come to depend on.  He said: 
 

"You can easily identify them.  ...  They are immersed in their craft, but find it difficult to explain 
or document it.  They usually work late into the night, trying to fix a problem caused by low 
quality and frequently repaired incomprehensible software.  ... They place little reliance on 
assistance from others and most likely disregard orderly documentation and business practices...   
The computer code they write is unique, elegant, and usually incomprehensible to others - which 
explains why they are highly valued as indispensable staff." 

 

 As software complexity has grown, current approaches to computer programming using 
C-Based languages (C, C++, C#, Java, etc.) have taken a major toll on run-time speed.  For over 
two decades Moore’s Law doubled processor clock rates every 18 months, helping to conceal the 
underlying software problems that led to (Niklaus) Wirth’s Law: “Software gets slower faster 
than hardware gets faster.”  Today we are faced with the realization that semi-conductor expert 
Jim Meindl’s prophecy was accurate, [97]:  the Moore’s curve for speed has flattened.  The 
doubling of CPU clock rates every 18 months is gone.  To make up for Wirth’s law, 
manufacturers are building multi-core processor chips, forcing the use of parallel processing. 
 
 
Separation of Skills - The Requirement of an Industrial Approach 
 

 We submit that separation of skills is the biggest differentiator between a craft and an 
industry.  The industrial revolution not only automated many jobs, it took crafts and turned them 
into industries.  This was most apparent in factories, where different job skills were clearly 
classified.  One did not have to be a craftsman to participate in the production of goods.  One 
could look to a career path that moved up the line as one increased design or management skills.  
But such an environment does not exist in software.  And this is keeping software from moving 
from a craft to an industry. 
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 With everyone using the same tools there are no comparisons.  The result is a lack of 
production-oriented technology in the software field to support the separation of skills.  In every 
other discipline, e.g., engineering, there is a clear separation of skills based on the application of 
technology.  Chemical, mechanical, aeronautical and electrical engineers all learn to apply math 
and physics to their application.  Why can’t they all learn to apply software?  Because there are 
no tools to support them.  Those that exist are much too esoteric and not productive. 
 

 Why is it taking so long for people to recognize the problem?  Having made an 
investment in becoming proficient in a subject, one does not want to think of that investment as 
time wasted.  It is hard to scrap a skill that took years to learn, one that was supposed to provide 
significant economic benefits.  One does not want to hear that there is a better direction, 
especially if the alternative involves another learning process, see [46].  This creates a significant 
inertial factor among proficient C-based language programmers.  As described in Microcosm by 
George Gilder, [61], human inertia is the major deterrent to innovation.  In a CS faculty lecture 
on the VisiSoft technology, a professor of software remarked that it was “unprofessional.”  When 
asked why he considered it unprofessional, he replied “Anyone can use it!”  All heads turned. 
 

 By following beliefs instead of real history and hard science, almost everyone in the 
software field thinks that C was a conscious development program at Bell Labs.  Unfortunately, 
no one reads the history documented in their own journals.  Bob Allen, Chairman of the Board of 
AT&T, wanted to compete with IBM in the computer field.  He made huge investments in 
UNIX, and C went along for the ride.  Sales & Promotion replaced scientific measures at AT&T.  
This movement was followed by SUN chasing the workstation and server markets.  Customers 
left IBM, only to return years later when their critical information systems became slow and 
unreliable.  Eventually, the real customers required measurable economic solutions.  Internally, 
AT&T lost control of its own critical switch software - written in C.  And SUN worked hard to 
improve threading, but never delivered on its promise of a parallel processor. 
 
 
A CASE STUDY - COMPARING SOFTWARE TO THE AUTOMOBILE INDUSTRY  
 
 Early on a Friday afternoon in the summer of 1961, two young electrical engineers were 
driving in an Austin Healey from Ann Arbor, MI to Detroit.  They had just completed the first 
week of a two week course in computer design at the University of Michigan and planned to 
spend an evening in the city.  On the way they had a business meeting with a computer drum and 
disk manufacturer.  Since these two potential clients represented a large organization, the host 
company engineers were looking forward to engaging in detailed technical discussions.  Before 
the meeting started, someone came in and spoke to the host engineer running the meeting.  He 
turned to the prospective clients, apologized, and said that they would have to move their car off 
the parking lot.  It was a company policy that un-American cars were not allowed in the lot.  
Finding a spot in the street took some time because of the string of foreign cars. 
 

 After the meeting, the two visitors asked about places to go in Detroit.  They were told to 
rethink driving in the city with the Healey - it was definitely dangerous.  They could have their 
tires slashed and the leather top cut off - while sitting in the car.  Then one person provided 
directions to a parking lot that hid foreign cars, indicating that, if they could get there, it would 
be safe.  They went, were safe, had a good time, and got home OK.  Later it was made clear how 
lucky they were. 
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 About that same time, new U.S. technology companies were introducing robots for 
factory automation.  But these were banned from the shop floors of U.S. auto manufacturers.  
Even the top quality control experts - Joseph Juran and J. Edwards Deming - could not apply 
their skills at improving quality while lowering costs on assembly lines.  They were banned from 
taking data required for the analysis.  All of this was justified based upon job security.  To get 
elected, the leadership of the U.S. Government stood firmly behind this policy. 
 
 But when buyers have a real economic choice and are driven by their own hard-earned 
money, it becomes a fair ball game.  Those who deliver the best results are the winners.  Fifty 
years later, Detroit has been devastated by foreign car manufacturers.  One would think that 
lessons would be learned and things would change.  But fifty years is a long time.  Hardly 
anyone thinks that far (two generations) ahead.  Those who do are likely to have grandchildren, 
and considered “too old to understand” today’s world. 
 

 One would believe this kind of thinking to be unacceptable in a field like computers, 
considered at the forefront of technology.  But one must look closer to understand the full 
picture.  Thanks to the integrated circuit chip, the computer field is split into hardware and 
software.  Hardware engineers use Computer-Aided Design (CAD) tools to produce their chips, 
and take measurements to compare data that justifies their designs.  Software has become more 
of an art form, particularly from a user interface standpoint.  Who are the buyers today?  Just 
look out the window of your car at the driver next to you.  They are probably a part of the fast 
growing social networking market - texting to their friends, kids, and grandkids. 
 

 When comparing markets for investment, one must consider the cost of production in a 
highly competitive global environment.  This may range from labor intensive jobs to high 
technology jobs.  In a nation where labor rates are low, products produced by low skilled jobs 
will be very competitive.  When labor rates are high, low skilled jobs are hard to support, and 
one must look to alternative sources of revenue.  Fortunately, the U.S. has been a major 
developer of high technology. 
 

 Nations must look down the road and pursue markets where they can maintain a 
competitive edge.  As an advanced nation, the U.S. should be striving to dominate markets where 
demand is on the rise and leadership can be maintained for decades.  Ideally, these markets 
would take advantage of a high technology edge that can be maintained for the long haul as well 
as used to spawn new markets.  The auto industry is one of those markets.  As Japan’s labor rates 
exceeded those of the U.S., they increased shop automation - everywhere they could. 
 

 One would think the computer and software markets to be ideal.  The number of products 
depending upon sophisticated computers and automation is growing rapidly, and this trend 
should continue for decades.  This is an area in which the U.S. excelled for many years.  
However, since the 1980s, productivity in the software field has dropped - faster than any other 
industry.  The high cost of building and maintaining software, along with many project failures, 
has put projects on hold.  Large companies are now outsourcing their software overseas, to India, 
China, and similar countries. 
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 The underlying cause of the U.S. software problem is hidden from public knowledge.  It 
is the result of the same job protection mechanisms that occurred on shop floors in the U.S. 
automobile industry in the 1960s.  However, this time it is the supposed “high-tech” people (the 
programmers) who falsely believe they are protecting their jobs from lower skilled people, when 
they could dramatically improve their own productivity and value using CAD systems to develop 
and support software.  But, they refuse to take the measurements and make the comparisons. 
 

 This problem arose in the U.S. software field in the late 1960s when programmers 
insisted that business software had to be written in assembly language - a difficult and time 
consuming environment for building any kind of software.  But at that time, software managers 
understood what was going on (job protection).  These managers made the decision to switch to 
a new programming language (COBOL) where high school graduates could produce and upgrade 
software faster than PhDs in mathematics using assembly language.  Using COBOL, the U.S. 
software field expanded dramatically. 
 

 This same problem is back today.  However, programmers no longer aspire to 
management positions, and instead work to maintain their supposed job security.  As a result, 
today’s managers do not have a good understanding of what programmers do.  By the same 
token, tools used to build software have regressed dramatically since the 1980s and are not much 
better than the old assembler languages.  Programmers hide what they build behind a difficult to 
understand language environment, protecting their jobs by ensuring that only they know what’s 
in the code.  If a complex software system is to be upgraded, one must go back to the original 
programmers or spend large amounts of time and money trying to understand what they did. 
 

 Yet, the software field is an excellent opportunity where high technology can be used to 
expand jobs in the U.S.  CAD technology now exists that can be used to lower the required skill 
sets and expand the job market, while at the same time dramatically increase productivity and 
lower costs.  Most importantly, this CAD technology provides the ability to build parallel 
processor systems that are far more complex than those currently at their limit because of the 
lack of tools to develop these systems. 
 

 The software field is a clear case where new technology can be used to expand a very 
desirable job market, while at the same time help the U.S. to become much more competitive in a 
rapidly expanding global market. 
 
 The academic community can play a major role in  making this happen by injecting a 
scientific approach into their curricula.  This can start with laboratory experiments that generate 
comparative data.  Academia can also develop closer ties with industrial developers.  This will 
require the staff to become familiar with large software systems instead of using snippets of code 
to demonstrate insignificant points that may be invalid from an overall design standpoint.  They 
must start to understand the economics of supporting large software systems, and the relative 
costs of saving keystrokes and memory versus the dramatic improvements in time to enhance 
and run systems in a production environment.  It’s time to face the truth and take the data! 
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Detroit Is In Bankruptcy - Is Silicon Valley Headed Down The Same Path? 
 
 
The prior Case Study compared the U.S. automobile industry to the software industry in the U.S. 
 
The likenesses are obvious, but there is also a major difference. 
 
The computer field is driven by the desire for speed as well as cost. 
 
Before the middle of the last decade, computer clock rates were doubling every eighteen months. 
 
When computer clock rates doubled, software did not have to change.  It just ran twice as fast, 
unless more functionality was added that slowed it down. 
 
Since clock rates have leveled off, computer manufacturers are producing multi-core chips 
(parallel processors). 
 
To make software run faster, programmers are now told to use more processors, as if 8 
processors would make an application run 8 times faster. 
 
With today’s approaches to building software, this is far from the truth.  The current approach to 
building software cannot take proper advantage of parallel processors. 
 
To sell chips, manufacturers are now trying to solve the software problems in hardware.  But the 
approach is being driven by the same programmers who do not understand the basic problem. 
 
Many such solutions have been around for years.  These involve having the Operating System 
(OS) make decisions during run-time to make use of parallel processors. 
 
Because the OS has no underlying knowledge of the application, this is the blind leading the 
blind. 
 
These approaches have slowed down the applications when compared fairly to single processor 
solutions.  But sales promotions are causing the measurements to be ignored. 
 
Silicon Valley is now following the same blind path as the programmers, trying to put into 
hardware knowledge that only exists inside a specific application. 
 
As described in more detail in later chapters, lack of knowledge of the overall problem is causing 
hardware designers to head in the wrong direction - one that is preserving the current approach to 
building software - the root cause of the problem. 
 
Watching this unfold is hard to believe.  Silicon Valley is following the same course as the 
automobile industry.  Led by the programmers, Silicon Valley is headed in the same direction as 
Detroit. 
 



Software Theory                  Page 5 - 1  

5. BASIC PRINCIPLES APPLIED TO SOFTWARE 
 
APPLYING EXPERIMENTAL SCIENCE TO SOFTWARE 
 

 It should be obvious from the previous chapters that current approaches to building 
software are far from a technology based upon experimental science.  Journal articles do not 
contain data representing improvements measured in time.  Measures of time - be it wall clocks 
or stop watches - must be taken as the foundation for experiments to fairly compare software 
approaches on a scientific basis.  Without such a scientific approach, a good solution to the 
parallel processing problem will never be achieved.  More importantly, a great solution will 
never be accepted. 
 

 Without having the data needed to design complex hardware, today’s chip reliability 
would never be approached.  Reliable hardware must be designed based upon a huge amount of 
experimentation over time and careful analysis of volumes of historic data.  That is what 
engineering is all about. 
 

 There are a few places in the software industry where this approach is applied.  Typically, 
they are not reported upon.  Even if the authors tried, the papers would likely be rejected.  Based 
upon marketing studies, it is likely that these papers would not appeal to their readers.  This must 
change if the U.S. is to take the top position in the software field. 
 

 To accomplish this, one must compare speeds on a single processor using different 
software development approaches.  This is best done starting with run-time comparisons using 
different software approaches on the same machine.  The authors have done this and described 
the experiments in Chapters 17, so others can repeat the experiments.  It is not unusual to 
measure speed differences reaching more than one order of magnitude.  What is normal is for the 
distributions to be quite wide, with the 3σ points exceeding an order of magnitude.  Just 
watching experimenters compare their times, and then their approaches, provides the motivation 
for use of the scientific approach. 
 

 These simple tests are easily expanded to comparisons of productivity.  This is because 
one sees the ability to obtain significant speed improvements using simple theoretical concepts.  
Once one understands these concepts, fast systems can be built easily.  Once built, they are 
obviously better organized and therefore easier to understand than current approaches.  With this 
in mind, one is prepared to accept comparisons of productivity using relatively simple 
experiments that achieve the end goal of speed. 
 

 The next step is to expand these experiments to the use of parallel processors.  This is 
done in Chapter 18.  As shown below, one must be able to comprehend simple concepts that can 
take advantage of the inherent parallelism in an application.  With the correct approach, one can 
run faster on a single processor than on multiple processors running in parallel.  This is another 
motivator for moving to experimental science where the concepts are so important and easy to 
use.  The first one of these is the use of engineering drawings to represent software architectures.  
We note that engineering drawings are neither flow charts of code nor block diagrams.  This is 
explained below. 
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LANGUAGE DESIGN TRADEOFFS 
 

 There are a number of tradeoffs that must be considered when designing a software 
development environment.  The principle trade-off is pictures versus words, i.e., when to use 
words and when to use pictures.  The metaphor “A picture is worth a thousand words” may be a 
stretch, but it stresses the need for understandability.  This trade-off may be supported by 
external documentation.  Figure 5-1 provides an example for visualizing 3D graphical 
transformations.  Once one sees the picture, restricting the descriptions of such transformations 
to words obviously reduces understanding. 
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Figure 5-1.  Example of visualization of a 3D transformation. 
 
 
 As indicated above, architectural drawings are neither flow charts of code nor block 
diagrams.  They are explicit descriptions of connectivity, i.e., what instructions have access to 
what data.  Using the CAD facility defined here, scope rules are implemented by the architecture, 
a direct visualization.  When using a programming language, everything is defined in the 
language.  Having used this CAD approach, the improved understanding using drawings is as 
obvious as the example in Figure 5-1.  This is described further in a subsequent section. 
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   The next tradeoff is the time it takes to type code versus the time it takes another 
programmer to understand that code.  When building complex software in a competitive 
environment, minimizing coding keystrokes becomes equally nonproductive.  There are 
numerous articles supporting this statement, see for example, [2] - [4], [6], [15], [19] - [21], 
[24] - [26], [48], [50], [52], [66], [69], [89], [111], [117], [136] - [139], [141], [146] and [155].  
However, considering the current popular software languages and apparent desire to produce 
Spartan code, this tradeoff warrants further investigation.  But to get fair answers requires fair 
experiments, experiments that are repeatable by independent parties. 
 

 In his ACM article in 2000, The Emperor with No Clothes, [89],Henry Ledgard quoted 
W. Edwards Deming who stated “If you can’t measure it, you can’t improve it.”  The message 
carried the same point as that made by David Parnas, [106], 10 years earlier: “Without measures 
from repeatable experiments, software is not a science.”  Although the major initiator of the 
Computer Science curriculum, Parnas said: “most CS PhDs are not scientists; they neither 
understand nor apply the methods of experimental science.”  Both Ledgard and Parnas are at the 
top of the list of those knowledgeable in computer languages. 
 

 At the very top is Grace Hopper, who wrote the first compiler while working at Univac 
in 1952.  In 1959, after the CODASYL conference started the formal development of COBOL, 
Hopper’s programming group at Univac spearheaded the language design based upon her own 
FLOW-MATIC language, see Wikipedia, and Beyer, [15].  Hopper's belief that programs should 
be written in a language that was close to English rather than in machine code or languages close 
to machine code (e.g., assembly language) was captured in the new language, and COBOL 
would go on to be the most ubiquitous data system language to date.  Hopper went on to develop 
CMS-2, a language for the U.S. Navy that added math and scientific facilities to COBOL.  
CMS-2 provided the same hierarchical data and hierarchical instruction syntax that contributes 
huge productivity gains and applies directly to parallel processing.  As shown below, software 
productivity and parallel processing are intertwined. 
 
 
UNDERSTANDABILITY 
 

 A major part of controlling large complex software systems is knowing where functions 
are performed.  This depends on how things are organized.  The military is an excellent example 
of organizing to maintain control in complex dynamic situations.  This starts with well-defined 
hierarchies.  If military personnel were only identified by name, organizations would be hard to 
control - especially for someone new to the organization.  As another example, simple databases 
may be organized alphabetically (no hierarchy).  Anyone who has worked with complex 
databases knows this does not work.  Hierarchies are critical. 
 

 Engineering drawings of physical systems provide a good example of modular 
hierarchies.  Controlling the design of a huge airliner without hierarchical drawings is 
impossible.  Grace Hopper understood this principle in the design of languages.  The ease with 
which one can create and use hierarchical data structures and hierarchical rule structures is one 
of the main reasons why COBOL is the most productive data system language. 
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 Hopper also used the combination of hierarchical structures and well designed syntax to 
greatly simplify the understanding of complex conditional statements.  This included setting 
conditions as well as testing them.  Finally, mathematical statements in both FORTRAN and 
CMS-2 are compatible with mathematical texts.  But when language design is driven by 
requirements to keep the compiler small and easy to write, none of the above logic applies, 
see [3]. 
 

 The following quote was stated by Bjarne Stroustrup, the inventor of C++: “English is 
arguably the largest and most complex language in the world (measured in number of words and 
idioms), but also one of the most successful,” see [143].  It dominates the world of free trade.  
Considering the small size of the islands where it originated, its survival is attributed to its 
reliability.  To understand this, consider the military motto, “information is power” - the more 
information one has to make a decision, the more likely a good outcome.  If the information is 
misunderstood, the outcome is likely to be less than expected.  So what are the rules that ensure 
the reliable transfer of information and understanding? 
 
 
Language And Information Theory 
 

 The two major objectives in communications are reliability and speed.  Fast and reliable 
transfer of information is the goal of information theory, as evolved by Shannon, [130] and 
others.  We start by noting that: Reliability of information transfers is increased by adding 
redundancy (i.e., additional data).  This may be as simple as sending the same message twice, or 
using additional words, such as articles, adjectives, or adverbs.  Redundancy is used when 
writing and reading computer memory.  Bits are added to the data being stored to decrease the 
probability of error when reading it back.  In wireless communications, it is not unusual to 
double the size of the original data stream (redundancy) to ensure reliable transfers.  English is 
considered to have a high degree of redundancy compared to most other languages, implying it is 
more likely that information is transferred reliably - and key to the survival of its users. 
 

 Studies comparing interactive languages have shown that errors increase as statements 
move from good English to a more terse form, see [88].  Comparisons of COBOL, FORTRAN 
and C-based languages will typically derive the following programmer reactions: COBOL is 
verbose; FORTRAN is fair; C-based languages are terse. 
 

 The typical misperception is that verbose correlates to slower run-times.  In fact, these 
properties are totally unrelated.  Since source language is translated to machine language, the 
burden is on the machine translator.  Reliability and speed can be improved simultaneously.  If 
we are after reliability, verbose is best.  If we are after speed, COBOL and CMS-2 are clearly the 
fastest at handling data.  FORTRAN still inverts large matrices faster than C-based languages. 
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MEMORY 
 
 As described in Chapter 1, in the 1960s it was determined that memory costs would never 
fall below 10 cents a bit.  Today, one can buy more than a billion bits for ten cents.  The 
availability of memory has been a prime factor affecting speed since the 1940s.  It is still 
following the Moore’s curve - becoming more abundant, cheaper and smaller. 
 

 Yet, to most programmers today, increasing clock rates are most important.  They cover 
up the increasing slow software that is being built by programmers with decreasing knowledge of 
what makes applications run fast.  Increasing the clock rate greatly simplifies the software 
designer’s problem. 
 

 But the importance of memory has not changed.  It is still the single most important 
computer resource used to gain speed, and exactly what is needed in parallel processing.  But 
programmers using C-based languages have their hands tied trying to map memory hierarchies, 
and writing code that makes good use of these hierarchies.  What’s worse is that hardware 
designers are being led in the wrong direction by programmers that don’t understand the 
problem. 
 

 The bottom line is that the memory resource must be optimally mapped and easily used 
to gain speed.  There are times to save memory to gain speed; but most of the time we can use 
more memory to gain speed.  Some cases are offered below, but one must dig into more complex 
applications to see this obvious fact. 
 
 
Saving Memory To Gain Speed - Reading & Writing Files 
 

 When reading and writing large files, there are special cases where time can be cut by 
using binary formats instead of readable (ASCII) formats.  This is because of the relative size 
difference of these file types.  Anyone with sufficient experience in large data processing 
applications knows the importance of using binary formats. 
 

 To take full advantage of this situation when dealing with very large files (100+ Meg), 
experienced designers avoid the use of character data, and use minimal sized codes to denote 
fields with small numbers of states.  A simple example is the use of a binary field (1 or 0) to 
denote whether the light is RED or GREEN.  We note that using 5 characters (bytes) to denote 
GREEN requires 40 bits.  Using a 1 or 0 requires only 1 byte (or 1 bit) - a factor of 5 (or 40) 
difference. 
 
 It must be emphasized that the above example is a special case.  In large data processing 
applications, it is not unusual for an experienced designer to make use of various facilities to 
read, use, and write smaller files 10 times faster than the novice.  What’s required are language 
facilities that make these transformations very understandable as well as very fast when the data 
is brought into main memory.  These facilities are described in Chapters 10 through 12. 
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Using Memory To Gain Speed 
 

 The number of cases where one can increase the use of memory to gain speed is large.  
This was recognized by Mauchley, Eckert, and von Neumann in the design of the Instruction Set 
Architecture for the first stored program computer.  Back then, memory size was hard to expand.  
This has changed - memory has become abundant.  Except for special cases, the current practice 
of saving memory is the wrong direction.  Design of data spaces is critical to speed, especially 
when using parallel processors.  To maximize parallel processor speed, shared memory that 
changes dynamically can be stacked on multiple processors without waiting, and copied with one 
fetch when available.  Data that does not change need not be shared - it may be copied.  
Similarly for instructions, especially for library modules that contain only temporary data.  With 
sufficient memory next to the processor, paging can be minimized if not eliminated.  These 
factors provide for nonlinear increases in speed due to the potential shrinking of physical 
distance between a processor and the memory it must access. 
 
 
Managing Memory At Run-Time 
 

 Applications almost never require all of the memory that may be declared.  All of the 
tables and arrays are virtually never filled.  Based upon page faults and tables, the operating 
system knows when and where memory is needed.  Memory need only be assigned as it is used, 
and this is best done in conjunction with the LRU algorithms used as part of the OS memory 
management system.  The SGI IRIX Operating System was designed to handle any size memory 
defined in advance in the application software.  As memory was required for actual use, if the 
machine did not have enough hardware to support the requirement, IRIX provided a message 
stating so.  This never happened in practice. 
 
 
Mismanaging Memory At Run-Time 
 

 The use of MALLOCs invokes the question: Who has control?  The programmer or the 
OS?  If the machine does not have enough memory, the MALLOC fails, and the OS must pick 
up the TAB. 
 
 
The Problem With MALLOCS 
 

 Only the OS knows what memory is available at any given time.  More importantly, the 
OS knows when and what type of page-fault occurs that indicates the potential need for more 
memory to be assigned.  Clearly this depends upon the detailed implementation of the memory 
manager algorithms in any OS.  It is well documented that MALLOCs have served to contribute 
confusion in memory management and is considered a major cause of system crashes. 
 

 On the other side of this problem, only the application software designer knows when an 
area of memory is never going to be used again.  Only that designer can tell the OS to free that 
memory area knowing it will never be used again.  This requires the ability to name an area of 
memory, one that may be potentially large, e.g., one used for initialization, and one that 
potentially holds many different variables and arrays.  This also requires the ability to call the OS 
from the application to FREE that memory resource. 
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ENGINEERING PRINCIPLES APPLIED TO PARALLEL SOFTWARE 
 

 As technology expands, it gets more complex, making it more difficult to create further 
extensions.  This is because the effort required to add improvements can expand exponentially 
with increasing complexity.  Engineers have learned to linearize this phenomenon.  Increased 
complexity may be overcome by pushing the levels down and isolating what is of immediate 
concern.  Simplification of complexity requires applying a number of basic principles that have 
evolved over centuries in engineering.  In addition, end users want increases in run-time speed. 
 

 When designing physical systems, engineers must account for problems not encountered 
in software - for example, parts wear out.  Designs must account for what happens when 
something breaks.  What are the possible outcomes?  Could lives be lost?  Embedded software 
systems must solve these same problems while meeting difficult time (speed) constraints. 
 

 Anticipating problems is a major part of engineering design, starting with the 
organization of a large number of design and test personnel, and ending with a system that 
degrades gradually when parts fail.  Systems must be back to full operation with a replacement 
part quickly and easily.  This may require redesign of a part to ensure higher reliability.  Finding 
new people who can understand a complex system is much easier when the system design itself 
is easy to understand.  This implies simplifying complexity while maintaining, if not increasing 
speed. 
 
 
DESIGN PROPERTIES FOR DEALING WITH INCREASING COMPLEXITY 
 

 By its nature, software must deal with ever increasing levels of complexity.  Based on the 
history of engineering technology, significant properties of good design are discussed below.  
They apply directly to software. 
 
 
Understandability 
 

  As systems become more complex, they become harder to understand.  This makes it 
imperative that systems be designed to be easily understood.  Understandability of system design 
is a property that can be measured by tracking productivity in development, test and production.  
Learning how to take such measures requires many years of experience, working with different 
types of systems.  Without this experience, one must deal with the unknown unknowns.  
Understandability can be measured in terms of the time and effort required - by people new to a 
project - to contribute enhancements. 
 

 As shown by Ledgard, [88], languages used to specify complex algorithms play a major 
role in the ability to share understanding.  This is inherently a communications problem as 
described by Shannon, [130].  The language used to transfer information plays a major role in 
ensuring its correct reception.  The English language is known for its redundancy, a major factor 
in transferring understanding.  This is evident in the design of COBOL, the most productive 
language for information processing.  As declared by Grace Hopper, world-wide expert in 
programming language design (including COBOL and CMS-2), programming languages must be 
easy to understand - and read like English, the accepted international language, see [15]. 
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Modularity 
 

 Another property used to deal with complexity is modularity.  Systems are best improved 
or maintained when they are decomposed into separate (independent) modules.  This allows 
modules to be refined or replaced with minimal, if any, changes to the rest of the system. 
 

 As proven by approaches to engineering design, modules may be grouped into 
hierarchies (described below), another critical property contributing to simplification of software 
design.  But the software language must support the ability to clearly delineate the modules. 
 
 
Independence 
 

 The level of modularity that can be achieved depends upon the property of independence.  
Independence implies that modules are isolated, i.e., they are not connected.  For modules to be 
maximally independent, they must be minimally connected.  In the case of software, two 
modules are independent if they share no data.  This principle requires a major change in the 
approach to developing software.  Its value is best measured when building software for parallel 
processors: Modules must be independent to run concurrently on separate processors. 
 
 
Hierarchical Structures 
 

 Going back thousands of years, organizations are best controlled using hierarchies 
(without hierarchical organizations, the military would be in chaos).  Hierarchical structures are 
a critical property of software languages.  They support the specification of complex data spaces 
that are used to simplify complex algorithms.  In addition, complex data structures (called 
Resources) are more easily understood when put into a hierarchy, see Figure 5-2.  Finally, 
hierarchical organization applies directly to the simplification of complex instruction sets (called 
Processes), see Figure 5- 3.  The number of levels in a hierarchy must be sufficient to push down 
the complexity, making the organization of the system easy to understand. 
 
 
Visualization 
 

 Engineering fields (e.g., Architectural, Aeronautical, Electrical, Mechanical, etc.) would 
be at a huge disadvantage without engineering drawings - precise descriptions of connectivity.  
Designs also require written specifications.  Typically, the crossover point is obvious, as it is in 
software.  Without a language that supports hierarchies and modularity, visualization of software 
architecture, using engineering drawings (not flowcharts), cannot be achieved.  See Figure 5- 4. 
 
 
The Separation Principle 
 

 The underlying principle supporting modularity and visualization of software is the 
separation of data from instructions.  Known as the Separation Principle, [80], separate 
languages are used to describe data structures (Resources) and rule structures (Processes).  As 
separate entities, these can be represented graphically - using icons on engineering drawings of 
software.  When a line connects a Process to a Resource, it implies that the Process (instructions) 
has access to the Resource (data).  Interconnected resources and processes can be grouped into 
elementary modules.  Interconnected elementary modules can be grouped into hierarchical 
modules.  One can determine the property of independence simply by inspecting the drawing. 
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Figure 5-2.  Resource: PATH_DATABASE. 
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Figure 5-3.  Process: ADD_PATH_POINT (cut off at bottom). 
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Figure 5-4.  Part of an engineering drawing of software showing Resource  and Process . 
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Spaces & Transformations - The Key To Speed 
 

 Likely one of the most successful computer technology innovations over the past 3 
decades was the development of the Geometry Engine by Jim Clark - upon which Silicon 
Graphics, Inc. (SGI) was built.  Anyone building complex graphics, e.g., detailed 3D terrain 
drawn from measured elevation databases, was looking for fast triangle draws.  Before SGI, 
nothing was available that would meet the speed requirements.  Scenes took too long to come up 
on the screen, and changing viewpoints was jerky as well as slow. 
 

 Then SGI published its specifications on the geometry engine.  Anyone looking for fast 
draws bought one.  No one was disappointed.  What was previously done mostly in software was 
now on fast chips.  Order of magnitude speed improvements were typical.  The buyers were 
clearly driven by speed. 
 

 Upon lifting the covers on the geometry engine, one was introduced to pipelines of 3D 
graphical transformations, with various options introduced along the way so as to maximize 
speed.  Speed was obtained by the optimized sequence of complex transformations. 
 

 As a by-product, Open-GL became a graphical interface language to the geometry 
engine.  It was designed to make it easy to define the spaces to solve classical 3D geometry 
problems and maximize the speed of transformations.  The speed of triangle draws was in great 
demand by buyers with a sufficient scientific background to appreciate the technology.  
Open-GL technology is still at the top of the line. 
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CHAPTER 6 
 

UNDERSTANDING PARALLEL PROCESSING 
 
 
 
 
INTRODUCTION 
 

 The concept of inherent parallelism is used frequently in the literature addressing parallel 
computation.  Typically it is in the context of estimating speed multipliers that may be obtained 
for a particular application when run on a parallel processor.  Various authors have described the 
pitfalls encountered when attempting to derive formulas for such estimates, see [8].  
Disagreements often cite improper measures of parallelism, or the serial versus parallel parts of a 
program. 
 

 Most papers addressing speed multipliers cite Amdahl’s 1967 presentation, [1], and 
proceed to support or deny his conclusions. “Amdahl’s Law”, apparently derived by others from 
his presentation, defines a speedup multiplier one may obtain from a parallel processor that 
depends upon the ratio of the serial part to the parallel part of a program.  Various authors have 
argued the validity of Amdahl’s law, questioning the definitions of serial and parallel parts in 
coming up with their own laws, see [68] and [132].  But none of these “laws” takes into account 
many factors that affect measured speed multipliers, e.g., a limit based upon number of 
independent modules, regardless of the number of processors, see [43].  Basic issues on single 
processor versus parallel processor software architectures are generally mistreated.  These 
questions and issues have been further addressed in [44]. 
 

 This chapter focuses on defining the property of inherent parallelism of a system as it 
affects the ability to design the hardware as well as software to run on a parallel processor.  It 
also addresses the difficulties of trying to measure such a property.  The underlying intent is to 
shed light on the path to minimizing the time to run a software task using parallel processors.  
 
 
ANALYSIS OF THE ISSUES 
 

 As used in the literature, the term “inherent parallelism” appears to imply the property of 
a system that allows one to decompose a software task into elements that can run concurrently on 
separate processors.  As used here, a software task is an independent executable in the context of 
a multi-tasking OS.  Upon further reflection, one sees misunderstandings of whether the property 
of inherent parallelism pertains to a system, or the code that implements it.  To understand this, 
consider that parallel processing has a long history of being used in large scale simulations of 
physical systems.  In that environment, people use the term “codes” to refer to the software 
underlying the simulations they have built.  Because of the complexity of these codes, and the 
time it has taken to debug them (typically years), changing these codes is considered anathema.  
When porting these codes to different parallel processors, it is the inherent parallelism of the 
code that is often referenced, not the system that the code represents. 
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 When reading the transcript of Amdahl’s talk at the AFIPS SJCC in 1967, [1], and 
understanding the goal of hardware designers of the time, it is clear that Amdahl was referring to 
the codes of certain types of problems of interest at the time.  His focus was on comparing how 
different machine architectures of the time (e.g., the vector machines of Cray, the associative 
memory machines, and the use of separate processors running in parallel) could be used to speed 
up the solution to these problems.  His discussions about the limitations on speedup of a program 
were based upon the sequential portions of the code. 
 

 Our interest in inherent parallelism pertains to the system itself.  If we are building 
software to create a system, or we are modeling a physical system, we want to investigate the 
inherent properties of that system that can be implemented in such a way as to run concurrently 
on a parallel processor, and minimize the run-time.  We do not deny that laws such as Amdahl’s 
can be used to aid in such measures.  However, our goal is to understand how to best design the 
software to take maximum advantage of the inherent parallelism of the system. 
 

 To gain a perspective on this problem, we will consider some limiting cases.  We start 
with systems represented by mathematical models, many of which use sets of differential 
equations resulting in large 2 or 3 dimensional arrays of the type to which Amdahl referred.  In 
such problems one may have to invert large sparse matrices thousands of times.  Known 
solutions to this problem are described in [14] and [71], wherein one generates a symbolic 
solution in code.  This approach minimizes operation counts (e.g., add, multiply, etc.) and 
eliminates loops.  Typically every instruction depends upon the prior one - implying that no 
instructions can run concurrently.  Such code has been designed to run very fast on a single 
processor and has virtually no inherent parallelism.  However, the systems (e.g., electrical 
networks) represented by this approach may have substantial inherent parallelism.  Most of the 
physical elements operate concurrently with many others.  Other approaches to modeling these 
systems, e.g., using discrete event simulation, generate code that is entirely different, operating 
much like the physical system when run on a parallel processor.  These codes may have a high 
degree of parallelism. 
 

 Next consider the “embarrassingly parallel” case.  The usual example is Monte Carlo 
analysis, performed by running M simulations, each with a different random number seed, 
concurrently on separate processors.  Given that the overhead to start and terminate simulations 
is insignificant compared to a single simulation, one can expect a speedup factor very close to M.  
But even in this embarrassingly parallel case, the maximum speed multiplier may be held to M, 
even when the number of processors, N, may be much larger than M.  So why is it 
embarrassingly parallel?  Because decomposition of the problem - into elements that can be run 
concurrently - is obvious.  In fact the code may be a single simulation task that is rerun on many 
processors in a cluster as separate executables with different random number inputs. 
 

 Now consider the case of breaking up the Monte Carlo simulation so that each simulation 
is run on more than one processor.  This decomposition may be difficult, and likely not reflected 
in the existing code.   But if parts of the simulation can be run concurrently, then there is 
additional inherent parallelism in the system being simulated.  This leads to more issues.  Can the 
break up of the simulation be accomplished easily?  Once it is done, what is the additional gain 
in speed of the simulation?  Even though the system has additional inherent parallelism, it may 
not translate into faster running times.  To determine if - what may appear to be - inherent 
parallelism in a system can be translated into additional speed, we must consider factors that 
affect potential speed multipliers from a parallel processor. 
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A Summary Of The Perspectives 
 

 To review the above perspectives, we considered two limiting cases.  The first example 
was that of systems represented by mathematical models, where each equation depends upon the 
prior one.  This case has no inherent parallelism.  The opposite example was Monte Carlo 
analysis performed by running N simulations concurrently on N processors, each with a different 
random number seed.  Given that the overhead to start and terminate simulations is insignificant 
compared to a single simulation, and that differences in random number seeds have an 
insignificant effect on run time, one can expect a speedup factor very close to N.  We are 
concerned with the cases in between. 
 
 
Speed Laws 
 

 As indicated above, the literature on estimating potential speed gains using parallel 
processors is somewhat divided between those claiming significant improvements and those 
claiming it is likely not worth the cost.  Amdahl’s Law defines a Speed Multiplier, SMA, when 
using a Single Operating System (SOS) parallel processor using the mathematical formula: 
 

SMA  =  
1

p
(1-p) + 

n

    =    n
n(1-p) + p

 

 

where p is defined as a “percent parallelism” and n is number of processors.   
 

 The following are examples.  When p is 75%, the Speed Multiplier approaches 4 as n gets 
large.  If p is 95%, and n is 100, the Speed Multiplier is 16.8.  Further examples are shown in the 
plot in Figure 6-1 below.  Even when p is 99%, and n is 100, the Speed Multiplier is 50.  
However, when p is nudged to 100% (most embarrassingly parallel case possible), the curve 
jumps to a straight line where the speed multiplier is n. 
 

Parallel Processor Speed Multipliers
(based upon Amdahl's Law)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 10 20 30 40 50 60 70 80 90 100
Number of Processors

Sp
ee

d 
M

ul
tip

lie
r

Parallelism=99%
Parallelism=98%
Parallelism=95%
Parallelism=90%
Parallelism=75%

 
Figure 6-1.  Parallel processor speed multipliers based upon Amdahl’s Law. 

 



 

Software Theory                Page  6 - 4  

 Clearly the curves in Figure 6-1 appear at odds with actual results as well as the basic 
principles addressed by Gustafson’s Law, [68].  But here again, Gustafson’s comparison is based 
upon approaches to breaking up existing code, not the software architecture of the large 
simulations he used in testing.  More importantly none of these papers deals with measuring the 
inherent parallelism in the system or simulation being “coded”. We are concerned with useful 
measures that fairly represent what’s “best” in terms of a set of economic choices.  This requires 
a much more detailed analysis as provided below. 
 
 
Analysis of Critical Factors 
 

 We start by considering definitions using the simplified representation illustrated in 
Figure 6-2.  These definitions are independent of both software and hardware architectures.  One 
may argue how components (e.g., those of overhead) should be assigned.  This breakout has 
been selected to simplify the analysis of major factors that can be adjusted to affect speed. 
 

Useful Time (TU) - Time spent running instructions to perform the functions of the task 
that would be required on a single processor (including single processor overhead). 
 

Overhead Time (TOH) - Time spent on a parallel processor running excess management 
or communications instructions that are part of the task, as well as instructions not in the 
task (OS instructions). OS instructions include those for swapping instructions in the task 
to be processed by a particular processor, those used to page memory required by task 
instructions on a particular processor, as well as those for other OS overhead. 
 

Idle Time (TI) - Time spent running instructions that are not part of the task, with the 
task itself in a idle state - waiting to be invoked or waiting for communications. 

 

These definitions apply to single or parallel processors except as noted.  They assume that no 
other task is running on the processor (otherwise, results will depend upon what else is running). 
 

USEFUL TIME IDLE TIME OVERHEAD

EXAMPLE OF PROCESSOR UTILIZATION IN ΔT

1
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TERMINAL TIME

TIMEMAPS  03/17/09

ΔT  
 

Figure 6-2.  Example of processor utilization in ΔT. 
 
 

 Figure 6-2 shows utilization of N processors by a software system running on a parallel 
processor during a sample period (ΔT).  The green area is processor time doing useful work.  The 
black area is processor time spent in overhead functions.  The pink area represents time when the 
task was idle.  The blue area is time after which that processor terminates its use (note that 
processor 1 happens to terminate its participation in this sample period). 
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 We note that the example of processor utilization overlap shown in Figure 6-2 is verified 
in Chapter 18.  This is apparent when looking at parallel processor test results using the 
Windows processor-utilization oscilloscope. 
 

 During the course of ΔT, useful work, overhead, and idle time may be interspersed, as 
modules on one processor communicate with modules on another.  If the green area overlap is 
insignificant, then little work is done concurrently, and using parallel processors will scarcely 
shorten the run-time.  This does not imply there is insufficient inherent parallelism in the system.  
Most often this is due to the approach to decomposition of the software (the software 
architecture), contributing small speed multipliers when run on a large parallel processor. 
 

 Figure 6-3 shows the relative amounts of processor utilization, overhead, idle time, and 
termination time grouped together for each processor and ordered by utilization from top to 
bottom.  Clearly the amount of useful work at the bottom of this chart implies significant overlap 
had to occur, whereas at the top of the chart, there may be scarce if any overlap. 
 

TOTAL RUN TIME

1
2

3

N

4

PROCESSOR UTILIZATION FOR TOTAL RUN

TIMEMAPS  02/13/08  
 

Figure 6-3.  Grouped and ordered processor utilization for entire run. 
 
 
Estimating Processor Utilization Efficiency 
 

 If one plots a curve of the ordered overlapping useful time spent on each processor (green 
bars shown in Figure 6-3), one expects different outcomes for different systems, as well as for 
different architectures of a given system.  Figure 6-4 illustrates different possible outcomes using 
different shades of green.  The lightest shade of green has the least useful overlap, the middle 
shade is in between, and the darkest shade has the most. 
 

 If the middle shade follows a straight line, Cm, the area under the curve yields a 50% 
overlap across processors, implying 50% processor utilization efficiency.  This would yield a 
speed multiplier of approximately N/2.  In the limiting case, as the curve governing the light 
green shade, Cl, falls into the origin, the processor utilization efficiency approaches zero.   
Similarly, as the curve governing the dark green shade, Ch, approaches the upper right hand 
corner, the processor utilization efficiency approaches 1, and the speed multiplier approaches N.  
In the limiting case the inherent parallelism in the system has been translated into an architecture 
such that N processors can be used with approximately 100% useful overlap. 
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Figure 6-4.  Grouped and ordered useful processor time for an entire run. 
 
   In general, the areas under the curves in Figure 6-4 represent the corresponding 
processor utilization efficiency when normalized to the range [0, 1].  We note that processor 
utilization efficiency may be increased by shifting all work from one processor to an under- 
utilized processor, decreasing the number of processors used.  But this will generally increase 
overall run time if there was useful overlap between the processors.  Alternatively, one may shift 
work from an over utilized processor to an unused processor, decreasing processor utilization 
efficiency but decreasing run-time if there is useful overlap between these processors.  In this 
case, one is effectively increasing the resource cost of the run to decrease the time cost. 
 

 Figure 6-5 provides a closer look at processor utilization.  Useful time includes time 
spent performing overhead functions that are also performed on a single processor.  Idle time is 
broken into excess time spent waiting for inter-processor data transfers and control transfers.  
Overhead time is broken into excess time spent reallocating resources (e.g., for processor 
assignment, load balancing, etc.) and excess time spent for other parallel processing overhead. 
 

Time spent processing the problem including
single processor overhead functions.

Excess time spent waiting for inter-processor data transfers.

Excess time spent waiting for inter-processor control transfers.
Excess time spent reallocating resources (processor assignment, load balancing, etc.).
Excess time for other parallel processing overhead.

PROCESSOR UTILIZATION

TIMEMAPS  02/19/08

Useful
Time

Idle
Time

Overhead
Time  

 

Figure 6-5.  Closer look at processor utilization. 
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 Overhead time is affected predominately by hardware and OS architectures, see [44] 
and [114], and generally minimized with the approach described here.  Figure 6-6 provides an 
even closer look at the idle time.  Waiting for both inter-processor data transfers and control 
transfers can be caused by a lack of inherent parallelism, or by a poor software architecture.  
These two items are considered the important factors to be dealt with when trying to maximize 
speed multipliers using parallel processing. 
 

Excess time spent waiting for inter-processor data transfers
 

 -  Due to lack of inherent parallelism

 -  Due to poor software architecture    

Excess time spent waiting for inter-processor control transfers
  -  Due to lack of inherent parallelism

 -  Due to poor software architecture

Idle
Time

TIMEMAPS  03/11/08  
 

Figure 6-6.  Closer look at idle time. 
 
 Based upon the above analysis, a processor utilization efficiency of 1 implies no idle 
time, terminal time, or overhead.  This is approached only by embarrassingly parallel systems 
that are easily broken into totally independent parts.  A major concern here is understanding how 
to minimize idle time for systems that are only partially independent. 
 
 
MAPPING INHERENT PARALLELISM INTO A SOFTWARE ARCHITECTURE 
 

 Whereas other authors are interested in parallelism contained in existing codes, see [86], 
our interest - as described in the prior sections - is in developing software architectures that take 
maximum advantage of the inherent parallelism of a system.  As shown in the charts above, 
without useful time overlap, there is no gain in speed.  Idle time is likely to be the major cause of 
reduction in overlap of useful time on parallel processors.  As shown in Figure 6-6, idle time is 
caused by the lack of inherent parallelism in a system or the lack of a software architecture that 
takes advantage of the inherent parallelism.  We are also interested in minimizing the overhead, 
principally due to the OS.  And here there are ample opportunities to reduce the overhead used in 
current OS approaches to managing parallel processor resources. 
 

 We note that the inherent parallelism in a system may also depend upon the input 
scenario driving it.  Consider the example of a transaction processing system, where front end 
transaction handling is spread over parallel processors, and the back end database handler is also 
spread over parallel processors.  Assume that the database is segmented based on a statistical hit 
distribution so that the large majority of hits in a sample period are to different segments.  When 
a large number of independent transactions occur in parallel, there may be significant useful time 
overlap and high processor utilization efficiency.  However, if transactions occur sequentially, 
there is little hope for useful overlap, and parallel processors will provide little improvement 
over a single processor.  When designing such a system, one must look at worst case scenarios 
that define the design constraints.  Such design constraints represent the inherent parallelism of 
the system. 
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 Discrete event simulation provides significant insights into this problem, see [37].  When 
designing model architectures to support simulations to be run on parallel processors, one looks 
for concurrency in the system being simulated.  By this we imply that elements of the system 
must operate independently of each other.  Models built using an architecture that preserves the 
concurrency properties of the system will also provide for concurrency when run on parallel 
processors.  In both cases, concurrency of operations can be achieved only when those operations 
are independent.  In addition, the scenario driving the simulation will affect the potential overlap 
in useful processing time, and the corresponding potential to speed up the simulation.  When 
modeling communication systems, message traffic overlap in different parts of the system will 
vary significantly with the scenario and define the inherent parallelism.  Again, one must 
consider how different scenarios affect the worst case design constraints. 
 
 
ACHIEVING HIGH SPEED MULTIPLIERS USING PARALLEL PROCESSORS 
 

 We now define a parallel processor Speed Multiplier as the ratio of processor wall clock 
time used to complete a simulation or software application on a single processor divided by that 
on a parallel processor, refer to Figure 6-7.  Note that this multiplier will depend upon the 
scenario used to measure the times, the software implementation of the system or simulation, and 
implementation of the hardware and OS on the processors.  We also note that both software and 
hardware may be different for the single versus parallel processor.  For fair (scientific) 
comparisons, one must choose a set of well-defined (e.g., worst case/best case) scenarios. 
 

SOFTWARE
REQUIREMENTS SOFTWARE

SIMULATION /

SINGLE
PROCESSOR

PARALLEL
PROCESSOR

SYSTEM /

SCENARIO

RUN_TIME_S

RUN_TIME_P

TIMEMAPS  11/22/10  
 

Figure 6-7.  Measuring running times on single and parallel processors. 
 
 
 The Inherent Parallelism of a system may be defined conceptually as a measure of the 
percentage of elements in a system that can operate in parallel.  Our interest is in building 
simulations of systems, or software that best implements the specifications of systems for a 
parallel processor.  To achieve high speed multipliers, one must take maximum advantage of the 
inherent parallelism in a system as it may be implemented in software on a parallel processor.  
This depends directly upon the software design.  Only the designer can translate the knowledge 
of the inherent parallelism of the system into a software architecture. 
 

 Looking at measures of Inherent Parallelism from another perspective, one may consider 
a theoretical measure as the Maximum Speed Multiplier one may obtain using parallel 
processors to simulate or implement a system in software.  To that end we define Maximum 
Speed Multiplier as the ratio of the smallest single processor time divided by the smallest 
parallel processor time, where “smallest” implies measures that are dependent on both the 
software and hardware designs as well as the scenario. 
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 From this perspective, Inherent Parallelism is a conceptual definition that may never be 
measured directly.  However, measures of a Maximum Speed Multiplier may be obtained by 
observing the smallest running times for software and hardware architectures for both the single 
and parallel processors for a given scenario. 
 
 
Comparing Parallel Processor Speed Multipliers 
 

 The parallel processor Speed Multiplier (SM) is a measure of the time it takes to run an 
application on a single processor divided by the time taken on a parallel processor. 
 

Ts
SM = 

Tp
 

 
 This is the most critical measure when determining the value of running an application on 
a parallel processor.  However, it must be analyzed carefully to ensure that it has been 
determined fairly, see Bailey, [8].  When using this measure to compare different hardware or 
software approaches, one must use the same frame of reference for comparison, namely the 
fastest single processor speed that has been achieved for that application - independent of the 
hardware.  Otherwise, if we compare software environment A to software environment B, and 
the single processor time in environment A (TSA), is longer than that in B (TSB), then the 
software environment that runs slower on a single processor will have a higher SM. 
 

 Consider that parallel processor run time TpB is 10 times faster than TSB.  Then the speed 
multiplier SMB will be 10.  If TpA is also 10 times smaller than TSA, then the speed multiplier 
SMA will also be 10.  Thus, they both have SM = 10.  But if the single processor running time of 
B is 10 times faster than the single processor running time of A, B’s parallel processor speed will 
be 10 times faster than A, even though they claim to have the same SM.  If A uses B’s single 
processor speed to determine its speed multiplier, it will be 1, not 10.  Alternatively, if B uses 
A’s single processor speed to determine its speed multiplier, B’s multiplier would be 100. 
 

 These numbers may appear to be exaggerated, but VisiSoft has been compared to other 
software environments by clients and shown to be 10 to 100 times faster on a single processor.  
Chapter 17 in [4] illustrates this point.  The only fair way to compare speed multipliers is by 
using the same (fastest) single processor speeds.  Otherwise, if B uses a single processor for an 
application that runs faster than A using 10 processors, the economic choice is obvious. 
 

 Based upon experimentation (see Chapters 17 & 18), speed multipliers vary widely with 
software design.  When building simulations, one may easily compare different approaches to 
software design.  Using variational analysis, one can derive the important factors that affect 
parallel processor run-time speed.  Generally, the most important factor is modeling a system 
along physical lines.  This is because complex physical systems are designed to be modular.  
Also, when modules are designed to be independent, they may operate concurrently, representing 
inherent parallelism in the system.  Furthermore, the larger the modules, the more operations that 
can be performed concurrently and the faster the system.  So the obvious design approach is to 
map these independent modules into models in the simulation.  When putting models of these 
large modules on separate processors, one will likely observe much higher speed multipliers. 
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 The most important conclusions to be drawn from the experiments are the following: 
 

• Unless software module architectures are designed to take maximum advantage of the 
inherent parallelism in a system, the speed multipliers achieved when running on a 
parallel processor will not be nearly as high. 

 

• High multipliers cannot be achieved without a run-time environment that receives this 
architectural information from the development environment and uses it to optimize 
the allocation of processor resources at run time. 

 
 
Achieving High Speed Multipliers On A Single Processor 
 

 Now consider comparing different simulation speed multipliers using different 
architectures.  The obvious concern when building models to support simulation is the fidelity of 
the models, i.e., how much detail is in the model.  Depending upon the measures of performance 
being derived from the simulation, the fidelity of the models may have a considerable impact on 
the results.  For this discussion, we will assume that the fidelity of the models used in the 
different simulations is the same, and that the performance measures are also the same. 
 

 If simulation A runs 10 times faster than B on a single processor, it will be selected 
because of its speed, allowing one to perform fast parametric and sensitivity analyses using 
Monte Carlo techniques.  In fact, this may be the determining factor in whether or not to use 
parallel processors at all.  Although Monte Carlo simulations are embarrassingly parallel, a speed 
multiplier of 10 may be sufficient to go with the simplicity of a single processor simulation. 
 

 More importantly, if simulation B runs 100 times faster on a parallel processor compared 
to its run time on a single processor, it will only be a factor of 10 faster than A running on a 
single processor.  If simulation A runs 100 times faster on a parallel processor compared to its 
own run time on a single processor, it will be a factor of 10 faster than B on a parallel processor 
and 1000 times faster than B’s single processor speed.  The important information to be derived 
is that speed multipliers must consider the differences in single processor as well as parallel 
processor speeds.  This is best done by comparing the final run times. 
 

 This is important since the CAD environment described here is known to produce single 
processor run-times that are typically 3 to 10 (or more) times faster than the competition for the 
same application.  This is due mainly to the ease of use of large complex data structures, and the 
speed with which complex data structures may be mapped onto different areas of memory.  This 
is shown by experiment in Chapter 17. 
 
 
Trying To Map Existing Codes To Parallel Processors 
 

 Except for embarrassingly parallel or other special applications, current use of large scale 
parallel processors typically yields speed multipliers on the order of 10% of the number of 
processors.  This implies that one must use 1000 processors to get a speed multiplier of 100.  
This is the result of many factors, including the current approach to pulling apart and 
“parallelizing” code at run-time with little use of knowledge of the system and its inherent 
parallelism. 
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 Using a good architecture, one can achieve parallel processor speed multipliers that are 
60% to 95% of the number of processors.  In addition, using large data structures and other 
techniques, one may achieve single processor speeds that are generally 5 to 10 times faster than 
other systems.  Using this approach, one may expect parallel processor speed multipliers greater 
than 10 times current implementations. 
 

 For those concerned about the cost of rewriting codes, translating FORTRAN to the CAD 
system described here is reasonably straight forward.  Arithmetic constructs are virtually 
identical.  More importantly, it is likely to cost less to rewrite the code than to purchase the 
number of processors required to achieve the desired run times using current approaches.  This 
would certainly be true if one has determined that an application requires 1000 processors using 
the current approach, and that number can be reduced to 150 processors using the new approach 
- a savings of 850 processors.  These numbers easily justify a rewrite. 
 
 
Achieving Order Of Magnitude Speed Multipliers 
 

 As indicated above, we are concerned with applications that have a reasonable degree of 
inherent parallelism (greater than 50% but not embarrassingly parallel).  We are also concerned 
with heavily loaded scenarios where single processor run time is generally the longest. 
 

 There are two aspects of speed improvement one can achieve using parallel processors.  
The first is when one uses more processors to increase the speed of a system or simulation, e.g., 
using 10 times the number of processors to gain a speed improvement.  Depending upon the 
software environment and design, this may require software changes.  In the second case, the 
speed requirement is fixed but the number of processors is reduced using the techniques 
described here.  In this case, a nonlinear reduction typically occurs since the spatial hardware 
footprint may be reduced considerably, reducing transmission delays as well as memory 
boundary crossing delays. 
 

 We will use the reduction of number of processors to understand the factors affecting the 
potential speed improvements.  This is a critical point that helps one to understand and take 
advantage of multiple factors that cumulatively provide large returns, including significant 
reductions in power consumption and floor space as well as hardware operational costs. 
 
 
Parallel Processor Utilization Efficiency (PUE) 
 

 Comparing running times on parallel processors must include the cost factor, namely the 
number of processors.  This leads naturally to the Processor Utilization Efficiency (PUE), a 
measure of the Speed Multiplier (SM) achieved on a parallel processor divided by the number of 
processors used. 
 

SM
PUE = 

Np
 

 

 Alternatively, the SM is equal to the product of the PUE times the number of processors 
used.  From a software design standpoint, PUE is the most critical factor determining the speed 
with which an application runs on a parallel processor.  Again, PUE must be calculated fairly 
using the same (fastest) single processor speed to compute the SM for the application. 
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 The PUE depends upon the average amount of useful work done on each processor 
within a ΔTmax window, [114].  When the amount of work done on each processor is highly 
varied, many processors will have large idle times, and the resulting PUE will be low.  When the 
useful times spent on each processor are all close in size, the average idle time in a ΔTmax 
window is typically much smaller rendering the PUE much higher. 
 
 
Factors Affecting The PUE 
 

 The major factors affecting the PUE are the following. 
 

• Single Processor Speed Multiplier - This is the difference in speed using the VisiSoft 
CAD environment versus current “advanced” software development environments on a 
single processor.  This implies taking advantage of the language properties.  Based upon 
the tests in Chapter 17, the typical speed multiplier is from 10 to 100. 

 

• Mapping Of Inherent Parallelism - Using VisiSoft, one can design software 
architectures that produce an optimal map of the inherent parallelism of a system into 
Independent (IND) modules that take maximum advantage of the hardware architecture 
(see Chapter 19).  These properties affect others, e.g., Processor Utilization Efficiency. 

 

• Better Use Of Chip Space - VisiSoft maps IND modules into separate processors and 
eliminates designer concerns for thread synchronization.  The use of Inter-Processor 
(IP) resources between IND modules eliminates any concerns about coherency as 
described in [58].  Sharing memory with a server eliminates the need for DMA channel 
interfaces to external devices.  Stack facilities and complex instruction caching are 
eliminated.  All of these serve to simplify the chip design allowing more memory close 
to the processors, further reducing swapping and paging.  This will further improve 
processor utilization efficiency. 

 

• Processor Utilization Efficiency - This is estimated to range from 85% to 95% versus 
the typical 7% to 10% encountered when using large numbers of parallel processors.  
VisiSoft IND modules are generally large and remain on a specified processor, 
minimizing swapping and paging.  Changes in scenario loading can be neutralized by 
migrating modules at run-time to use smaller numbers of processors while meeting 
speed constraints.  Coupled with improved mapping, this yields another factor of 10. 

 

• VisiSoft Parallel OS (VPOS) Speed - This is the difference between a standard OS and 
the VisiSoft design for VPOS.  It is estimated that using VPOS with the above factors 
provides speed multipliers between 100 to 1000 times faster than existing approaches. 

 

• Distance Factor - This is the result of the reduced distance between processors and 
memory due to the above factors, producing the same speed multiplier with a reduced 
number of processors.  Note that this reduction is nonlinear with distance.  If the 
number of processors is cut by a factor of 100, one may discover an additional speed up 
factor of 10, just due to the reduced distance between processors and memory. 

 

 As indicated above, these factors depend upon other factors, e.g., the size and intensity of 
the scenario.  Numbers must be derived from experiments using actual applications.  The 
estimated ranges above run from over 100 to 10,000 times faster, and are considered to be rough 
but reasonable based upon prior experiments with the type of simulations considered. 
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 When minimizing the number of processors, final speed multipliers are affected by all of 
the above factors.  Our interest is in comparing complex simulations for analysis and design 
applications using current technology versus that developed using VisiSoft.  Consider an 
estimate of the reduction of number of processors to achieve a given speed as provided in 
Figure 6-8.  These are considered representative for the types of simulations considered.  We 
note that the reductions shown in the figure do not include potential improvements in processor 
utilization efficiency due to improved chip design, but do assume reasonably loaded scenarios. 
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Figure 6-8.  An estimated reduction of number of processors to achieve a given speed. 
 
 
The Distance Factor Versus Speed Of Communications 
 

 The speed with which we can communicate today has increased dramatically over the 
past few years.  Gigahertz channels are now available compared to megahertz channels not too 
long ago.  However, understanding what this means with respect to parallel processing requires a 
careful analysis.  Figure 6-9 below illustrates the comparison of a 10 GHz signal to a 20 GHz 
signal.  Doubling the frequency generally implies doubling the number of bits that may be 
packed into a time pulse.  Thus, we may receive a large set of data in a short time period. 
 

 This is particularly useful when moving large databases.  The move from 1 Gigabit to 10 
Gigabits per second implies files may be transferred 10 times faster.  File transfers that may have 
taken 60 seconds can now be done in 6 seconds.  This is clearly a huge increase in transfer speed.  
But what does this have to do with parallel processing? 
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Figure 6-9.  Measuring communication speeds between parallel processors. 
 
 
Data Transfers Inside Parallel Processors 
 

 Data transfers inside parallel processors are typically quite different that file transfers 
over the internet.  When comparing file transfer times over the internet, one is usually comparing 
the time in seconds, or response times in milliseconds.  A raw megabyte file contains 8 megabits.  
However, it is not unusual to double that size when adding coding techniques to ensure reliability 
of transfers, implying 16 megabits.  A 10 megabyte file would require the transfer of 160 
megabits, taking 16 seconds over a 10 MHz channel, or 16 milliseconds over a 10 GHz channel,  
clearly a huge improvement in speed.  However, a string of bits taken from computer memory 
must be encoded and put through a signal processor that transforms bits into waveforms as 
illustrated in Figure 6-9.  More importantly, 20 GHz corresponds to 50 picoseconds in the time 
domain, but a bit may take 20 times that.  In any event, the wave cannot travel faster than the 
speed of light, approximately 1 foot per nanosecond. 
 

 Inside a parallel processor, one is normally concerned with much smaller data transfers, 
typically on the order of 10 to 100 Kilobytes or less.  One is not concerned with how many bits 
can be put into a packet, but how fast one can transfer the bit string through the computer.  When 
working with a single processor, one typically deals with memory transfer delays on the order of 
a nanosecond to and from level 1 cache memory.  Such delays are typically not noticeable in a 
communication system.  Delays between a processor register and level 2 cache will likely not be 
that much larger when on the same chip.  However, going from chip to chip, one may find an 
order of magnitude increase between level 3 and level 1 cache.  Although the level 3 cache may 
still be considered very fast, one may lose a factor of 5 to 10 in speed of instruction processing. 
 

 Chapter 16 provides a chart of memory boundary crossing delays when moving from the 
same chip to the same board to the same tray and finally to a different rack.  When comparing 
large High Performance Computers (HPCs), it is not unusual to find 50,000 processors taking up 
a room full of racks.  This is illustrated in Figure 6-10.  Distances, D, between processors go 
from centimeters to many meters.  But one cannot simply use the speed of light to estimate the 
time delays.  One must account for the delays through communication switches as well as the 
memory boundary crossing delays described in Chapter 16. 
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Figure 6-10.  Measuring communication speeds in high footprint parallel processors. 
 
 
Embarrassingly Parallel Applications Versus Those That Are Not 
 

 When dealing with embarrassingly parallel applications, one is generally running 
independent tasks on separate processors so that communication delays between processors are 
not of concern.  The typical application is Monte Carlo Analysis, where each processor runs the 
same analysis or simulation starting with a different random number seed.  Comparison of results 
is done via a separate data collection and analysis task after the parallel processing run.  Such 
embarrassingly parallel applications may be run on clusters of separate computers, each with its 
own OS.  This implies that communications between computers must pass through the protocol 
layers of a communication system on each processor, a time consuming process. 
 

   When running applications that are not embarrassingly parallel on a large footprint 
system, it is common for Processor Utilization Efficiencies (PUEs) to fall below 10%.  This 
implies that one must use at least 100 processors to achieve a speed multiplier of 10.  If one can 
improve single processor performance by a factor of 10, then one processor can do the work of 
100 parallel processors.  This implies building processor chips that are powerful and have access 
to large amounts of memory (many gigabytes). 
 
 
TEMPORAL INDEPENDENCE AND DECOMPOSITION 
 

 As indicated above, two simulation models may be considered independent during a time 
period that is sufficiently small to provide a valid representation of the real system.  If this time 
period is large enough, then sufficient processing may be done by running these models in 
parallel.  However, if the effects of a model in one processor on that in another are too tightly 
coupled in time, one may not benefit from running on separate processors (the results may be 
valid, but the speed gains insufficient).  This problem occurs in the design of systems as well as 
when modeling such systems.  We must answer the question: Given a system to be designed or 
simulated, how can it be decomposed into separate modules/models so as to maximize speed 
while maintaining proper operation - or simulation validity - when using a parallel processor?  
To answer this question, we must address the temporal aspects of these systems. 
 



 

Software Theory                Page  6 - 16  

Synchronous Versus Asynchronous Systems 
 

 When designing systems, e.g., digital communications and computers, one is typically 
concerned with throughput or speed of sequences of operations.  Design of modern 
communication systems is based upon Shannon’s Theory of Communications, [130], where one 
must obtain the correct signals (bit streams) in the presence of noise using a limited bandwidth.  
The theory applies to the design of electronic circuits for computers as well as digital 
communication systems.  Signals flow through logical networks to produce a resultant sequence.  
Speed can be improved by processing signals that can be split into parallel parts.  Significant 
experience recorded in the design of such systems has divided the problem into two segments: 
synchronous and asynchronous. 
 

 As advanced by the U.S. military, mobile radio communication networks are by far the 
most complex to design.  They consist of a network of radio nodes where all nodes are moving 
and connectivity (who talks to whom) is constantly changing.  When properly designed, 
connections can be supported through changing paths.  We note that cellular networks have a 
fixed infrastructure, since all nodes are fixed except for the terminals attached to a base station 
(problems still exist with handoff from base station to base station).  The most advanced forms of 
radio networks use Time Division Multiple Access (TDMA) techniques, wherein signals are 
pulsed within time slots.  Without going into details, sets of signals are processed 
asynchronously within a time slot and decoded synchronously at the end of the slot.  All units 
must maintain a sufficiently accurate clocking system.  Although some have argued theoretically 
that systems may be built without synchronization, when tested, they have never been made to 
work. 
 

 The same approach is used in designing digital computers, where signals are processed 
asynchronously through parallel logical structures (gates) with the results derived in stored 
elements (flip-flops) on a synchronous basis (using a clock pulse).  Again some have argued 
theoretically that systems may be built without synchronization, but when tested, they are not 
sufficiently reliable. 
 

 An approach to solving this problem for parallel processing was embedded in the Time 
Warp Operating System (TWOS), see Rieher [121], which has been renamed to SPEEDES.  This 
experimental operating system was reported upon bi-annually in the late 1980s to early 1990s at 
the International Conferences on Simulation.  It allowed threads to get out of synchronization 
with the simulation clock with the idea that they could be “reprocessed” to resynchronize results.  
However, it was determined that in partially independent cases, unscrambling the resulting 
chaotic states was virtually hopeless, and validity of results was clearly lost. 
 

 To support the ability to take advantage of potential “slack times,” wherein the ordering 
of events does not affect the outcomes of a simulation, VisiSoft provides a ΔTmax 
synchronization facility that is automatically invoked by the Run-Time System (RTS).  As 
described below, this facility allows the user to schedule events to occur based upon the 
simulation clock (or real-time clock) so that events may occur asynchronously within a time 
interval (ΔTmax) at the end of which all events are held for synchronization.  This facility is 
integrated into the overall scheduling system that supports the use of event threads that may run 
in parallel, independently, when contained in Independent (IND) modules/models.  This 
approach has been shown to work reliably, even with systems sensitive to such variations, when 
a cross-over point can be established by testing and comparison to single processor simulation 
outcomes. 
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 The next section describes the use of ΔTmax to speed up parallel processor simulations 
while ensuring their validity.  To do this, one performs statistical tests that produce distributions 
which can be compared to live test or single processor simulation results.  Such tests are 
necessary to determine validity of single processor simulations.  We must emphasize that the 
simulated tests must be preformed in the same manner as the live tests, else the statistics will 
have questionable meaning.  Conversely, one cannot design a system using simulations unless 
the designs are evaluated in a manner that accounts for all of the variations that affect a live 
system.  This is a common cause of live system failure when designs are based upon simulations 
that do not account for all of the potential variations (they are typically unknown unknowns). 
 
 
ENSURING VALIDITY OF SIMULATION RESULTS 
 

 Test results can be presented in many ways.  Field or laboratory testing is subject to the 
Uncertainty Principle, and the properties of a system being tested are typically presented in terms 
of a distribution derived from a sufficient number of measurements.  We use V to denote a vector 
of values measuring the properties of a system under test.  At the end of a series of tests, V is 
represented as a set of distributions, one for each property or element, Vi, of the measurement 
vector.  Typically, these test distributions, Dt, can be characterized as illustrated in Figure 6-9. 
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Figure 6-11.  Illustration of the distribution of test results for performance measure Vi. 

 
 
 When field or laboratory testing is prohibitive or expensive, one typically resorts to 
simulation.  One must then assess the cost of obtaining valid results from a simulation.  When 
running a single processor simulation, one will get the same results from every run unless it is 
taking in different data or data generated in real time.  Typically this does not coincide with a 
real world test that is subject to variations in parameters of both the system and the test process.  
To provide a more accurate view of simulation results, model parameters that may vary in real 
operations are drawn randomly from predetermined distributions representing known or 
anticipated variations.  These are used to generate the distributions, Ds, also illustrated in 
Figure 6-11, and are used to analyze validity of simulation results, see [44] and [114]. 
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   To analyze the effects of variations, one typically runs Monte Carlo simulations, 
whereby the simulation is run a sufficient number of times, each with a different random number 
seed, to produce the distribution, Ds, of results.  Then one can compare the distribution of results 
from the simulation to that of a valid test set.  If the distributions are deemed to be sufficiently 
close by the “validation committee,” then the simulation can be used as a valid substitute for 
field or laboratory tests. 
 

 Validating simulations may be difficult, but typically not more so than validating data 
from complex field or lab tests.  Simulation validity can be achieved on a model-by-model basis 
and by comparing the results of simulations to those from a reduced set of laboratory or field 
tests.  In many cases, a subset of models may have been previously validated and can be reused 
in different simulations.  Regardless, validating a single processor simulation is outside the scope 
of this treatment, so we will assume that a single processor simulation exists that produces valid 
distributions for the measurement vector.  We are concerned with obtaining sufficiently valid 
results when moving from a single processor to a parallel processor environment. 
 
 
Validating Parallel Processor Simulations 
 

 Based on the above, we will start by examining approaches to determining validity.  This 
implies investigating the requirements for completeness and consistency of the measures of those 
state variables that determine the validity of a simulation when compared to accepted test data.  
If the measured results are not complete, i.e., some measures are lost or incorrect, the results may 
be considered invalid.  If results are not consistent - as a function of time - with the test data or 
prior satisfactory results, then they are likely to be invalid.  All of these determinations require 
judgment because of the statistical variations that occur in actual systems.  This task can be 
substantially simplified when one has a validated single processor simulation, and the ability to 
investigate the potential loss of validity when running that same simulation on a parallel 
processor.   
 

 We must next gain an understanding of the causes of the loss of validity of results.  When 
using standard software approaches, one may allow two or more processes residing on two 
different processors to share memory.  Unless they have a synchronization protocol between 
them (sometimes referred to as a lock) they may both be running concurrently and accessing that 
memory.  If one of them writes into that memory, changing a particular field, and the other reads 
that field assuming it has not been changed since it was last accessed, then the consistency of 
results that depend upon that data is lost.  Furthermore, any changes thereafter that use that data 
will produce potentially inconsistent results. 
 

 This is a common problem in communications systems, with known approaches to solve 
it.  The best solution does not slow the transfer of information nor burden the designer - except to 
ensure that the system requirements are met.  Given that we can solve it for simulation, the 
software solution follows directly. 
 



 

Software Theory                Page  6 - 19  

 When modeling a communication system, multiple sources may send messages at the 
same time to a receiver.  Given that the receiver can only receive one of those messages, then a 
decision must be made as to which, if any, can be received.  In the case of simulation, this is a 
modeling problem where the receiver must determine if it can receive any of the signals (they 
may all be lost) or if one is sufficiently strong to be heard over the others.  This becomes a 
synchronization problem, where the receiver must make a determination using information about 
multiple signals.  When modeled properly, the results will match the live test data. 
 

 The ability to do this fast is built into VisiSoft Inter-Processor (IP) resources.  These must 
be used between Independent (IND) modules.  These limit write privileges to a single process 
and provide copies of the resource to all readers.  When a process starts to run, its IP resources 
are updated.  When it is running, its IP resources cannot be changed, unless it has write 
privileges.  The problem then becomes a synchronization problem. 
 

 Just as in the real communication system, the correct results are obtained by 
synchronizing at a given point of time when all signals must have been received.  At that point, 
with all of the necessary data on hand, a decision is made as to which one was received.  This 
decision is based upon the specifications of the system as defined by the designer. 
 

 Solution to the validity problem is not limited to discrete event simulation.  It can be used 
in software, and also applies to real-time systems.  In this case it assumes that the processors are 
sufficiently fast to make the proper decision within the synchronization period.  In the end, the 
decision depends upon the specifications of the system as to what message was received. 
 

 We must emphasize here that we have seen various theories on how best to maximize 
speed while ensuring validity of results.  In our experience, it comes down to measures of speed 
as well as the basic validity measures.  What is important is not the theory, this may be argued 
forever without a clear outcome.  What is critically important is the comparison of carefully 
measured results of actual experiments. 
 
 
Simulation Time Synchronization And Validity 
 

 In discrete event simulation, processes are scheduled at specified (event) times in the 
future, with the anticipation that - by design - data accessed by these processes will be correct at 
those scheduled times.  On a parallel processor, loss of validity may occur due to loss of time 
synchronization on different processors, where time is simulation clock time. 
 

 If a single processor version of a simulation is producing valid results, then it can run on 
a parallel processor and produce the same results provided the following is true: Processes 
running on different processors and sharing data run in the same sequence as they would on a 
single processor.  But this is a not a necessary condition for validity of the results.  In live 
experiments or field tests, ensuring such sequences always occur the same way is typically 
intractable if not impossible.  This is why it is common for single processor distributions to be 
more narrow than the corresponding field tests, see Figure 6-11 above. 
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 Using distributions to state this more carefully, if MDs is a positive number representing 
a measure of the accepted value of the single processor distribution error, and MDp is a positive 
number representing a measure of the parallel processor distribution error, then the deviation 
between them may be defined as follows: 
 

DEV = MDs - MDp ≤ ε   . 
 

Then, to ensure that an acceptable value (less than ε) is obtained for the deviation, one must 
ensure that the deviation of a parallel processor sequence of events does not fall outside some   
ΔT.   Thus one must find a value of δ such that if ΔT is less than δ, then DEV is less than ε .  We 
will refer to this maximum time value to allow changes in sequence as ΔTmax.  This is 
effectively a synchronization window that, when decisions are made inside this window, the 
results will be valid. 
 

 To validate the results of a simulation, one must compare the distributions of the 
elements of the measurement vector from the parallel processor simulation to that of a valid test 
set, or valid single processor simulation.  Validity can be achieved without having the same 
process sequence.  The process sequence is typically varied in the single processor case simply 
by varying the random number seed.  As stated above, maintaining a strict sequence (temporal 
consistency) is not a necessary condition for validity.  What is important is to know what will 
produce valid results from a simulation, and what happens when we move that simulation from a 
single processor environment to a parallel processor environment. 
 

 In a parallel processor simulation using the General Simulation System (GSS), see [67], 
one can ensure that the simulation clocks on each processor do not differ by more than ΔT, a 
parameter specified by the designer.  We note that, using GSS, the simulation clock units can 
vary from picoseconds to days within a simulation.  This allows the designer to set ΔT to the 
maximum value, ΔTmax, that still ensures validity of results.  This is a key factor in obtaining 
higher speed multipliers from parallel processing, reducing idle time of processors waiting for 
clock synchronization.  Figure 6-12 shows the effects of increasing ΔT in two different 
simulations, A and B. 
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Figure 6-12.  Curves showing the effects of ΔT in two different simulations. 
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 As ΔT is increased, a point is reached, ΔTchaos, where the simulation becomes chaotic as 
shown by the rapid increase in variance of the distributions at that point.  The shape of these 
curves has been validated with actual test data, see [114].  The motivation for increasing ΔT is 
improvement in parallel processor utilization efficiency and the resulting speed multiplier that is 
obtained.  References [44] and [114] also show how the architecture of a parallel processor 
affects the speed multipliers. 
 
 
Modeling Nonlinear Dynamic Systems 
 

 To better understand the temporal factors affecting processor utilization, and more 
importantly idle time, we consider models of electrical networks.  Such models are often used as 
analogs of mechanical or fluid dynamical systems.  They are typically characterized by systems 
of nonlinear differential equations.  When attempting to decompose these systems so separate 
models can be run on separate processors, one must be concerned about the convergence of 
nonlinear models at a given time step.  This is generally determined by the time constants of the 
system and the nature of the nonlinearities. 
 

 In the case of linear systems, one can determine simple models (equivalent electrical 
circuits) that present an equivalent of the input to the next stage.  This allows large models to be 
decomposed into smaller “decoupled” models.  In these cases, ΔTmax may be determined by the 
amount of detail one wants to see in the output response, becoming in effect a sampling rate.  
The minimum sampling rate, ΔT, is typically calculated from the shortest time constant in the 
system and Shannon’s theory, [130].  In general, separate models will have different time 
constants, requiring different sampling rates.  One may use the fastest sampling rate based upon 
the resulting time constants of models that interact.  In the end, it must be determined by the 
validity of the results. 
 

 Many systems of interest are highly nonlinear.  In these cases, one may need to iterate to 
gain convergence at each time step, as well as use a high sampling rate.  Using discrete event 
simulation, one may be able to model the physical system in such a way that the nonlinear effects 
are determined using a variable sampling rate, one that depends upon the current state of a 
model.  In any event, the sampling rate is determined by the requirements on model validity as 
defined above. 
 

 Given that models may be split across processors to run concurrently, they will run until 
the next scheduled process time exceeds the selected ΔT synchronization point.  At that point, all 
must wait for the slowest one.  This causes idle time on the rest, reducing processor efficiency.  
Processor utilization efficiency may be raised by putting multiple “slow” models on a single 
processor, using fewer processors.  However, if there are a sufficient number of processors, using 
them less efficiently may be the easiest as well as the fastest approach.  This becomes a time-cost 
trade-off. 
 
 



 

Software Theory                Page  6 - 22  

SUMMARY 
 

 Upon analyzing the issues relative to inherent parallelism in systems, we have described 
properties that aid in designing software systems or simulations to gain speed using parallel 
processors.  The principle property is that of the independence of operations of a physical 
system.  As described above, one must consider both spatial as well as temporal independence 
when simulation clocks on different processors are not synchronized.  As described in the next 
chapter, if these independent operations can be modeled using a state-space framework, then the 
state vectors separating the independent transformations, and the transformations themselves, can 
be built as software modules or models of a physical system.  When satisfying the property of 
independence defined above, these models or modules can be run concurrently on parallel 
processors. 
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CHAPTER 7 
 

MODELS AND SPACES OF SYSTEMS AND SOFTWARE 
 
 
 
 
SOFTWARE SPACES FOR PARALLEL PROCESSING 
 
  Expansion of mathematics is motivated by the expanding needs of science and 
engineering.  Driven by such needs, mathematical notation progressed from integers and 
fractions, to complex numbers and vectors.  In the 1950s, engineers developed the State Space 
framework to describe complex control systems in the continuous or discrete time domains, 
see [7], [60], [128] or [156].  In each case, extension was developed to simplify solutions of 
complex problems.  The underlying goal is to find the best coordinate system or space in which 
to represent a problem.  Given the correct choice, problem solutions are substantially simplified. 
 

 As problems become more complex, spaces required to simplify their solutions also 
become more complex.  State vectors with hundreds of variables have become common.  In 
addition, a state space may be organized hierarchically to further simplify understanding.  For 
example, one may have subvectors describing position, orientation, velocity, acceleration, etc., 
where each subvector contains multiple components.  The benefits of organizing a space 
hierarchically - to simplify its use and understanding - is apparent.  Hierarchies have been 
applied to control large complex organizations for thousands of years. 
 

 As shown below, software spaces are best mapped into hierarchical databases.  Using this 
concept, we introduce Generalized State Space as the mathematical framework to support the 
solution to complex software problems.  Databases used to solve complex software problems are 
Generalized Spaces or State Vectors.  Software algorithms are Generalized Transformations on 
these spaces.  Design of the spaces (databases) is key to simplifying the design of corresponding 
transformations (algorithms) performed by software, including their future enhancement as 
requirements grow.  Just as in mathematical approaches, one must define the state vectors of a 
system before defining the transformations that describe the dynamics.  This requires expanding 
mathematical notation beyond that of numbers.  The approach described here was first 
implemented by one of the authors in 1982 when designing the General Simulation 
System (GSS), a CAD system for designing discrete event simulations to run on parallel 
processors. 
 

 As we expand the complexity of mathematical spaces to characterize complex systems, 
their corresponding laws and transformations continue to apply, and their interpretations are 
extended to be more general.  Most important, each step enhances the ability to deal with 
increasing complexity.  Our interest is simplifying the design of both parallel processing 
software and hardware.  We use examples to demonstrate these effects. 
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Frameworks For Representing Complex Dynamic Systems 
 

 The position of a body in space can be described in various coordinate systems.  
Problems of dynamic motion are solved more easily if one selects the “best” space.  Best is 
measured by ease with which problems are solved (a practical measure is the speed of solving 
test problems in a course on partial differential equations).  The classic example is a particle in 
spherical orbit.  It is relatively easy to describe its motion in spherical coordinates, but the 
complexity increases considerably using Cartesian coordinates.  In addition to simplifying the 
representation of a system, a good choice of state variables can make computations much faster. 
 

 As indicated above, various coordinate systems can be used to solve problems.  However, 
they are solved more easily if we select the right space.  Selection of the most convenient space 
is typically taught in courses in linear systems or differential equations under the topic of 
separation of variables.  Separation can be used if the variables form a linearly independent set.  
The property of independence can be verified using well-known tests.  The concept of choosing 
the best coordinate system (state vector) and the property of independence are important 
principles that can be applied to reduce the effective level of complexity with which one must 
deal.  These concepts apply directly to simplifying software development for parallel processors. 
 

 In the early 1960’s, electronic circuit designers developed automated tools for solving 
complex systems of nonlinear differential equations required to simulate electrical circuits.  
These Computer-Aided Design (CAD) tools allow engineers to describe networks graphically 
and write equations describing nonlinear components.  Programming skills are unnecessary.  The 
code required to run simulations of large complex networks is generated automatically.  This 
provides a huge improvement in design productivity (from months to hours). 
 

 For large networks, the number of state variables may be in hundreds, even thousands.  
Solving design problems may involve optimization runs using hundreds of simulations.  Each 
simulation may involve hundreds of nonlinear differential equations.  Speed and accuracy are the 
driving forces in designing these CAD systems.  If a computer takes days to produce a design, 
only a few test points are produced in a week.  This provides substantial motivation to drastically 
cut the time to obtain a solution, leading to special approaches to gain multipliers on speed. 
 
 
Electrical Network Analogies 
 
 Electrical engineers have evolved a graphical representation for models of complex 
electrical networks using interconnected icons of basic element types: resistors, capacitors, 
inductors, generators, etc.  As illustrated in Figure 7-1, these elements can be used to build up 
hierarchical models of higher order elements, e.g., transistors, transmission lines, etc.  Such a 
drawing defines the differential equations that describe the dynamic changes in electrical 
voltages and currents in the circuit.  A vector-matrix representation is shown in Figure 7-2 using 
the state-space framework, where X represents a vector of state variables and U represents a 
vector of external driving forces.  Given the initial conditions, the state of the circuit is defined 
for all time thereafter.  In other words, the dynamic behavior of the network is defined by the 
symbolic network architecture. 
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Figure 7-1.  Architectural representation of an electrical network. 
 
 
 
 
 

X(T+  ) = A(T) X(T) + B(T) U(T)τ

 
 

Figure 7-2.  Mathematical (State Space) Representation of an electrical network. 
 
 
 
Requirement Specification And Design Specification 
 

 Designers of electronic circuits start with functional requirement specifications and 
produce drawings and design specification documents, see Figure 7-3, describing the network to 
be fabricated in production.  Negotiation of changes in functional requirements and testing of 
proposed fabrication processes for reliability are a significant part of the engineering design 
process.  Engineering judgment, supported by mathematical calculations, provides a critical part 
of this process.  Testing is used to validate models of the nominal behavior of a network as well 
as variations in component values due to production and environmental changes.  Ensuring 
reliability requirements are met in anticipated “worst case” environments is a hard constraint. 
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Figure 7-3.  Requirements and design specification documents. 

 
 
Use Of Electrical Analogies For Enhanced Productivity 
 

 Because of the development of a complete and consistent theory for electrical network 
design, electrical analogies are used in many other fields, such as those involving mechanical 
design, fluid flow, etc.  Additionally, characterization of nonlinear components and development 
of fast and accurate solutions of the differential equations representing these networks provides a 
highly productive facility, minimizing the burden of analysis of different designs.  These 
facilities have been incorporated into numerous Computer-Aided Design (CAD) tools that have 
reduced the time and resources required to build simulations and complete a complex design by 
orders of magnitude.  Obtaining fast and accurate solutions to posed design problems provides 
huge improvements in productivity in the fabrication stage as well as in production of the design 
specifications. 
 
 
APPLICATION TO DISCRETE EVENT SIMULATION AND SOFTWARE 
 

 There are four reasons why discrete event simulation is a good software analogy and 
starting point.  First, an electrical network analogy for this type of simulation is easy to derive.  
Second, it has been shown, [36], that discrete event simulation can be used to solve highly 
nonlinear problems in the time domain that are otherwise intractable using differential or discrete 
time equations. 
 

 Third, this same reference provides examples of more easily understood solutions even 
for linear problems using a discrete event CAD system versus using differential or discrete time 
equations.  This is because of the higher degrees of abstraction imposed when using standard 
mathematical frameworks.  After reviewing sufficient examples, it becomes clear that such 
abstractions make it much more difficult to model realistic behavior in a way that is easily 
understood. 
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 Finally, software is a subset of discrete event simulation when using the General 
Simulation System (GSS), see [67].  This system, designed in 1982, is based upon the State 
Space framework.  We will start with discrete event simulation using GSS and State Space as it 
is used to represent communication as well as electrical networks, and show how this form of 
simulation is a generalization of software. 
 
 
GENERALIZED STATE SPACE 
 

 Software modularity was considered in the late 1960s and early 1970s, see for example 
Gauthier and Pont, [59], and Parnas, [107].  However, the concepts lacked precise definitions, 
and were soon overtaken by the use of C-based languages (C, C++, C#, Java, etc.) and OOP.  A 
major drawback of the evolution of these later approaches is the use of abstractions and data 
hiding.  These properties obscure what routines (instructions) share what data.  The use of 
inheritance exacerbates this obscurity.  As shown below, such approaches inhibit the 
understanding and determination of the property of independence - the key to software 
architecture.  This, coupled with the terse and cryptic nature of C-based languages, makes it 
difficult to control growing complexity in large software systems - independent of using parallel 
processors. 
 

 The approach described here adopts Generalized State Space as the framework for 
defining software architectures.  It was devised originally to define the GSS discrete event 
simulation environment and is somewhat different from the approaches described by Gordon, see 
[63] thru [65].  Whereas State Space is known to provide a convenient mathematical framework 
for representing most any type of dynamic system, see [60], [128], and [156], Generalized State 
Space extends this facility to incorporate general decision algorithms into the limited 
mathematical framework.  This is particularly useful in simplifying the representation of highly 
nonlinear systems.  This approach has bred solutions that provide order-of-magnitude reductions 
in run time on a single processor and simplify the use of parallel processors.  It extends the 
problem solution space beyond current mathematical frameworks, including those known as 
“discrete event systems” as described in [115] and [116]. 
 
 
The Property of Independence - The Basis For Software Architecture 
 

 Development of the Generalized State Space framework was motivated by multiple 
factors.  One was the requirement to embed decision algorithms within mathematical models.  
For example, communication system designers want to embed natural language conditions 
within models as shown below. 
 

IF MESSAGE_TYPE IS CONTROL, THEN … , 
ELSE 
IF MESSAGE_TYPE IS DATA, THEN … . 
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 Additional factors were the lack of simulation scalability and excessive run-times of prior 
approaches.  These factors motivated the development of a complete and consistent state space 
definition of discrete event simulation.  A summary of this is provided in Simulation Of Complex 
Systems, see [36].  In that reference, the Generalized State Space framework is compared to more 
common mathematical formulations of state space.  We note that much of the theoretical 
framework was developed in 1982 as part of the development of the General Simulation System 
(GSS), a product that has been in the international market since 1984, see [73], [127] and [157]. 
 

 Prior to the technology embodied in GSS, simulations of large mobile communication 
systems required 5 to 7 days to run a 2 hour scenario.  This led to a major GSS design 
requirement - simulations must run on a parallel machine.  This implies that two or more 
processes† must be able to run concurrently on separate processors.  This requires that the 
concurrent processes must be independent.  As clarified below, independence implies that the 
processes share no data.  This led to the decision to separate data from instructions so that the 
independence property could be established and tracked in the development environment. 
 

 The original design called for a connectivity matrix, described below, showing which 
processes share what data.  Then when allocating processors to processes, the connectivity 
matrix could be used to determine if a process may run concurrently with those already running. 
 
 
Software Architecture - Modularity & Independence 
 

 In engineering, breaking complex systems into independent modules is embodied in the 
architecture, a concept that has been misunderstood in software.  This is because architecture 
describes connectivity, i.e., how a module is connected to other modules.  Engineering 
architectures represent the time-invariant properties of a system - not flow of control (they are 
not flow charts).  Creating software to take maximum advantage of a parallel processor requires 
that the software be decomposed into independent modules that can run concurrently.  This 
architectural decomposition must reflect the inherent parallelism of the system it represents. 
 

   Descriptions of architecture are not convenient using algebraic or linguistic 
representations.  Like other engineering fields, software architecture is best described with 
drawings, depicting how modules are connected.  Only then can one visually observe 
independence - the key property supporting concurrency.  Flow charts - or graphical variations 
on flow charts - are of little use when describing the property of independence. 
 
 
The Separation Principle 
 

 A software development environment for parallel processors must support a designer 
faced with creating an architecture of independent modules based upon knowledge of the 
inherent parallelism in a system.  To accomplish this, one must separate data from instructions 
at the design interface level so that module independence (or lack of it) is clearly recognized.  
Defined in 1982 in the design of the General Simulation System (GSS), this has become known 
as the Separation Principle, [80].  As described below, Generalized State Space was devised as 
the mathematical framework for implementing GSS. 
 

†  Process as used here is similar to an assembler language subroutine that contains only instructions 
     that reference only external data (by pointer).  It has no relation to a UNIX process. 
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The Generalized State Space Framework 
 

 The Generalized State Space framework capitalizes upon the concepts of State Space 
developed for control theory by extending the mathematical definitions of vectors and 
transformations.  We start with the concept of a Generalized State Vector.  Instead of restricting 
a vector to numbers, it can take on states described by words.  For example, the state LIGHT 
may take on the values RED, YELLOW, or GREEN.  In addition, transformations on a state 
need not be restricted to mathematical operations.  For example, we may want to say IF LIGHT 
IS YELLOW, SET LIGHT TO RED, a Generalized Transformation.  Given this facility, one 
may view a computer program as consisting of generalized state vectors (data) and 
transformations (instructions). 
 

 Using the Generalized State Space framework, the Separation Principle is achieved by 
storing all data in resources that generally contain hierarchical data structures (refer to Figure 5-2 
in Chapter 5).  Resources are depicted as ovals in architectural drawings as illustrated in 
Figure 7-4.  Processes, as defined above, contain instructions in the form of hierarchical rule sets 
(refer to Figure 5-3 in Chapter 5).  They are depicted as rectangles. 
 

TRANSFORMATIONS  03/13/12

TRANSFORMATION
1

TRANSFORMATION
3

TRANSFORMATION
2

STATE
VECTOR

B

STATE
VECTOR

D

STATE
VECTOR

A

STATE
VECTOR

C

STATE
VECTOR

E

STATE
VECTOR

F

STATE
VECTOR

G

A SEQUENCE OF TRANSFORMATIONS

 
 

Figure 7-4.  State vectors and transformations. 
 
 
 In Figure 7-4, each transformation has a dedicated state vector and a shared state vector.  
Transformation-1 has state vector A as input, has state vector B for dedicated use, and shares 
state vector C with transformation 2.  Therefore, transformations 1 and 2 are not independent. 
 

 As used here, the property of independence ensures that processes running on a parallel 
processor produce complete and consistent results for a given set of initial conditions.  Consider 
that state vectors C, D, and E have initial values Ci, Di, and Ei.  When run on a single processor 
(sequential machine), transformation 2 will produce the same outputs: Co, Do, and Eo for a 
given set of inputs every time it runs; i.e., the results will be complete and consistent.  If while it 
is running, one of the resources is changed from the outside, the results may not be complete and 
consistent.  This is because the data being accessed is not consistent relative to transformation 2. 
 

 If transformations 1 and 2 run concurrently, shared state vector C could be changed by 
either, rendering the data as recognized by the other as potentially inconsistent.  Therefore, in 
general, they cannot operate concurrently.  Similarly, transformation 2 is directly coupled to 
transformation 3 (by shared state vector E), is not independent of it, and thus cannot run 
concurrently with it. 
 

 However, transformations 1 and 3 can operate concurrently since they share no state 
vector directly and are therefore independent.  Transformation 2 can operate only when 
transformations 1 and 3 are both idle. 
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 The critical property determining complete and consistent results of the transformations, 
and thus inherent parallelism, is that of independence.  This implies that transformations are 
spatially independent when they share no state information.  The separation of state information 
(data) from transformations (instructions) provides the basis for the Separation Principle for 
software as described in [35], [37], and [41].  The Separation Principle yields drawings of 
software architecture, similar to that in Figure 7-4, providing direct visualization of 
model/module independence.  We will show below that this property - two processes not 
connected to the same resource - is one of spatial independence of the processes. 
 
 
Discrete Event Simulation As A Generalization Of Software 
 

 As stated above, discrete event simulation models may be characterized in terms of 
generalized state vectors and transformations.  This leads to a visualization of the connectivity 
properties of transformations as shown in Figure 7-4.  In this figure, generalized state vectors 
contain hierarchical data structures.  The generalized transformations contain hierarchical rule 
structures, where a rule contains high level language instructions that implement complex 
algorithms.  These are general software facilities described in succeeding chapters. 
 
 
Parallelism, Architecture, and Decomposition 
 

 Theoretically, one can determine the inherent parallelism in a system by creating a model 
whose elements are represented by state vectors and transformations similar to that in Figure 7-4.  
As shown in [40], a proper choice of state vectors will maximize the independence of models, 
taking maximum advantage of the inherent parallelism, and optimizing concurrency.  Various 
authors have shown that any physical system may be modeled to within any measurable degree 
of accuracy using the state-space framework, see for example [128] and [156].  From this we 
may conclude that the inherent parallelism in a system may be modeled by representing its 
operations using the Generalized State-Space framework.  These models may be mathematical 
models, discrete event simulation models or general pieces of software. 
 

 Using this concept, software functions are considered transformations on data.  
Functional requirements may be translated into a set of vectors and transformations.  
Mathematically, transformations may be performed using different vector spaces, some of which 
are more efficient than others.  Using the common example, motion of a particle on a spherical 
surface is most easily described in a spherical space.  When modeling complex systems in 
software, it is important to understand the different coordinate systems (state vectors) and 
transformations that are best used to implement different functions. 
 

 These concepts are significant when translating functional requirements into software.  
When devising mathematical transformations, selecting the best set of independent state vectors 
is a critical part of finding the best solution.  “Best” usually translates to speed which, in turn, 
translates into minimum operation counts, see Hachtel et al, [71].  This concept applies directly 
to software design, independent of parallel processing.  Finding the best set of state vectors can 
make a huge difference in transformational burden.  When dealing with complex data sets, 
design of the tables used for transformations of data is usually key to simplifying both the 
approach, resulting code, and speed of operation. 
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 When striving to take advantage of the inherent parallelism in a system, one must 
determine the best architecture of software modules that can run concurrently on a parallel 
processor.  Picking the best set of state vectors is key to solving this problem.  Again, best 
translates to run-time speed and simplicity of transformations. 
 
 
State Space Representation Of GSS 
 

 Within a GSS simulation, a model only has access to a subset of the simulation state 
vector when a process in that model is running.  We will call this the model state vector.  A 
subset of the model state vector contains those resources that are contained within the model.  
Because this GSS state vector may contain character as well as numeric data, it is called a 
generalized state vector.  The state space representation of a GSS model is shown in Figure 7-5.   
 

StateSpaceModels  11/12/10

GSS
MODEL

PROCESSES

RESRC-N       - GSS resources that are accessible to the model's processes
S-SCHED       - Simulation schedule entries used in the schedule command
S-CLOCK       - Simulation clock time
R-CLOCK       - Real-time clock time
RANDOM_S   - Random number generator seed

STATE
VECTOR

(T)

RESRC-1
       .
       .
       .
RESRC-N
S-SCHED
S-CLOCK
R-CLOCK
RANDOMS

STATE
VECTOR
(T + ΔT)

RESRC-1
       .
       .
       .
RESRC-N
S-SCHED
S-CLOCK
R-CLOCK
RANDOMS

 
 

Figure 7-5.  State space representation of GSS. 
 
 
 The state vector of a GSS model consists of the following items and their corresponding 
information elements: 
 

• ACCESSIBLE RESOURCES - The information contained in resources to which 
processes within the model are attached.  Note: Shared resources may or may not 
reside within the model. 

 

• SIMULATION SCHEDULE - An interface to the scheduler. 
 

• SIMULATION CLOCK - The time of the simulation clock, including priority, 
including when it schedules another process. 

 

• REAL TIME CLOCK - The value of the real-time clock if it is used. 
 

• RANDOM NUMBER GENERATOR - The current value of random number 
generator seeds if they are used. 
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 A GSS process is scheduled based upon the logic within itself or in other processes.  
When a GSS process runs, it may schedule itself or other processes at specified times in the 
future, or at the current time.  GSS processes run in zero simulated time.  The simulation clock 
advances based upon the next scheduled process.  At any time, the state of a model depends 
solely upon its state vector.  When a process in a model runs, its terminal state, i.e., the value of 
its substate vector - when it passes control back to GSS - depends solely upon its initial state, 
i.e., the initial value of its substate vector, and the rules within the process. 
 

 When processes in another model share a part of the state vector of a given model, then 
any future state of the given model is, in general, dependent upon the rules in the other model, 
since they can change the given model's state vector at a different instance in time. 
 
 
ANALOGY TO SYMBOLIC MODELS USING STATE SPACE 
 

 The state space representation of a GSS model, Figure 7-5, is analogous to a set of 
differential equations that represent the state of a dynamic system at any instant in time.  All 
future states are represented by the equations of motion in state space notation, and the initial 
conditions, reference Schweppe, [128]. 
 

 In GSS, the interconnection of resources and processes, see Figure 7-4, is analogous to 
the electrical circuit drawing in Figure 7-1.  Each has its corresponding rules and storage 
underlying each primitive element.  In the case of electrical circuits, there are constituent 
equations that describe the changes in energy storage in differential form for each primitive icon.  
Representation of any system element must conform to this form of change. 
 

 In the case of GSS, sets of rules operate on sets of attributes contained in data structures 
to define the elementary change relationships in a model.  Using GSS, the model shown in 
Figure 7-4, along with the underlying rule and data structures define the total state of the 
simulation at any point in time after the initial conditions in generalized state space. 
 
 
Choosing the Most Convenient Reference Frame 
 

 As implemented in GSS and described above, the generalized state space framework 
supports the representation of discrete event systems as well as discrete and continuous time 
systems.  Figure 7-6 illustrates the generalized state space as providing an underlying framework 
for representing dynamic systems. 
 

GENERALIZED STATE SPACE FRAMEWORK

CONTINUOUS
SYSTEMS

DISCRETE
TIME

SYSTEMS

DISCRETE
EVENT

SYSTEMS

GSS-STATE  5/11/03  
 

Figure 7-6.  Generalized State Space: 
         - an underlying framework for representing dynamic systems. 
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 The difference between model representations of a system's dynamics may translate into 
huge differences in productivity.  A particular representation can be selected to make it easier to 
analyze or predict specific system behavior.  If a system is conveniently represented by a set of 
differential or difference equations, then one of those representations may be best.  If the system 
is more easily described by sets of rules operating on sets of attributes that may contain 
nonnumeric elements, then that representation should be chosen. 
 

 Since the advent of the digital computer, people have moved from analytical methods for 
integrating differential equations to heuristic algorithmic methods, especially when the systems 
represented are either nonlinear or nonstationary.  Fast numerical algorithms for solving stiff 
nonlinear systems typically use complex heuristic approaches, see [70].  All of these approaches 
can be implemented easily using GSS rule and attribute structures.  As computers provide 
significantly greater memory and corresponding speed advantages, the space for solving 
problems is growing, alleviating restrictions to abstract numerical methods for solution, and 
allowing rapid movement toward heuristic rule-oriented approaches using complex data 
structures.  These approaches are compared in Simulation Of Complex Systems, [36]. 
 

 We note that GSS is a discrete event simulation environment, where flow of control may 
depend upon a huge set of event strings that in turn depends upon a huge state space.  Although 
sequences of events may be deterministic, they are virtually unpredictable in a large simulation.  
When selecting frameworks for solving such problems, one must ensure completeness and 
consistency so that, depending upon their inputs, solutions converge to the expected outputs 
unambiguously.  When developing GSS, the State Space framework was used to ensure these 
properties. 
 

 Having selected GSS as the overall framework, the analogy then becomes one of 
selecting the best set of information vectors (GSS Resources) to represent the system attributes.  
Depending upon how the resources are designed and structured, the rules (GSS Processes) may 
be much simpler to understand, build, and modify.  This is determined by the independence 
properties of the architecture, i.e. the interconnection of resources and processes - not the code! 
 
 
Mapping Into Software 
 

 Since there are no language statements in GSS that are specific to simulation, although 
the SCHEDULE and CANCEL statements may be used as such, the language is a complete and 
eloquent parallel processor software language.  It is a very rich language that is used for the GSS 
counterpart, the Visual Software Environment (VSE).  In VSE, the SCHEDULE statement is 
used to invoke processes on different parallel processors.  All of the architectural properties 
available to GSS users also reside in VSE.  The fact that GSS is written in VSE implies that VSE 
can also be used to build simulations. 
 
 



Software Theory                 Page  7 - 12  

SOFTWARE ARCHITECTURE 
 

 As illustrated in Figure 7-4, software architects can decompose a system into modules by 
grouping resources and processes into an elementary module.  Hierarchical modules are created 
by grouping modules into higher level modules.  Figure 7-7 shows a library module that is 
sufficiently complex to warrant its own drawing.  In general, modules are independent if they 
share no resources (i.e., they are not connected).  Having developed an architecture, developers 
can implement the data structures and rules using the resource and process languages.  These 
may be edited directly on the drawing as illustrated in Figure 7-8.  The languages do not permit 
the declaration of scope rules.  It is the architecture that determines the sharing of data and 
corresponding independence of modules. 
 

 Unless one has witnessed directly the development of such architectures, the above 
discussion may take time to comprehend.  Having used it, it is apparent that architecture as 
defined here is as critical to software design as it is to any other engineering discipline, with or 
without parallel processing.  It is why productivity multipliers are very high when using this 
CAD environment, especially in the support mode when a new person has to understand what 
another has built. 
 
 
Taking Advantage Of Architectural Information At Run-Time 
 

 To take advantage of a parallel processor at run-time, the OS must map threads onto 
processors to maximize the speed multiplier.  A programmer faced with generating complex 
algorithms should not be concerned with this problem.  Similarly, a compiler will have little 
success trying to interpret an architect’s decomposition of modules from the code.  Finally, the 
operating system will not be very successful in determining where to map threads based upon 
current run-time statistics, especially if they are nonstationary - as they are in most discrete event 
simulations due to huge nonlinearities. 
 

   If there is sufficient inherent parallelism in the system, architects can decompose the 
software into large Independent (IND) modules.  As described below, threads are contained 
within IND modules.  Because threads in one IND module are independent of those in another, 
they can run concurrently on separate processors without concern for synchronization. 
 

 The architectural information that characterizes inherent parallelism is contained in 
databases that support the CAD development environment.  A Run-Time System is generated 
from that information to control OS calls that allocate processors to modules.  It also ensures that 
the resources (data) reside with the processes (instructions) that use them.  If there are enough 
processors to house the IND modules, load balancing (migration) is unnecessary, see [44].  
Synchronization of data accesses between IND modules is handled automatically as described in 
later chapters. 
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Scalability 
 

 Increasing complexity may cause a software development effort to scale nonlinearly, i.e., 
the effort required to build a system increases faster than its complexity.  This is characterized by 
Fred Brooks in The Mythical Man-Month, [19].  However, linearity depends upon independence.  
Linear scaling can be achieved by maximizing module independence.  This phenomenon is the 
result of the separation principle, see [41]. 
 

 As indicated above, current languages provide limited control over the design of large 
complex software systems.  Architects of industrial buildings, ships or airplanes would find it 
very difficult, if not intractable, to produce large complex designs without drawings.  It is now 
apparent that software is no different.  Having used the CAD interface and drawings to produce 
architectures, and having observed module independence by visual inspection, it becomes 
obvious that building software without drawings is no different from any engineering field that 
depends upon drawings.  Visualization of the architecture is critical to understanding - and 
controlling - increasing complexity when building and supporting software. 
 
 
SOFTWARE LANGUAGE PROPERTIES 
 

 When considering a programming language, one is concerned with two issues:  (1) the 
speed with which a high quality product can be built and enhanced; and (2) the speed with which 
it runs, see [2].  These factors are key to building large simulations.  When assessing the validity 
of a model, subject area experts must be able to easily understand the algorithms as well as the 
architecture.  This depends directly upon understandability of the language used to describe the 
algorithms.  Understandability is a measure of the relative ease with which others (including 
subject area experts) can understand an algorithm.  This directly affects the effort required to 
validate a model as well as build and debug software.  Having separate language translators for 
data and instructions helps one focus on the understandability of each. 
 

 Figure 7-9 illustrates the problem of developing software systems and simulations.  
Today, applications run on processors with separate elements optimized for accessing data 
memory and instruction memory.  Humans can translate their problem into a user-friendly 
language (software space).  As shown by history, this language must be designed for human 
understanding, making it easy for subject-area experts to map their problem into a software space 
that best suits their applications.  Translation of human-oriented languages into binary is done by 
the computer.  With languages designed to simplify mapping applications into software space, 
the computer translation becomes much more complex.  But that is exactly where the burden 
should be. 
 

APPLICATION
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SIMULATION
SPACE

SOFTWARE
SPACE

COMPUTER
HARDWARE

SPACE
-

DATA
AND

INSTRUCTION
MEMORY

HUMAN
LANGUAGE

TRANSLATION

COMPUTER
LANGUAGE

TRANSLATION

SOFTWARE_SPACES  05/18/14  
 

Figure 7-9.  The environment of software language translators. 
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 Factors affecting both speed and understandability of a complex algorithm include the 
manner in which the state vectors are structured.  Hierarchical structures are used historically to 
control large complex organizations where speed and precision of operations are important.  This 
property is illustrated in the resource shown in Figure 7-10.  Hierarchical data structures, 
organized around the application, not the data type, greatly enhance understandability.  It allows 
them to be grouped to support meaningful architectures as illustrated in Figure 7-7. 
 

 

 RESOURCE NAME: MESSAGE FORMATS 
 

 
Figure 7-10.  Example of a hierarchically structured state vector (Resource). 

 
 
 Hierarchical data structures also support group moves, e.g., moving a large character 
string into the MESSAGE structure in Figure 7-10.  This simplifies the algorithm, substantially 
improving speed as well as understanding.  Many other features in the resource language, e.g., 
the STATUS and ALIAS attributes used in Figure 7-10, contribute to enhanced understandability 
of a process.  This is apparent in the example that follows. 
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 Processes are transformations that contain hierarchical sets of rules, an example of which 
is shown in Figure 7-11.  Data cannot be declared in a process.  Processes may only reference 
data defined in resources to which they are connected (by a line in the architecture).  Resources 
connected to a process are referenced automatically by pointer.  With this paradigm, 
programmers are only concerned with indexing, not memory management (ultimately controlled 
by the OS). 
 

 

 PROCESS: RECEPTION 
 

 RESOURCES: TERMINAL PARAMETERS      INSTANCES: TRANSMITTER 
            MESSAGE FORMATS                     RECEIVER 
            TRANSCEIVER 

 

 
 

Figure 7-11.  Example of a hierarchically structured transformation (Process). 
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 Rules (labeled in column 1 in Figure 7-11) implement one-in one-out control structures 
as advocated by Mills, [102].  They are invoked by the EXECUTE statement.  After their 
execution, control is returned to the statement directly following the EXECUTE.  This provides a 
hierarchy of control within a process that simplifies understandability.  The result is that complex 
conditional statements may be reduced to their minimum hierarchies, eliminating nested IF 
statements and removing assignment type statements from within conditional control structures.  
This makes complex control structures much easier to understand.  Rules may be invoked from 
multiple EXECUTE statements (the language contains no GO TOs). 
 

 Speed is the major driving force in simulation language design.  As indicated above, 
hierarchical data structures support group moves that can contribute order-of-magnitude 
improvements in run-time speed.  In Figure 7-10, MESSAGE is redefined by FORMAT_A and 
FORMAT_B; these are templates over the same area of memory.  Individual data attributes can 
be moved in large groups as long as overall sizes of the structures are matched.  However, the 
REDEFINES statement eliminates unnecessary MOVEs.  All of the fields are filled in one move 
(one instruction fetch).  This requires memory to be mapped WYSIWYG (What You See Is 
What You Get), with no “word-boundary alignment” (data has not been mapped as words since 
the late 1960s). 
 

 In state space, a major factor affecting speed and understandability of a complex 
transformation is selection of the state variables.  In software, this is equivalent to the design of 
the underlying data structures supporting an algorithm.  In the prior example, message 
processing is simple.  One need only move a message string into MESSAGE.  All of the fields 
and conditions are immediately available in the data structure to process FORMAT_A or 
FORMAT_B messages.  As already indicated, speed is enhanced by the same simplification.  
These facilities depend upon the ability to easily create and use complex hierarchical data 
structures. 
 

 From Figures 7-10 and 7-11, one can see that the languages are designed for speed and 
understandability.  This supports ease of change by other than the original author, and validation 
by subject area experts (non-programmers).  Terse languages, that infer complex meanings with 
minimum keystrokes, risk misunderstanding.  The reasons follow from information theory where 
redundancy is shown to improve real understanding, see [130]. 
 

 A frequent misperception is that verboseness, a form of redundancy, implies loss of 
speed.  In fact, there is no relationship between speed of execution and verboseness of the source 
code.  The translator for a natural language may be very complex, but that is exactly where the 
burden should be placed; alternatively, it is on the person trying to understand the algorithm. 
 
 
VISUALIZATION OF SOFTWARE ARCHITECTURE 
 

 Geometry and algebra each play important roles in engineering.  Theoretically, one could 
do away with the images provided by geometry.  In practice, those who can use geometry have a 
significant advantage.  Figure 7-12 illustrates a model that was developed using a hierarchy of 
models, but without the use of engineering drawings (the drawings were done after the fact).  As 
is typical in conventional software, data is shared everywhere, with no visible check on 
independence. 
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 Figure 7-13 shows the same application developed using the VisiSoft CAD environment, 
see [67].  This example demonstrates the importance of visualization of the independence 
properties of software.  But now take away the Separation Principle with the ability to easily 
group large data structures.  If the shared data is scattered, as when using a C-based language, the 
drawing becomes intractable.  Note also the Instanced Modules, OFFICE(20) and 
SUBSCRIBER(50).  Each instance of OFFICE is independent (no resources shared directly). 
 

 Another critical property of this approach is the Connectivity Matrix shown in 
Figure 7-14.  The blue boxes indicate the module boundaries for elementary as well as 
hierarchical modules.  For each resource in Figure 7-14, one can see the processes connected to it 
(denoted by an X) to share the data.  The connectivity matrix defines process and module 
independence.  The more sparse the matrix, the greater the independence of modules, and the 
more simple the transformations, a concept taught to engineers in linear system theory.  This 
information is maintained by the development environment and passed to the run-time 
environment to determine what processes/modules can run concurrently on parallel processors. 
 

 In Figure 7-14, the SCENARIO_CONTROL module shares the SCENARIO_CONTROL 
resource with processes in each OFFICE module instance (R - Read Only) and the SWITCH 
module (R), being temporally independent.  However, this is only during initialization making 
those modules effectively independent after initialization.  The OFFICE module also shares 
PBX_SWITCH_ INTERFACE and SWITCH_RESPONSE with the SWITCH module (Rs), so 
those modules are temporally independent throughout the simulation and require minor 
synchronization, a facility provided automatically by VisiSoft Inter-Processor (IP) Resources 
(outlined in blue in Figure 7-13).  OFFICE also shares PERFORMANCE_ MEASURES with 
INSTRUMENT (R) as a seldom-used temporally independent one-way output.  Because IP 
Resources are automatically copied and synchronized by the tailored Run-Time System (RTS) 
they can be shared concurrently. 
 
 Figure 7-15 illustrates this concept.  It contains a model of a digital radio system from a 
simulation used to support the design of large radio networks on moving platforms (land, sea, air 
and space).  The SAT_COMM_RADIO_SYSTEM model is one of many in that simulation.  In 
this example, it is instanced 300 times, i.e., a network of 300 radio systems can be simulated 
using this model.  Except for two submodules at the bottom, all modules in an instance are 
independent of those in other instances.  This implies that 300 processors can be used to house 
each instance, and these instances will only exchange information through two submodels at the 
very bottom of the architecture. 
 

 Of 124 processes in an instance, 4 share resources between instances.  Processes that 
share resources between independent modules are controlled automatically by a run-time system 
that ensures synchronization while minimizing wait times.  If an instance is active, many of the 
levels in the protocol hierarchy may be active.  Except for processes sharing interface resources 
between instances, all other processes (threads) can run concurrently, with those in other 
instances, with assured independence.  The efficiency of processor utilization will depend upon 
the scenario as well as other factors.   
 
 



Software Theory                 Page  7 - 21  

Fi
gu

re
 7

-1
3.

  I
N

TE
R

_O
FF

IC
E_

N
ET

W
O

R
K

 M
od

el
 u

si
ng

 R
TG

.

SC
EN

A
R

IO
.S

FI
SC

EN
AR

IO
_C

O
N

TR
O

L

   
 R

E
AD

_
S

C
E

N
AR

IO
_

   
 D

A
TA

IN
IT

IA
LI

ZE
_

S
C

E
N

AR
IO

S
C

E
N

AR
IO

_
C

O
N

TR
O

L

O
FF

IC
E(

20
)

PB
X

   
IN

S
TA

LL
   

   
P

BX

U
PD

A
TE

_
   

  P
B

X

   
R

EC
E

IV
E

_
S

U
B

S
C

R
IB

ER
_

   
   

IN
P

U
T

R
EC

E
IV

E
_

S
W

IT
C

H
_

R
ES

P
O

N
SE

P
BX

_
S

U
B

S
C

R
IB

ER
_

IN
TE

R
FA

C
E

P
BX

_
S

YM
BO

LS

P
BX

_
FA

C
IL

IT
IE

S

P
BX

_
S

W
IT

C
H

_
IN

TE
R

FA
C

E

B
U

IL
D

_O
FF

IC
E

B
U

IL
D

_
O

FF
IC

E
O

FF
IC

E
_

FA
C

IL
IT

IE
S

SU
B

SC
R

IB
ER

(5
0)

   
   

IN
S

ER
T_

S
U

B
S

C
R

IB
ER

_
TE

R
M

IN
A

TE
_

   
   

C
A

LL

P
LA

C
E_

  C
AL

L

   
   

C
O

LO
R

_
S

U
B

S
C

R
IB

ER
_

R
EC

E
IV

E
_

   
  P

B
X_

R
ES

P
O

N
SE

S
U

B
S

C
R

IB
ER

_
A

TT
R

IB
U

TE
S

S
U

B
S

C
R

IB
ER

_
S

YM
BO

LS

S
U

B
S

C
R

IB
ER

_
P

BX
_

IN
TE

R
FA

C
E

P
ER

FO
R

M
A

N
C

E
_

M
EA

SU
R

E
S

SW
IT

C
H

  I
N

ST
A

LL
_

  S
W

IT
C

H
_

E
Q

U
IP

M
EN

T

R
EC

E
IV

E
_

   
  P

B
X_

  S
IG

N
A

L

  S
W

IT
C

H
_

R
ES

P
O

N
SE

  S
W

IT
C

H
_

FA
C

IL
IT

IE
S

C
O

N
N

E
C

T_
   

  C
A

LL

C
O

LO
R

_
TR

U
N

KS

   
C

O
LO

R
_

TE
R

M
IN

A
LS

  S
W

IT
C

H
_

C
O

N
TR

O
LS

D
IS

C
O

N
N

E
C

T_
   

   
 C

A
LL

IN
ST

R
U

M
EN

T
   

 IN
S

ER
T_

IN
ST

R
U

M
E

N
T

G
R

A
PH

IC
S

_
IN

ST
R

U
M

E
N

T
   

  U
P

D
AT

E_
P

ER
FO

R
M

A
N

C
E

_
   

 M
E

AS
U

R
ES

TE
LE

PH
O

N
E_

N
ET

W
O

R
K

TE
LE

X
M

PP
  0

5/
25

/1
4

 



Software Theory                 Page  7 - 22  

 

CONNECTIVITY_MATRIX  11/29/13

S
C

EN
A

R
IO

_C
O

N
TR

O
L

O
FF

IC
E_

FA
C

IL
IT

IE
S

S
U

BS
C

R
IB

E
R

_S
Y

SM
B

O
LS

P
ER

FO
R

M
AN

C
E_

M
EA

SU
R

E
S

S
U

BS
C

R
IB

E
R

_A
TT

R
IB

U
TE

S

S
U

BS
C

R
IB

E
R

_P
B

X_
IN

TE
R

FA
C

E

P
BX

_S
U

B
SC

R
IB

ER
_I

N
TE

R
FA

C
E

P
BX

_F
AC

IL
IT

IE
S

P
BX

_S
Y

M
B

O
LS

P
BX

_S
W

IT
C

H
_I

N
TE

R
FA

C
E

S
W

IT
C

H
_R

E
SP

O
N

S
E

S
W

IT
C

H
_F

A
C

IL
IT

IE
S

S
W

IT
C

H
_S

YM
B

O
LS

G
R

A
PH

IC
S_

IN
ST

R
U

M
E

N
T

READ_SCENARIO_DATA

INITIALIZE_SCENARIO

INTERACTIVE_SCENARIO

GET_TRUNK_CAPACITY

BUILD_OFFICE

INSERT_SUBSCRIBER

PLACE_CALL

TERMINATE_CALL

COLOR_SUBSCRIBER

RECEIVE_PBX_RESPONSE

RECEIVE_SUBSCRIBER_INPUT

INSTALL_PBX

UPDATE_PBX

RECEIVE_SWITCH_RESPONSE

RECEIVE_PBX_SIGNAL

INSTALL_SWITCH_EQUIPMENT

COLOR_TRUNKS

COLOR_TERMINALS

CONNECT_CALL

DISCONNECT_CALL

UPDATE_PERFORMANCE_MEAS

INSERT_INSTRUMENT

X

X

X

X

X

X

X

X

X

R

X

X

X

X

X

X

X X

XX

X

X

X

X

X

X

X

X

X X

X

X

X X

X

X

X

X

X
X

X

X

PROCESSES

R
ES

O
U

R
C

ES

MODULES

X

X

X

X

X

R

R

R

R

R

OFFICE

SWITCH

INSTRUMENT

IND MODULES

SCENARIO_CONTROL

 
 

Figure 7-14.  Resource, Process, and Module Connectivity Matrix. 
 
 
 However, in scenarios where each instance is heavily loaded, all of the processors will be 
working to simulate the inherent parallelism of the actual system.  With this architecture, 
attempts at load balancing will likely slow the simulation.  As shown below, there are typically 
many threads in an instance.  Parallelization of these threads is handled automatically and not of 
concern to the designer. 
 

 The radio modeled in Figure 7-15 is typically one of many pieces of equipment on a 
platform.  Platform models may be instanced on the order of 500 to 1000 times.  Each platform 
may have multiple instances of 5 to 10 different models that share information directly and are 
best placed on the same processor as the platform.  As long as the number of processors exceeds 
the number of platforms, speed multipliers can be high.  But designers need not be concerned 
with such decisions.  They are automated in the Run-Time System as described below. 
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Figure 7-15.  Illustration of an instanced model in a parallel processor simulation. 



Software Theory                 Page  7 - 24  

PARALLEL PROCESSING RUN-TIME CONSIDERATIONS 
 

 Instances of modules such as those shown in Figure 7-15 may be allocated to many 
parallel processors.  To understand how this is accomplished at run-time, we summarize the 
following definitions: 
 

− Two processes are independent if they share no resources. 
 

− Elementary Modules contain only resources and processes. 
 

− Hierarchical Modules contain Elementary Modules or lower level Hierarchical 
Modules. 

 

− Two modules are independent if all of the processes in one are independent of those in 
the other. 

 

− Processes may invoke other processes using the CALL or SCHEDULE statement, 
see [67]. 

 

− When a process CALLs another process, control is transferred immediately to the called 
process.  Control returns to the calling process when the called process terminates. 

 

− When a process SCHEDULEs another process, the scheduled process is identified in 
the schedule queue to be run when it is next in the ordered sequence of processes in the 
queue.  The queue is ordered by priority within time as specified in the schedule 
statement, see [67]. 

 

− A thread is initiated when the next scheduled process is popped from the queue.  A 
thread continues to run when a process in the thread calls another process. It terminates 
when the scheduled process terminates. 

 

− A thread may span multiple modules within a single IND module. 
 

− A module may contain multiple threads. 
 

− Two Threads Are Independent if they are contained in independent modules. 
 

− Threads contained in independent modules may run concurrently if the modules that 
contain them are allocated to separate processors. 

 
 Now consider the instanced model (module) in Figure 7-15 using the above definitions.  
As indicated, a simulation may have 300 instances of the mobile radio active in a scenario.  By 
design, there may be on the order of 20 threads within an instance that are independent of those 
in the other instances. 
 

 If an instance is assigned to a single processor, none of the threads in that instance can 
run concurrently.  Therefore there are no concerns about synchronization among these threads.  
Since threads in different instances are independent by design, there are no concerns about 
synchronization among those threads in different processors.  The only case of concern is when a 
resource is shared across processors.  In this case, the run-time system that gets generated 
maintains synchronization automatically, ensuring that processes sharing resources across 
processors cannot run concurrently. 
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 In a heavy traffic scenario, most of the radios will be active at many of the protocol 
layers, implying that the activity on those processors will be relatively high.  Additionally, the 
amount of time spent waiting for access to resources at the interface between modules will be 
small compared to useful processing time within an instance.  As a result, the overlap of useful 
time should be high relative to the inherent parallelism in the system, implying that the speed 
multipliers should also be relatively high, see [40].  Without the visualization of architectural 
design that resides within this CAD approach, producing architectures that achieve comparable 
effective use of parallel processors is extremely difficult. 
 
 
LOOKING AHEAD 
 

 The material covered above is intended to provide an overview of the following chapters.  
These next chapters will provide more detail on the underpinnings of a software theory that is 
aimed at taking maximum advantage of the potential speed to be gained from parallel processing.  
Having understood this theory, one should feel confident about new approaches to computer 
design, including basic processor design, chip design, OS design, and the design of a 
development environment that substantially aids both the hardware and software designer. 
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CHAPTER 8 
 

AN INTEGRATED SOLUTION APPROACH 
 
 
8.1 INTRODUCTION 
 

 The need for an integrated software development / run-time environment is motivated by 
requirements to significantly improve productivity and run-time speed on parallel processors.  
Trying to meet such objectives using current programming languages is a challenge that software 
developers no longer need to confront.  This chapter describes an approach to building software 
that follows from engineering principles.  Having used this system (known as VisiSoft), it 
becomes clear that design of the development environment must be integrated with that of the 
run-time environment.  The approach described here achieves the following objectives. 
 

• Substantially simplify software development for parallel processors. 
 

• Create software that runs much faster on single as well as parallel processors. 
 

• Control the growing complexity of a software system as it is expanded. 
 

• Create modules that can be changed with minimal effects on the rest of the system. 
 
 
SOFTWARE-HARDWARE ENVIRONMENT - FUNCTIONAL REQUIREMENTS 
 

   Figure 8-1 illustrates a decomposition of the software-hardware environment from 
application requirements to results.  To address the objectives in the introduction, we must 
consider the individual requirements in the chain of elements in the software-hardware 
environment.  These are described below, refer to [44]. 
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Figure 8-1.  Overall software - hardware environment. 
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Application Requirements 
 

 This approach addresses large complex parallel processor applications requiring a team 
effort.  For the purposes of this book, applications are divided into three types: 
 

1. Embarrassingly Parallel - Applications that may be split into independent tasks that run 
concurrently with effectively no exchange of information. 

 

2. Partially Independent - A single task that may be split into independent modules that 
must exchange information during the task, but where the processing time for 
information exchanges are small compared to what is going on inside the modules. 

 

3. Effectively Sequential - A single task where most instructions follow from the prior ones, 
providing little chance for concurrent processing. 

 

 VisiSoft addresses partially independent applications, i.e., those with a reasonable 
amount of inherent parallelism.  Being able to represent a system’s inherent parallelism in a 
software architecture is key to the effective use of a parallel processor to meet stringent run-time 
speed requirements.  Examples are real-time planning and control systems used in large 
manufacturing plants, or simulations of many platforms, e.g., aircraft, exchanging information - 
by radio - that affects their future behavior.  The applications addressed also require high 
reliability, rapid enhancement to support new features, and potential for growth of complexity. 
 
 
Architectural Design 
 

 For applications to be run on a parallel processor, architects must decompose the 
application into sets of relatively independent subsystems.  These must then be translated into 
independent software modules such that processing within the independent modules far exceeds 
communications between modules.  This is based on the inherent parallelism in the system.  
These independent modules may then be placed on separate processors to run efficiently. 
 

 For complex systems requiring special skills to produce the subsystem decomposition 
(e.g., systems requiring detailed engineering knowledge or special experience), subject area 
experts must be able to understand the software architectures with minimal, if any, help from 
programmers.  They can then help design architectures that take full advantage of the inherent 
parallelism in the application system, something only they may have the knowledge to do. 
 
 
Development Environment 
 

 The development environment must support high productivity to minimize the time and 
cost of development, validation, and testing.  This implies rapid translation of application 
requirements into software architectures that reflect the inherent parallelism in the system.  This 
is particularly true during post development upgrades and support. 
 

 This implies that architectures can be easily inspected, visually - using engineering 
drawings as in Figure 8-2.  These show connectivity (they are not flow charts), to maintain full 
control over the design.  It also implies that the languages (resource, process, and control 
specification) effectively support this architectural breakout.  In addition, the languages must be 
easily read directly by subject area experts, so they can understand and validate complex 
algorithms representing the system as well as the architectural breakout and run-time control. 



Software Theory                 Page  8 - 3  

 

UD

UD

FPPS  07/12/12

PROPAGATION_PREDICTION

PROPAGATION_PREDICTION

OVERARCH  07/16/12

ARCHITECTURAL
DRAWINGS

1

DATA
STRUCTURES

2

CONTROL
SPECIFICATIONS

4

RULE
STRUCTURES

3

EXTERNAL
DOCUMENTATION

 
 

Figure 8-2.  An overview of the development process using architectural drawings. 
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 The development environment must produce the information needed by the run-time 
environment to ensure that full advantage is taken of the architectural characteristics of the 
application software.  This is especially true when trying to achieve high run-time speeds on a 
parallel processor while minimizing the machine resources required to achieve that speed.  This 
information is defined in the Control Specification, and defines the independent modules that 
may be assigned to separate processors, the number of processors, and a ΔTmax. 
 

 This environment produces the connectivity properties between modules so those that 
communicate may be located on physically adjacent processors to minimize communication 
delays.  In the case that the use of these connectivity properties is nonstationary (modules may 
vary their connectivity properties by communicating with different modules as they operate), 
modules may be migrated during run time to reduce communication delays. 
 

 To support the above, the development environment must produce the application 
software object code in segments, corresponding to the independent modules produced by the 
architecture.  Similarly, it must produce the database describing the independent module 
architecture along with management software to interface with the OS.  Given this information, 
the OS can take maximum advantage of a (potentially simplified) hardware architecture. 
 
 
Application Software 
 

 It is essential that the resulting application software be able to run fast on a single or 
parallel processor while using minimum machine resources.  This implies that the machine code 
is organized such that hardware resource management, and in particular memory management, is 
simplified.  This implies that the chunks of code to be managed are well defined and organized 
into a minimum number of chunks.  This is another architectural design problem that depends 
heavily on the language used in the development environment to describe the databases. 
 
 
Run-Time System (RTS) 
 

 The run-time system must provide the translation of architectural information from the 
development environment into calls to the OS during run time.  It is the architectural design that 
minimizes the movement of instruction memory as well as data memory at run time.  As 
indicated above, architectural information can be used to optimize processor allocation so as to 
minimize memory boundary crossing delays.  Use of this information by the run-time system is 
critical to effective use of parallel processors. 
 
 
VisiSoft Parallel Operating System (VPOS) 
 

 VPOS must be designed to take full advantage of the information provided by the run-
time system.  Specifically, it must be designed to allocate and assign hardware machine 
resources to make maximum effective use of this information.  This includes minimizing 
overhead and memory sharing delays to achieve maximum run-time speed.  This can only be 
achieved by allocating processors and memory to independent modules based upon the 
architectural information, including the possible migration of independent modules when the 
time-constants of nonstationary inter-module communications permit. 
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Hardware 
 

 In applications where run-time speeds are critical and parallel processors are required to 
support a single task, the hardware design must support the run-time system and corresponding 
OS requirements.  In general, one typically trades memory for speed, duplicating instruction sets 
and stationary databases on separate processors to avoid swapping and paging.  With the 
approach to architecture described here, hardware designers can focus on the essentials of 
minimizing overhead and memory sharing delays to achieve maximum speeds on a parallel 
processor, with little concern for the inherent architecture of an application software system.  
This is because full knowledge of the inherent parallelism of the system is embedded in the 
architectural design and automatically transferred to the run-time system. 
 

 With the integrated approach described here, the software development environment 
directly impacts the design of the run-time environment, including the OS.  This, in turn, can be 
used to simplify design of multi-core chips.  Specifically, the combination of language facilities 
and architecture eliminates the need for the hardware facilities in the bullets below, opening up 
chip real-estate for better use, e.g., more memory. 
 

• Cache coherency 
 

• Thread synchronization 
 

• Stack facilities 
 

• Special instruction swapping facilities 
 

 In the case where parallel processors may be dedicated to algorithm-intensive or 
memory-intensive applications that consume substantial processor time, they may be connected 
to server chips via shared memory as illustrated in Figure 3-6.  When properly housed with a 
shared memory server environment, parallel processor chips need not interface directly with 
disks, communication channels, graphics, work stations, etc.  One-way memory transfers to and 
from the server replace the need for special DMA channels or device interfaces. 
 

 Autos are a form of transportation vehicles, as are boats and airplanes.  Each is designed 
for a different type of application.  Similarly, servers are a different form of computer than are 
PCs or parallel processors, addressing different sets of applications.  Our focus here is on parallel 
processors to support dramatic speed improvements when running large scale software systems 
and simulations. 
 
 
8.2 ACHIEVING SPEED INCREASES 
 

 Design of the language for VisiSoft was driven by speed and accuracy for discrete event 
simulations of physical systems, typically with a high degree of inherent parallelism.  The 
principle requirement was to develop a language that made it easy to build complex software for 
parallel processors as well as ease of understanding by subject area experts.  The first step in the 
design was to separate data from instructions at the coding level.  This Separation Principle 
simplifies the ability to track which sets of instructions share what data. 
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 To minimize the number of data elements to be tracked requires the ability to support 
large hierarchical data structures.  Similarly, one wants large hierarchical rule sets within a single 
process (a GSS process becomes a group of assembler instructions).  Given that blocks of data 
are separated from blocks of instructions at the language level, one can easily build independent 
modules that map into the inherent parallelism of an application.  As a by-product, this provides 
the ability to visualize the design using engineering drawings showing the connectivity of blocks 
of instructions with blocks of data. 
 
 
Software Decomposition - Creating Independent Modules 
 

 The decomposition of a software system into independent modules implies drawing 
boundaries around the elements in a system that comprise a specified module.  This allows any 
system to be decomposed into a set of modules.  Furthermore, as modules get large, they can be 
decomposed hierarchically into submodules, etc. 
 

 Creating modules that can run concurrently on a parallel processor presents explicit 
requirements on module design.  Two modules can run concurrently only if they are 
independent.  This implies that they share no data; else they incur the potential for inconsistent 
use of that data.  The independence property is also an important contribution to the other 
requirements stated above. 
 
 

 
 
Multipliers On The Speed Multipliers 
 

 Being able to easily define and reference large data structures allows them to be moved 
using a single instruction fetch into another shared structure that defines the details of all of the 
elements.  This provides for significant increases in speed when working with algorithms 
requiring large state vectors or databases.  This has been demonstrated in a substantial number of 
case histories and experiments. 
 

 Given the speed multipliers that VisiSoft has generated on single processors, one may 
expect to use fewer processors (as many as a factor of 10 less) simply by using the VisiSoft 
environment to build the software. 
 

 Using the architectural features of VisiSoft, one may create larger independent modules 
that will run faster (using less overhead) provided that each processor has sufficient adjacent 
memory.  This new architectural approach affords speed increases that require fewer processors 
to achieve the same speed multiplier. 
 

 Using fewer processors reduces the distance between processors, further increasing the 
speed multiplier.  This is clearly a nonlinear function, where speed increases with fewer 
processors.  Conversely, speed will decrease nonlinearly with more processors if they increase 
the overhead.  This has been shown to be true in many parallel processor experiments. 
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Elimination of Data Coherency Checks 
 

 When one independent module wants to communicate with another, it must use an Inter-
Processor (IP) resource.  The Inter-Processor Communication (IPC) system contained in the 
VisiSoft Run-Time System (RTS) automatically copies an IP resource into a similar IP system 
data structure, or from an IP system data structure to an application IP resource, to protect a copy 
of the data.  Architectural rules built into the system prevent developers from having two 
processes write into the same IP resource.  This, coupled with copies of memory, eliminates user 
concerns with data coherency.  Need for time-consuming data coherency checks at the system 
level are eliminated by virtue of using memory copies that also improve speed, and architectural 
rules that simplify the architectural design. 
 
 
Scheduling Of Threads 
 

 VisiSoft Threads are used to define a hierarchy of processes within a task.  All processes 
run as part of a thread.  Threads contain one or more processes.  A thread is SCHEDULEd to run 
when its lead process is scheduled to run at a given time based on a simulation or real-time 
clock.  When the clock advances, and the lead process is the next to run in the schedule, that 
process (and corresponding thread) is started by the scheduler.  The lead process may CALL 
other processes that in turn may CALL others.  Called processes are contained in the thread. 
 

 On a single processor, no other threads within a task may run until the current thread 
completes.  While a thread is running, it may schedule other threads to run at a later time, or 
NOW.  When scheduled NOW, the thread runs at the same clock time as the current thread, after 
it completes.  Threads run in a sequence defined by their scheduled times and a priority code 
when used.  When both the time and priority are identical, the outcome is considered random. 
 

 In a parallel processor environment, threads in the same task may run concurrently on 
different processors.  VisiSoft provides facilities to simplify synchronization of threads running 
in parallel.  One of these facilities is the Independent (IND) Module - further described below.  
IND Modules are contained within a single processor, and a thread must be contained within a 
single IND Module.  Therefore, threads within an IND module cannot run concurrently since 
they are on a single processor. 
 

 Threads in one IND module may schedule threads in another (or the same) IND module.  
All threads are controlled by the local Scheduler and the Synchronizer which ensures those on 
separate processors do not get out of synchronization.  Thus, the developer has no concern for 
synchronization of threads, delays or race conditions. Special run-time facilities exist that allow 
timing to be out-of-sync up to a ΔTmax, where ΔTmax is determined based upon comparing 
error distributions of simulated results with live test data or single processor systems or 
simulations. This is further described below. 
 

 The VisiSoft CAD environment may be used to develop any type of software system.  It 
is specifically suited to developing the most complex types of systems.  It is well suited to 
development of an operating system, with its built-in schedulers, synchronizers, sort facilities, 
and 3D graphical facilities in many coordinate systems.  With sophisticated libraries for handling 
hierarchical link lists, it is well suited for building database management systems and 
applications supported by servers. 
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8.3 APPLICATION CHARACTERISTICS 
 

 Applications amenable to parallel processing fall into various categories.  We must 
characterize applications in terms of their: 
 

Inherent Parallelism - The inherent properties of an application that determines the 
potential processor utilization efficiency 

 

Software Architecture Potential - The ability to translate inherent parallelism into 
independent modules to achieve maximum processor utilization efficiency. 

 

 Categorizations of interest are listed below.  They are described in terms of factors that 
affect relative processor utilization efficiency for modules that run concurrently. 
 

• Module Size - The size of a module relative to the time spent running concurrently. 
 

- Fine Grain - Fine Grain modules may require a high degree of overhead (relative 
to concurrent processing) for communications and control. 

 

- Medium Grain - Medium Grain modules may require a fair degree of overhead. 
 

- Large Grain - Large Grain modules may require relatively little overhead. 
 

• Module Connectivity 
 

- One-To-Few / One-To-Many / Many-To-Many / All-To-All - This indicates the 
degree of information exchange requirements between modules, implying the 
degree of memory sharing required. 

 

- Stationary / Non-Stationary - This indicates whether the connectivity is 
changing during the course of a scenario.  The time-constants of change are 
significant factors in the Non-Stationary case. 

 

• Module Interaction 
 

- Linear / Quasi-Linear / Nonlinear / Highly Nonlinear - This implies how 
modules affect each other’s behavior.  In the linear case, the effect can be 
embedded in each module using superposition.  In the quasi-linear case, one can 
use transformations to obtain a linear representation.  In the nonlinear case, one 
may have to iterate between modules to determine the matching solution.  In the 
highly nonlinear case, iterations become more prevalent. 

 

• Module Scenario 
 

- Lightly Loaded / Fully Loaded - This determines the level of module activity.  
Modules may do very little in a lightly loaded scenario, cutting processor 
utilization efficiency while achieving minimum run-time.  In a fully loaded 
scenario, processor utilization efficiency may increase so that run-time may be 
diminished by a relatively small amount. 

 

- Stationary / Non-Stationary - This will determine the time constants of change. 
 

- Fixed / Variable - Some trails of a scenario may follow a relatively fixed path 
while others take totally different paths with significant differences in run-time. 
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Inherent Parallelism - The Extremes 
 

 Looking at the extremes, if there is no inherent parallelism in a system, then each 
instruction in the corresponding simulation or software task depends upon the prior one, and one 
is left with a single module.  A parallel processor will only slow things down.  If the task is 
embarrassingly parallel, there is virtually no connectivity between the modules (no memory 
sharing) and one can use a cluster or a server environment to process independent tasks.  
However with substantial parallelism but also communications between substantially parallel 
parts, one must use a Single OS (SOS) parallel processor. 
 
 
Reading And Writing Large Files 
 

 In most simulations - with few exceptions, parallel processors are required to cut single 
processor run-times by orders of magnitude.  The parallel processors needed to run simulations 
typically do not need to interface with DMA devices directly, but instead initialize large 
databases in a Read Only Mode (ROM), and produce output in a Write Only Mode (WOM).  
Additionally, filling large databases is typically done before the simulation starts - during an 
initialization period.  Dumping memory for output usually occurs in small chunks.  These I/O 
requirements are defined by the architecture of a system and can be handled by sharing memory 
with a server - to fill memory coming from a device and to dump memory being sent to a device.  
Direct interfaces with the devices are unnecessary, being an insignificant part of the processing 
time.  This form of memory can be shared between the parallel processor and the server.  This 
eliminates the need for device drivers and DMA channels in the parallel processor, providing 
more chip space and memory for direct processing. 
 
 
Some Important Concepts Regarding OS And Chip Design 
 

 Prediction accuracy is determined by conditional probabilities.  The more information 
one has to condition the probability statement, the more accurate the predictions, see [40].  This 
applies directly to the parallel processor software design problem, both for the development 
environment and the run-time environment. 
 

 For example, the ability to create software architectures that represent the inherent 
parallelism in a system is critical.  Similarly, the information that the run-time system can use 
about that software architecture can dramatically improve processor utilization efficiency.  This 
depends upon the environment used to develop that software as well as the architect who must 
translate the inherent parallelism of a system into an architecture that properly represents it using 
Independent modules that are recognized by the OS at run time. 
 

 In the simulation applications of interest here, processors are allocated as a group to the 
simulation task.  These processors are not multi-tasked.  Only the OS on those processors may 
run and share their resources. 
 

 There must be a master OS on the parallel processor that controls the allocation of all 
processors and the memory they use and share.  Local subsets of that OS must reside on each 
processor controlling the use of that processor and its memory.  A local OS may copy memory 
from another processor by going through the memory manager. 
 



Software Theory                 Page  8 - 10  

 If all of the code and data of an independent module reside in local instruction memory 
and data memory (level 1 cache), swapping and paging are unnecessary.  This implies that (1) 
they fit; and (2) they are not going to move (stationary connectivity).  Alternatively, if they do 
not fit, but the statistics are still highly stationary, time spent swapping and paging will be 
insignificant.  This affects significant trade-offs between memory size and special hardware 
algorithms for swapping and paging that use chip space.  With enough memory in each of the 
areas in the memory hierarchy, swapping and paging time will be insignificant. 
 

 By creating independent modules during the architectural design, where threads are 
always independent between modules, and are sequential and cannot run concurrently within a 
module, thread synchronization is unnecessary.  Using hardware (chip space) and OS code 
(memory) for this function is unnecessary. 
 

 Similarly, since use of IP resources on separate processors is synchronized automatically 
by the run-time system, there is no need for coherency checks.  Again, using hardware (chip 
space) and OS code (memory) for this function is unnecessary. 
 

 Finally, it is not clear how the use of a stack saves time, unless it is used to track 
recursive use of processes.  Since this is not allowed (and certainly not needed in any software or 
simulation that PSI has built over the last 50 years), it appears to be unnecessary for the 
applications of interest here, likely to slow things down, and wasteful of chip space. 
 
 
Hardware Effects 
 

 From the above, one sees that the software development environment affects the design 
of the run-time environment, including the operating system.  Together, they both affect the 
design of the hardware.  Specifically, the following hardware facilities may be eliminated from 
the parallel processor chip for the applications of interest and using the approach proposed here. 
 

• DMA channel/device interfaces 
 

• Cache coherency 
 

• Thread synchronization 
 

• Stack facilities 
 

• Special instruction swapping facilities 
 
 
Potential Speed Multipliers & Processor Reduction 
 

 One must consider all of the factors that affect speed when comparing the VisiSoft CAD 
approach to current “advanced” approaches.  For example, we must consider applications with a 
reasonable degree of inherent parallelism (greater than 50%).  We are also concerned with 
heavily loaded scenarios where single processor time is generally the longest.  When this occurs 
using VisiSoft, the percentage of idle processors is typically relatively smaller, making processor 
utilization efficiency higher.  Then a large number of processors may be unnecessary. 
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 Figure 8-3 shows the Maximum Speed Multipliers one can obtain from a parallel 
processor based on the Inherent Parallelism in a system and the number of processors applied to 
the task.  Clearly the Inherent Parallelism plays a major role in determining the multipliers.  But 
this chart is easily deceiving since it is based upon the maximum one can achieve.  The true 
outcomes will depend upon the software architecture and the environment that one has to 
develop a good architecture.  Given that the inherent parallelism in a system is in the 70-90% 
range, one must translate that inherent parallelism into a multiplier for a given number of 
processors. 
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Figure 8-3.  Plot of Maximum Speed Multipliers vs Inherent Parallelism and Processor Count. 
 
 
 Very little comparative test data is shown in the recent literature on this subject.  What is 
available indicates that current experience has not changed much from prior published results 
and may have gotten worse.  Current interest appears to be focused upon the number of 
processors that can be put together as a single computer, followed by claims of a high potential 
speed multiplier.  But actual test data has shown that the efficiencies typically go down 
nonlinearly with the number of processors.  Much of this is due to relatively poor software 
development environments, and the resulting spatial footprint of the computer  As the software 
design is improved, more processors can be put into a smaller spatial area, further increasing 
speed.  To see this, the actual speed multiplier is the important measure that must be compared. 
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 From a user market standpoint, there are two aspects of speed improvement that one can 
achieve from VisiSoft.  First is the case where one simply increases the speed of a given software 
system or simulation.  In this case, a simulation may run for 10 minutes instead of 2 hours.  In 
the other case, the speed requirement is fixed but the requirement is to minimize the number of 
processors.  In the latter case, a nonlinear reduction occurs for any given processor design since 
the spatial footprint may be reduced considerably, reducing transmission delays as well as 
memory boundary crossing delays.  We will use the reduction of number of processors to 
understand the factors affecting the potential speed improvements from VisiSoft.  This is a 
critical point that takes advantage of multiple factors and provides potentially large returns, 
including significant reductions in power consumption and floor space as well as hardware costs.  
The major factors of concern are the following. 
 

• Single Processor Speed Multiplier - This is the difference in speed using VisiSoft versus 
current software development environments on a single processor. 

 

• Parallel Processor Software Architecture - Using VisiSoft, one can produce a map of the 
inherent parallelism of an application system into an optimized architecture of IND 
modules.  VisiSoft IND module architectures directly affect large increases in Processor 
Utilization Efficiency (PUE) with more useful work done on each processor. 

 

• IND Module Mapping - VisiSoft IND modules are generally large and remain on a 
specified processor, typically eliminating swapping and paging.  If the number of IND 
modules is larger than the number of processors, multiple IND modules may be put on a 
single processor.  VisiSoft also provides run time measures of PUE for each IND 
module for each processor.  As described in Chapter 18, this information can be used 
effectively for grouping multiple modules with relatively small utilizations onto a single 
processor.  It can also be used to breakup modules that take a lot of time, and can be run 
in parallel on separate processors using less time in the ΔTmax window.  This reduces 
the overall idle time within the overall ΔTmax window.  Both of these assignment 
approaches can significantly increase the PUE. 

 

• VisiSoft Parallel OS Speed - This is the difference between a Windows or Linux OS 
and VPOS.  Depending on the application, VPOS runs from 2 to 10 times faster than 
Linux or Windows and takes full advantage of the VisiSoft Run-Time System (RTS). 

 

• Better Use Of Chip Space - VisiSoft maps IND modules into separate processors and 
eliminates designer concerns for thread synchronization.  Communication between 
processors uses the run-time IP Communications (IPC) manager eliminating concerns 
for synchronization.  Sharing memory with a server eliminates the need for a DMA 
channel interface to external devices.  Stack facilities and complex instruction caching 
are eliminated.  Cache coherency is of no concern when using VisiSoft.  All of these 
serve to simplify the chip design allowing for more memory close to the processors, 
further reducing swapping and paging. 

 

• Speed-Distance Factor - This is the result of the reduced distance between processors 
and memory due to the above factors producing the same speed multiplier with a 
reduced number of processors. 
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 When minimizing the number of processors, the final speed multiplier depends upon the 
above factors.  Estimates of the low, expected and high values for three factors derived from the 
above are provided in Table 8-1.  These are: Single Processor Speed Multiplier; Processor 
Utilization Efficiency; and Distance Factor.  As indicated above, these values depend upon 
various other factors, e.g., the number of processors, and the size and intensity of the scenarios. 
 

Table 8-1.  Factors affecting speed multipliers and processor reduction. 
 

Low Expected High Low Expected High Low Expected High Low Expected High

2 4 6 2 3 4 2 3 4 8 36 96

COMPARATIVE SPEED MULTIPLIERS†
Single Processor Multiplier Processor Utilization Efficiency Distance Factor Final Speed Multiplier†

 
† As shown in Figure 8-4, these Speed Multipliers are approached as the number of processors gets large. 
 
 The factors in the table must be derived from experiments using applications of interest.  
Based upon prior experiments, the values in the table are considered to be conservative estimates 
for problems that are not embarrassingly parallel.  The multipliers in Table 8-1 do not include the 
efficiencies provided by VPOS, nor improved chip designs that may be obtained from the 
VisiSoft approach.  The details used to derive Table 8-1 are explained in the sections below. 
 
 
Single Processor Multiplier 
 

   Based on many comparisons, the typical single processor speed multiplier range is 
from 2 to much more than a factor of 10.  Chapter 17 has experiments that show how a high 
value of 78 is obtained when comparing VisiSoft to C-based languages.  The expected multiplier 
of 4 is small compared to prior comparisons of VisiSoft to FORTRAN or C-based languages. 
 
 
Processor Utilization Efficiency 
 

 In the table above, different values of PUE for a competitive approach are used to obtain 
a ratio for the Final Speed Multiplier.  For example, the low multiplier of 2 is obtained using a 
VisiSoft PUE of 0.4, and the competing PUE used is 0.2.  For the expected multiplier of 3, a 
VisiSoft PUE of 0.6 is used over the competing PUE 0.2.  For the expected multiplier of 4, a 
VisiSoft PUE of 0.8 is used over the competing PUE of 0.2.   
 

 These multipliers are derived from PUEs obtained when using VisiSoft versus typical 
results obtained from current approaches.  High PUEs are obtained from VisiSoft IND module 
architectures and the automatic characterization of processor utilization that the system produces 
at run time.  The improvement multipliers are simply expected ratios of VisiSoft PUEs to those 
from other approaches.  A PUE of 80% is commonly achieved when using VisiSoft. 
 
 
Distance Factor 
 

   If the number of processors is cut by a factor of 8, one may observe an additional speed 
multiplier of 2 or more, just due to the reduced distance between different processors and their 
memory.  It is well known that delays due to distance increase nonlinearly. 
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Final Speed Multiplier 
 

 The final speed multipliers will depend upon the original number of processors being 
used in an existing application.  VisiSoft provides run time measures of PUE for each IND 
module for each processor.  Chapter 18 illustrates how this information can be used effectively 
for grouping multiple modules with relatively small utilizations onto a single processor.  It can 
also be used to breakup modules that take a lot of time, and can then run in parallel on separate 
processors.  This reduces the time it takes to process large IND modules in a ΔTmax window 
reducing the overall idle time on other processors within that ΔTmax window.  Both of these 
assignment approaches increase the PUE. 
 

 Figure 8-4 provides an illustration of processor reduction using what are considered 
realistic representative cases derived from Table 8-1.  We note that the reduction factors will 
depend upon a number of criteria.  For a large number of processors, the reduction factor for 
numbers of processors can be expected to be as high as 50 and likely higher depending upon the 
difference in architectures.  The chart shows that 1200 processors are reduced to 40.  This 
corresponds to a reduction factor of 30 which is considered conservative compared to actual test 
results.  This chart represents significant reductions in floor space, environmental equipment, and 
power consumption as well as hardware costs.  Reduction in delay times are nonlinear because of 
the factors described above. 
 

VisiSoft Processors versus Original Processors

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600
Original Number Of Processors

 N
um

be
r 

of
 V

is
iS

of
t P

ro
ce

ss
or

s 
 .

 
 

Figure 8-4.  VisiSoft Reduced Number of Processors versus Original Number of Processors. 
 
 
 Note that the multipliers used to derive the curve in Figure 8-4 do not include the 
additional factors of efficiencies provided by VPOS, nor improved chip designs that may be 
obtained from the VisiSoft approach. 
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CHAPTER 9  
 

SOFTWARE ARCHITECTURE FOR PARALLEL PROCESSING 
 
 
 

 Most readers will relate to the drawing in Figure 9-1.  As in other fields, architecture is 
much more graphical than algebraic or textual.  Whether designing machines, ships, or buildings, 
architects produce drawings.  These drawings are neither “approximate” nor “abstractions”.  
They are precise engineering specifications that are followed into production. 
 

 
 

Figure 9-1.  An example of engineering architecture. 
 
 
Origins Of The Field Of Architectural Engineering 
 

 Detailed architectural plans required for modern complex building structures have their 
origins in the Renaissance period.  In those days, artists made sketches of buildings that 
represented the plans they imagined.  Their renderings did not include measurements, and the 
conventions required to support detailed plans for today’s complex structures had not yet been 
thought about.  Builders were expected to follow the illustrations and work out the details. 
 

 As buildings became more complex, the art of drafting the plans was forced to advance to 
the point where everything was explained in detail.  By working up the plans and including many 
levels of detail, the process was forced to change.  Engineers were expected to solve all of the 
engineering and construction problems - before the actual building began.  Creating detailed 
designs and plans avoided gross mistakes, misunderstandings, construction delays and 
corresponding cost overruns.  It also helped the builder to develop accurate plans and cost 
estimates. 
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 Improved tools such as adjustable squares and technical pens reduced the time and labor 
needed to produce the drawings.  Technical drafting aides such as the parallel motion drafting 
table and transfer lettering also helped to reduce the effort in producing the drawings. 
 

 The greatest advance in creating architectural drawings came with the application of 
computer technology to this discipline. The production of building plans has been taken over by 
CAD software systems which have increased both the capabilities and speed of completion for 
planning structures. The choices for rendering details, selecting materials, and solving 
engineering challenges have been greatly simplified.  Digital plotters have made reproducing 
complex drawings an easy matter. 
 

 To facilitate graphical representations of architecture, CAD tools are used extensively.  
The time to produce and reproduce drawings has been cut dramatically since the days of drawing 
each line by hand.  Reuse of drawing parts is common - they are copied and modified easily. 
 

 The need for architectural drawings in software is motivated by most of same 
requirements as those in other engineering fields, especially increased productivity, leading to a 
high quality product.  Important requirements are the ability to: 
 

• Decompose a software system into modules that can be worked on independently; 
 

• Create modules that can be changed with minimal effects on other parts of the system; 
 

• Create modules that can be run concurrently on a parallel processor. 
 

• Control the growing complexity of a software system as it is enhanced; 
 
 Engineering CAD facilities provide graphical interfaces that are designed to make it fast 
and easy to: 
 

• Decompose system requirements into architectures; 
 

• Recognize connectivity and corresponding independence of modules; 
 

• Distinguish between good architectures and bad architectures; 
 

• Plan for change. 
 
 It is hard to imagine an architect designing a skyscraper without engineering drawings. 
 
 
ARCHITECTURE - A NEW SOFTWARE CONCEPT 
 

 The CAD tools referenced in the prior chapters provide a precise visualization of the 
architecture of a software system.  This engineering approach provides a one-to-one mapping 
from the top level architecture to the code.  Using the graphical CAD front-end, one can drill 
down - from the top system level drawing - to the details of the code, with no abstractions in 
between.  The interconnection lines are as meaningful at all levels of a drawing as they are in 
electronic circuit design, logical design, or machine design, i.e., no abstractions. 
 

 This CAD environment has been derived from the same concepts used by chip 
manufacturers for designing hardware.  It provides for decomposition of the architecture, and 
composition of the detailed design using graphical symbols that directly represent the software.  
With this approach, it is apparent that architecture is the most important part of software design. 
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 Having used this CAD system, one cannot imagine working without drawings.  One also 
observes that software architecture is only accomplished using the totally new paradigms 
described here.  In software design courses using this approach, architecture is taught first - 
before language or coding facilities are described.  With this approach it becomes clear that 
architecture has the most effect on productivity, especially in the support phase of a product.  
Architecture is essential when designing software to run on parallel processors. 
 
 
SOFTWARE ARCHITECTURAL COMPONENTS 
 

 The basic architectural components of a software system have been introduced in 
Chapters 5 and 7.  The use of these basic elements will now be expanded to create hierarchical 
modules as shown in Figure 9-2.  These include resources, processes, elementary modules, 
hierarchical modules, utility modules, and library modules.  Their architectural properties are 
described below.  Toward the end of this chapter we will introduce the INDependent (IND) 
Module for parallel processing. 
 
 
Elementary Modules 
 

 The module hierarchy in Figure 9-2 is apparent, down to the elementary modules shown 
as Drawing Layer 1 (Drawing Level 1).   Elementary (Layer 1) modules contain resources 
(ovals - representing data structures) and processes (rectangles - representing rule structures).  
Architectural connections are designed at the elementary level to maximize independence 
between hierarchical modules.  This allows reuse of modules in other hierarchies. 
 
 
Hierarchical Modules 
 

 Figure 9-2 contains an illustration of a layered module hierarchy.  At the bottom of the 
hierarchy are elementary modules, Layer 1, shown in Drawing Level 1.  The module layers are 
determined as part of the architectural design.  Drawing Levels are selected as a convenience for 
visualization of the architecture.  Hierarchical modules are illustrated in Drawing Levels 2 and 3.  
As shown in the figure, a hierarchy of Module Layers may be contained in a single Drawing 
Level (Drawing level 1 contains 3 layers of hierarchy).  It is not unusual for complex systems to 
take up to nine or ten layers of hierarchy.  At this level of complexity, one may typically expect a 
system to contain millions of lines of code. 
 
 
System Decomposition And Module Composition 
 

 The decomposition of a system into a hierarchy of modules requires an understanding of 
the particular application being developed as well as experience in software architecture.  We 
note that, from a developer’s standpoint, complex applications include the development of 
language translators and operating systems.  Regardless of the application, the grouping of 
resources and processes into elementary modules is an important architectural design function.  
All resources and processes must lie within an elementary module boundary.  This implies 
design of the module and its components including the interface resources between modules.  
Those responsible for that module have implicit control over that interface. 
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Figure 9-2.  Illustration of a module hierarchy. 
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 Most importantly, architectures need not be poured into concrete.  On the contrary, using 
the CAD environment described here they are easy to change.  This is because the processes, 
resources, and connection lines are moved easily from one module to another.  So if one decides 
to move an interface resource from one module to another, it is a simple and very visible drawing 
change that confers control of the interface to the other module. 
 
 
Module Types 
 

 There are three types of modules that may exist in any layer of a hierarchy.  These types 
provide different levels of protection with regard to their reuse in different hierarchies.  Both 
elementary and hierarchical modules can reside within each type.  With the exception of 
instanced utilities, modules may only appear once in a drawing.  The rules for these types are 
described below with examples in Figure 9-3. 
 

• Modules - have a blue border.  These are the basic building blocks in a task.  In 
the CAD system described here, modules may be decomposed hierarchically, i.e., 
they may contain submodules and sub-submodules, etc.  Modules may only 
appear in a single drawing in a user directory, and are meant to be unique, i.e., not 
reused, across directories. 

 

• Utility Modules - have a green border.  These are modules that are reused by 
processes in the same directory, and can appear in more than one hierarchy in 
different drawings.  They are typically used to manage separate databases or 
perform utility type functions.  The green color distinguishes them for change 
protection.  If they are changed to accommodate a different requirement, that 
change must be compatible with the other processes that use them, since the 
change is automatically embodied in them all. 

 

• Library Modules - have a gold border.  These are more highly protected utility 
modules that can be shared from different directories and different computers.  
They are stored as object modules in special object library files.  The source only 
appears in the directory where they are maintained.  Processes in a library module 
are called from an application using their process name, module name, and library 
name.  Since each of these names must be unique within the next level of 
hierarchy, there can be no duplicate names when linking to library modules in the 
CAD environment described here. 

 

The functions of a library module may be upgraded while at the same time 
preserving the original module in the library for prior users.  Users can call the 
new function using the same process name within the same library by using the 
new module name.  The existing CAD system has a large set of libraries that 
support various applications, including 3D graphics, that are shared easily. 

 

The CAD libraries have been designed to be controlled separately under special 
protection mechanisms.  But given access to a library directory, the responsible 
person sees everything that is needed to allow for ease of changes and testing.  
Library directories typically contain regression test drivers and data sets to ensure 
changes meet all prior, as well as new requirements. 
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 The top level module in Figure 9-3 is a library module.  It contains modules and utility 
modules that are immediately identified by the color of their border.  This library module 
performs electromagnetic wave propagation loss predictions between antennas using detailed 
terrain, foliage, and building data.  Being a key module for exchanging data in a communication 
system, this architecture has some special properties that are used in the simulation described in 
Chapter 18. 
 
 
USE OF ENGINEERING DRAWINGS 
 

 Although written documentation is important, in practice, engineering drawings are the 
essential tools to support the planning, review, and assessment process needed to control a large 
complex project.  This is because of the requirement to develop and modify the structure of 
modules as the design unfolds.  Figure 9-4 illustrates the ease with which one may drill down 
directly to the code of a complex module, knowing exactly where that module fits in the 
hierarchy, and what resources are shared with other modules.  This is possible for any type of 
module at any drawing level. 
 

 Engineering drawings provide the means for creating and improving the structure of 
software.  This is because, given the CAD tools described here, these drawings are modified 
easily to implement structural improvements.  Also, the best structure for a complex set of 
modules cannot be known until most of the design has been completed and carefully reviewed 
with the software team.  Only after understanding all of the facilities that must be built into a 
module, and how those facilities interact with other modules, can the developers decide on the 
best architecture for a module.  This implies that a module may be built initially using an 
inadequate structure before one can see how to improve that structure. 
 

 In general, libraries may contain a virtually unlimited number of modules.  Also, 
individual library modules can be huge hierarchies.  Libraries are easily expanded by taking an 
existing module and adding new functions or modified versions of existing functions.  When 
functionality can be reused, the use of library modules greatly simplifies software development. 
 
 
SOFTWARE ARCHITECTURE 
 

 An overview of the architectural facilities incorporated into the CAD system for building 
and supporting multiple tasks on multiple computers is provided below.  We note conversely that 
a single task may require parallel processing where modules running concurrently on different 
processors are not totally independent.  Just as with other architectural facilities, one must 
account for all of the facets of the problem.  Software architectures must support the user 
environment as well as the development and support environments.  Although our immediate 
focus is on development and support, the run-time environment will be addressed in follow-on 
chapters. 
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Task Hierarchies 
 

 Tasks are executable modules at run-time.  The logical system hierarchy illustrated in 
Figure 9-5 contains 5 tasks.  Architecturally, a task can start one or more additional tasks, and a 
task can invoke one or more modules by starting a process.  Modules within a task drawing may 
be elementary or hierarchical.  There is no theoretical limit on the hierarchy.  However, a task 
containing 8 or more levels of hierarchy is a huge piece of software (on the order of 1M lines of 
code).  Modules in a task need not reside inside the task drawing. 
 

SYSTEM

TASK
HIERARCHIES

LOGICAL (SOFTWARE) ARCHITECTURE

HIERARCHICAL
MODULES

VISISOFT
MODULE
HIERARCHY

ELEMENTARY
MODULES

PROCESSES

RESOURCES

System & Architecture  09/30/13 
 

Figure 9-5.  Overview of the logical system hierarchy. 
 
 
Run-Time Software Systems 
 

 Top level architectures may contain run-time software that spans multiple computers, 
with each computer having its own OS, and typically using communication links between 
computers.  On a given computer, multiple executable tasks (separate executables) may reside in 
one or more directories.  By the definitions used here, a single computer may contain many 
processors operating under a Single OS (SOS).  Thus, a run-time software system may span 
different types of platforms and operating systems. 
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   When one task starts another task, the second task becomes part of an executable task 
hierarchy that resides on a single computer, refer to Figure 9-5.  During execution, tasks that are 
part of a task hierarchy may attach to multiple shared memory segments.  Such tasks are started 
by other tasks higher in the same hierarchy.  When tasks are started by separate user actions or 
tasks outside the hierarchy, they are independent.   Independent tasks (not part of a task 
hierarchy) may attach to global memory segments on the same computer. 
 

 Although multiple tasks can share memory easily in this CAD environment, our main 
concern here is with a single task containing multiple threads (sometimes referred to as p-
threads).  Threads may run concurrently on separate processors in a true parallel processor 
environment. i.e., running on multiple processors under a SOS, referred to here as a SOS parallel 
processor.  This type of operation is described in subsequent chapters. 
 
 
ARCHITECTURE ENVIRONMENT 
 

Software Architecture 
 

 Using the CAD development environment, software architects decompose a system into 
modules by grouping resources and processes into elementary modules as shown in the Drawing 
Level 1 (layer 3) in Figure 9-2.  Hierarchical modules are created by grouping modules into 
higher level modules as shown in the same figure.  Figure 9-3 shows a library module that is 
sufficiently complex to warrant its own drawing.  In general, modules are independent if they 
share no resources (i.e., they are not connected).  Modules may be covered to hide detail. 
 

 One of the most significant observations drawn from this framework is the recognition 
that scope rule declarations are obscured at the language level.  They are unnecessary in the 
languages that support this framework.  It is the architecture (connected by lines) that determines 
how data is shared, and the corresponding independence of modules.  Having developed an 
architecture, programmers can implement the data structures and rules using the resource and 
process languages.  These may be edited directly as illustrated in Figure 9-4. 
 

 Unless one has witnessed directly the development of such architectures, the above 
discussion may take time to comprehend.  Having used it, it is apparent that architecture as 
defined here is as critical to software design as it is to hardware design, with or without parallel 
processing.  It is why productivity multipliers are very high when using this CAD system, 
especially in the support mode when a new person has to understand what another has created. 
 
 
Visualization Of The Architecture 
 

 In the approach described here, architects decompose a system into large independent 
modules.  If there is sufficient inherent parallelism in the system to warrant a parallel processor, 
the inherent parallelism in the system must be mapped into independent modules.  Then threads 
must be contained within the independent modules.  As described in later chapters, when threads 
in one module are independent of those in another, they can run concurrently on separate 
processors.  When a module is assigned to a processor, all of the threads in that module go with 
it.  Thus the distribution of threads onto parallel processors can be implicitly optimized by the 
architecture. 
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 Module architectural information, including connectivity, is contained in databases that 
support the CAD development environment.  A Run-Time System is then generated that uses 
this information to control OS calls that allocate processors to modules.  It automatically ensures 
that the resources (data) reside with the processes (instructions) that use them.  If there are 
enough processors to house each of the independent modules, load balancing becomes 
unnecessary, see [114]. 
 
 
Scalability 
 

 Increasing complexity may cause a software development effort to scale nonlinearly, i.e., 
the effort required to build a system increases faster than its complexity.  This is characterized by 
Fred Brooks in The Mythical Man-Month, [19].  However, linearity depends upon independence.  
Linear scaling of complex systems can be achieved by maximizing module independence.  This 
phenomenon is apparent from the separation principle. 
 

 As indicated above, languages provide limited control over the design of large complex 
software systems.  Architects of industrial buildings, ships or airplanes would find it very 
difficult, if not intractable, to produce large complex designs without drawings.  It is now 
apparent that software is no different.  Having used the CAD interface and drawings to produce 
architectures, and having observed module independence by visual inspection, it becomes 
obvious that developing software without the architectural drawings described here is a great 
disadvantage.  Visualization is critical to controlling increasing complexity when building and 
supporting software in general. 
 
 
 
DESIGNING PARALLEL PROCESSOR ARCHITECTURES 
 
 Designing software architectures to maximize speed on parallel processors requires 
additional considerations and trade-offs.  These are addressed below 
 
 
Architectures Must Be Based Upon Inherent Parallelism Of The System 
 

 When translating application requirements into a software system to run on parallel 
processors (e.g., multi-core chips), one must take maximum advantage of the inherent 
parallelism in the application.  This requires the knowledge of a subject area expert.  Examples 
are simulations of molecular type structures affected by gravitational or electro-magnetic fields.  
Parallelism in an application must be translated into a corresponding software architecture 
(if each instruction depends upon the prior one, there is none).  The system described here has 
been designed so that subject area experts can develop and experiment with different parallel 
software architectures directly. 
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High Processor Utilization Efficiency Through Maximum Processing Overlap 
 

 The percentage of useful processing overlap, i.e., processors running concurrently doing 
useful work, as opposed to waiting for inputs or overhead (e.g., inter-processor communications, 
swapping and paging), directly determines the speed multiplier achieved using parallel 
processors.  It is common to obtain between 5% to 10% efficiency using current approaches.  At 
10% - considered good - one needs 200 processors to get a speed increase of 20.  Using VisiSoft 
on a Parallel PC, one should expect 70% to 90% or greater efficiency (at 80%, a speed increase 
of 24 may be obtained from a 32 processor PC). 
 

 Applications with a reasonable degree of inherent parallelism (greater than 50% but not 
embarrassingly parallel) and heavily loaded scenarios produce the greatest speed multipliers.  
One can view speed improvements for these applications from two aspects.  First is the use of 
more processors to increase the speed, e.g., using 10 times the number of processors to gain 
improvement.  Second is when the speed constraint is fixed but the number of processors is 
minimized using the techniques described here.  In the latter case, a nonlinear reduction can 
occur because the spatial footprint of the hardware can be reduced considerably, reducing inter-
processor communication, transmission and memory boundary crossing delays.  Using memory 
to stack shared data is a critical factor in increasing the overlap.  Other factors include single 
processor speed improvements and architecture improvements from using VisiSoft, see [37]. 
 
 
Selecting Software Spaces To Simplify Design And Gain Speed 
 

 When using mathematics to represent complex physical systems, engineers have learned 
to select a coordinate system that simplifies the equations and maximizes speed.  The property of 
linear independence of coordinates supports this criteria, even when the system itself is 
nonlinear.  For example, when using the State Space framework to solve electronic circuit design 
problems with large state vectors, one must select the state vector that diagonalizes the matrix 
(minimizes off-diagonal terms), simplifying the equations and maximizing solution speed. 
 

 This approach applies directly to software design, especially for parallel processing.  It 
requires expanding mathematical notation beyond that of numbers.  As shown in [37], software 
spaces are best mapped into hierarchical databases.  Using this concept, Generalized State Space 
is introduced as a mathematical framework to support the solution to software problems.  Data 
spaces used to solve complex problems are Generalized Spaces or State Vectors.  Software 
algorithms are Generalized Transformations on these spaces.  Just as in typical mathematics, one 
must define the state vectors of a system before defining transformations that describe the 
dynamics.  Design of the data spaces is key to simplifying the design of corresponding 
transformations (algorithms) performed by software. 
 
 
INDEPENDENT (IND) MODULES 
 

 Given applications with a high degree of inherent parallelism running on efficient parallel 
computers, their effective use comes down to a few major factors.  First is ensuring that full 
advantage is taken of the inherent parallelism in an application - a software architecture problem.  
Second is allowing subject area experts to describe their problem without having to twist it into 
special computer languages.  Third is taking full advantage of an optimized architecture of IND 
modules to maximize run time overlap and therefore processor utilization efficiency. 
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Preparing Parallel Processor Tasks 
 

 When preparing a parallel processor task in the development environment, one must 
prepare each of the elements of the architecture in terms of the following hierarchy: 
 

Top Level Task 
- Independent IND Modules 

- Hierarchical Modules 
- Elementary Modules 

Processes 
Resources 

 

 IND modules must be mapped into memory by the VPOS Link Editor using a Module-ID 
as an “offset” to the memory addresses for the rest of the module.  This allows IND modules to 
be loaded onto separate processors so as to optimize the proximity of the data memory to the 
instruction memory for that module.  The addresses assigned by the Link Editor are relative to a 
physical offset address.  In the case of a module requiring a huge amount of memory, i.e., one 
that is close to or exceeding the limit on local memory (e.g., 4 Gig), additional addressing 
facilities are needed to support the load step. 
 
 
USING INSTANCED MODULES 
 

 Using the CAD system described here, users are able to define instanced modules, i.e., 
define the number of instances of a module and build instanced module hierarchies.  This 
simplifies descriptions of both the module information structures and the module rule structures.  
It eliminates the need for pointers at the language level.  Pointers are eliminated from both the 
module information structures and the module rule structures.  Instances are declared at the 
architecture level and when specific instances are scheduled to run.  Otherwise, there is no need 
to distinguish between module instances.  By definition, all instances behave the same.  What 
they do depends upon their individual state vectors at a particular instance of time.  Specifically, 
the system provides for the following: 
 

• Users define the quantity of module instances and the name of the module 
instance pointer in the architecture environment when creating or modifying a 
module. 

 

• Every resource within the module is automatically translated into multiple 
independent instances (copies), one for each of the module instances. 

 

• Hierarchical instances can be defined by declaring the different module instances 
at corresponding layers of the module hierarchy. 
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DEFINITIONS 
 
 The following definitions reflect the rules of the CAD approach used here. 
 
Classes Of Modules And Their Elements 
 

• SHARED INTERFACES - Modules that are connected by shared resources have 
shared interfaces.  For example, two modules have a shared interface if a process 
inside one module shares a resource with a process inside another module.  The shared 
resource is the shared interface. 

 

• INTERIOR AND INTERFACE ELEMENTS - Processes (resources) are interior 
elements of an elementary module if they have no shared interfaces with resources 
(processes) outside that module.  They are interface elements if they do have a shared 
interface.  The interior elements of an elementary module are interior to any higher 
level module containing that elementary module. 

 

• INTERIOR AND INTERFACE MODULES - Modules are interior to a hierarchical 
module if they contain no elements with shared interfaces outside that hierarchical 
module.  They are interface modules of that hierarchical module if they have elements 
with shared interfaces outside that hierarchical module.  Modules that are interior at a 
given level of a hierarchy are interior to all higher levels. 

 

• INDEPENDENT MODULES - Two modules are defined to be Independent (IND) if 
they have no shared interfaces.   The independence property implies that these 
modules may run concurrently and produce results that are complete and consistent 
with those produced when not running concurrently.  Given a set of initial conditions 
within the resources of each, the results of each will be complete and consistent when 
any of their internal processes run. 

 

• INSTANCED MODULES - Modules can be defined to have multiple instances at the 
architectural level.  This implies that, at run time, each instance of the module must 
have an independent copy of every resource in the module, corresponding to instanced 
resources.  Similarly, every instance contains a copy of each process in the module. 

 

• INSTANCED RESOURCES - Resources are defined to have multiple instances when 
they are elements of an instanced module at the architectural level.  This implies that, 
at run time, each instance of that resource exists as an independent copy of that 
resource and is referenced by a unique name determined from the resource name and 
instance number. 

 

• HIERARCHICAL INSTANCED MODULES - Instanced modules may be defined 
within instanced modules hierarchically.  Resources contained in the lowest level 
instanced module will have as many independent copies as the product of the 
successive instances in the hierarchy.  Similarly, processes contained in the lowest 
level module will have as many independent copies as the product of the successive 
instances.  Hierarchical Instanced Modules may be IND Modules. 
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Classes Of Independence 
 
 The following paragraphs define the property of independence as it applies to the various 

types of modules defined above. 
 

• SPATIAL INDEPENDENCE - Two processes are spatially independent (not 
connected) if they share no resources (memory), independent of time.  From here on in 
this section independent will imply spatially independent.  Two modules are 
independent if every process in one is independent of every process in the other, i.e., 
they have no shared interfaces.  Interior processes of an instanced module are 
independent from those of other instances of the same module.  Module instances are 
independent if they have no shared interfaces.  Interior module instances are 
independent. 

 

• TEMPORAL INDEPENDENCE - Processes (modules) may be independent in a given 
instance of time, but dependent in another instance of time.  If two processes are using 
the same instance-pointer value to reference a resource in an instanced module at the 
same time, then they are not independent at that time.  However, if they reference 
instance-pointer values for that same resource at mutually exclusive times, they may 
be independent. 

 

• INDEPENDENT MODULES - Modules that are independent cannot share resources, 
and therefore cannot have shared interfaces.  If modules are designed to be 
independent so they can run on separate processors, and if those modules are to 
exchange information, they must do so through a special interface, where a copy of 
each interface resource resides in both modules.  These resources must be connected 
through an Inter-Processor Communications (IPC) manager, used for sharing data 
across processors.  The IPC manager ensures completeness and consistency between 
independent modules running on separate processors. 

 

• INDEPENDENT INSTANCED MODULES - These are basically the same as 
independent modules, except that they have a hierarchy of instancing at the interface, 
so that modules can be communicating with more than one instance at a time.  This is 
illustrated in the sections that follow. 

 
 
Denoting Independent Modules In The Architecture 
 

 Independent Modules, including those that are instanced, are denoted using VDE when 
working with the architectural drawing.  IND Modules are denoted as IND MODULES using the 
Module Type panel, as when creating or modifying Library or Utility modules in the VisiSoft 
development environment, see [67]. 
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COMMUNICATING BETWEEN INDEPENDENT INSTANCED MODULES 
 

 As described above, many of the opportunities for inherent parallelism occur with 
instanced modules.  This is based upon the assumption that module instances are independent.  
As described in the previous chapter, except for the possibility of one or two processes in special 
interface modules, processes in one instance cannot share resources with those in other instances.  
When building large system modules, the ratio of internal processes to interfaces is typically 
greater than 10:1.  These opportunities for taking effective advantage of a parallel processor 
provide the motivation for automating the design approach to instanced modules.  Before 
describing the detailed design for inter-processor time and space (memory) synchronization, we 
will investigate the facilities required to simplify the architecture of instanced modules and their 
interconnections. 
 
 
Modeling Mobile Communication Nodes 
 

 The developers of the CAD facility described here have been modeling advanced military 
communication systems since 1982.  As it turns out, the design of protocols for sharing 
information over a fast-moving battlefield with steep terrain and foliage is similar to designing 
communications between processors when modeling nonlinear dynamic systems.  On the 
battlefield, all nodes are mobile.  This is totally different from a mobile phone system where only 
the mobile phones move.  These phones are tied into a fixed infrastructure of communication 
nodes that are stationary, making the protocol design problem comparatively simple. 
 

 Given that the architecture of a simulation is broken into many models that are partially 
(albeit highly) independent, they must communicate with each other as well as perform their 
normal tasks.  This is analogous to the military communications problem.  We will use radio 
communication examples to describe the instanced module design cases. 
 

 When using mobile radio communications in rough terrain, signals may be received or 
lost as radios move.  Thus, one must model the Electro-Magnetic (EM) environment in between 
nodes that determines whether or not they can hear each other.  The EM environment model is 
typically - by far - the most complicated model in such a simulation and accounts for most of the 
computational burden.  Yet it sits in between the instanced models of the nodes.  This requires an 
important architectural solution to take advantage of a parallel processor.  The following 
examples describe the approach to that solution. 
 

 Figure 9-6 illustrates many of the design issues to be considered when modeling mobile 
communication nodes using instanced models on a parallel processor.  If the RECEIVER in a 
RADIO model schedules the use of R_F_LINK in an R_F_LINK model, it must specify the 
SOURCE and DEST instances and thereby expect R_F_LINK to be tied to the correct instance 
of LINK_INFORMATION. 
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RADIO (TRANSCEIVER) R_F_LINK(SOURCE, DEST)

TPS TRANSCEIVER R_F_LINK

LINK_
INFORMATIONTRR RECIEVER

LINK_MODELS  11/13/10

LINK_
CONTROL

PROCESS_
LINK

?

 
 

Figure 9-6.  Example of an architecture with instanced resources. 
 
 
 Note that in this discussion we use a simplified notation that shows a model with a 
hierarchy of instances within parentheses, e.g., (SOURCE, DEST), even though this notation 
does not follow the CAD system.  It implies that the instanced model must lie within a higher 
level instanced module and that the multiple instances are implicitly layered in the actual 
architecture.  We also note that in communication simulations, the times associated with use of 
links and receivers are critical, often down to microseconds.  A process that is scheduled 
corresponds to the start of a thread (a chain of process calls).  Design of these models is critical 
in determining the correct physical outcomes.  However, by carefully modeling the desired 
physical outcomes using schedule statements that state when processes are to be run using 
specified simulation clock times or delta-times, the corresponding timing and synchronization of 
threads will be invoked accordingly by the system. 
 

 In the above example, the instance of the RECEIVER process is known when the 
schedule statement is invoked.  If RECEIVER schedules R_F_LINK, the correct instance of the 
TRANSCEIVER resource is automatically passed to this process. 
 

 Alternatively, if R_F_LINK schedules RECEIVER, it can specify the TRANSCEIVER 
instance.  Since R_F_LINK is tied to a specified instance of LINK_ INFORMATION, these 
instance pointers are passed to RECEIVER also. 
 

 If, however, TPS schedules RECEIVER, there is no way to know automatically from the 
architecture what instance of LINK_INFORMATION the RECEIVER process should be 
connected to.  Furthermore, if any process outside the RADIO model attempts to schedule or call 
RECEIVER, the connection in red is invalid.  Therefore, this connection cannot be allowed, 
rendering this form of architecture invalid. 
 

 Likewise, if any process outside the RADIO model attempts to SCHEDULE or CALL 
R_F_LINK, the connection in blue would be invalid.  This is further explained in the next 
example. 
 

 Figure 9-7 presents a similar case when KP in MODEL_3 schedules LP in MODEL_2.  
In this case, there is no way to pass on the pointer automatically to resource TRS in MODEL_1.  
This implies that, if a resource is to be shared between MODEL_1 and MODEL_2 when LP is 
called from outside MODEL_1, that resource must reside within MODEL_2.  Again, this 
connection in red cannot be allowed rendering this architecture invalid. 
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Figure 9-7.  Example of another architecture with instanced resources. 
 

 
 There is a generic rule that applies to Figures 9-6 & 9-7.  When a process connected to an 
instanced resource is scheduled, the instance pointers for that resource must be specified based 
upon the architecture, i.e., explicitly via the instance pointers in the schedule statement or 
implicitly based upon residence within an instanced model.  In the case of the instance pointers, 
they must match an instanced model containing the resource; else the connection cannot be made 
architecturally. 
 
 
CALCULATING RADIO CONNECTIVITY 
 

 One of the most common models encountered in communications system analysis is that 
used to represent a large number of radios or switches interconnected in a network.  Switched 
systems are generally fixed in space, and their interconnections do not change with time, i.e., 
their connectivity is generally time-invariant.  Radio systems are mobile, and their connectivity 
can vary significantly with time.  The EM wave propagation calculations required to determine 
connectivity can take considerable processing time and are of particular interest here. 
 

 Figure 9-8 uses a radio model as an example.  Each radio can have links to many others.  
A radio receiver can operate properly on only one link at a time, and the receiver model must 
account for potential interference coming from other radios that are transmitting at the same 
time.  Therefore, each RADIO_MODEL must be connected to an ENV_MODEL that provides 
for all of the possible cross-link connections between radios. 
 

LP_
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LRL

ENV_MODEL(i, j)

TRS1
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STACK_MODEL

TPR1

TRR1

MODELS - 03/01/03

EP1
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LP_
INBOUND

ER1

XCVR_MODEL

 
 

Figure 9-8.  Example of good architecture for instanced resources. 
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 The radio model in Figure 9-8 has an instance (i) for each radio.  The environment model 
has an instance for each destination receiver (j) coupled with each source transmitter (i).  All 
environment link instances (i, j) must be able to operate concurrently, just as each radio can 
operate concurrently.  In the case of collision analysis, i.e., when two or more transmitters 
transmit to more than one receiver such that their signals sufficiently overlap in time, it is 
necessary for the model to have access to all link information at the same time. 
 

 When an instanced model interfaces with a non-instanced model, the non-instanced 
model can present a bottleneck that, depending upon the architecture, can be significant.  This is 
the case with the radio environment model since it must determine the EM environment path 
loss, a significant set of calculations.  Putting these calculations with each receiver removes them 
from the synchronization path as described below.  When a model of a higher level instance 
interfaces with one of a lower instance, the case is similar.  Again the solution will depend upon 
the architecture of the modules. 
 

 When source radio (i) transmits to destination radio (j), it does so through link (i, j).  The 
environment link instance (i, j) gets scheduled from radio (i) to transmit a message to radio (j).  
Environment link instance (j, i) then schedules radio (j) to receive the message.  For this to work 
correctly, the architecture must support process calls and schedules that automatically invoke the 
desired instance-pointers. 
 
 
AUTOMATING INTER-PROCESSOR COMMUNICATIONS 
 

 For models (instances) to be independent, processes in one instance must not share any 
resources in another instance.  Except for the interface resources in the ENV_MODELs, this is 
true for the architecture in Figure 9-9.  With this architecture, each radio model instance can 
reside on a separate processor.  Likewise, if desired, each environment model instance can reside 
on a separate processor.  However, to minimize the time to cross-schedule threads on different 
processors, it is better that the environment model instances reside on the same processor as the 
corresponding radio model instance.  This also eliminates the time to move data between 
processors.  The resulting approach is shown in the architecture in Figure 9-9.  There may be a 
trade-off between operating in parallel and operating sequentially.  However, message transfer 
implies a degree of sequential processing between corresponding instances of affiliated models.  
This architecture may be best for a single processor as well. 
 

 Consider that radio instance (1) transmits a message to radio instances 2 and 4.  This is 
accomplished by having instance (1) of process OUTBOUND_LINK scheduled with the 
message to go out.  Since OUTBOUND_LINK(1) only interfaces with resources that are interior 
to RADIO_MODEL(1), the instance pointer is passed implicitly, so that the message is placed in 
LINK_DATA(1).  OUTBOUND_LINK(1) then schedules EP11 as the transmitter for radio 1.  
EP11 uses LINK_DATA(1) to get the message and copies it to inter-processor resource ER11.  
This allows process EP11 to transfer data (using the IPC manager described below) from ER11 
to the selected inter-processor receiver resources ER21, and ER41.  It then schedules EP21, and 
EP41 on computers 2, and 4 to get the message. 
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Figure 9-9.  Illustration of a parallel architecture for instanced models. 
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 A symmetrically reversed series of events now takes place at TERMINAL_MODELS 2 
and 4.  In TERMINAL_MODEL(2), EP21 was scheduled by EP11.  As the receiver of the 
message, EP21 copies the message from the Inter-Processor (IP) resource and places it in 
LINK_DATA(2).  Since INBOUND_LINK(2) only interfaces with resources that are interior to 
RADIO_MODEL(2), the instance pointer is passed implicitly.  EP21 then schedules 
INBOUND_LINK(2) to process the message. 
 

 Since the ENV models contain the inter-processor resources ERij, synchronization 
checks are processed automatically by the Inter-Processor Communications (IPC) subsystem in 
the Run Time System to ensure that the messages are received in the proper time sequence.  The 
model designer merely schedules the transfers based upon the physical requirements, without 
concern for synchronization, race conditions, or consistency in general†. 
 

 The sequence of events described above represents what typically occurs in a radio 
communication system, where most of the events are occurring concurrently with other events.  
We note that the transfer of messages from radio (i) to radio (j) and radio (k) may or may not be 
sequential.  Many pairs of radios can be doing similar transfers concurrently, and this is where 
the inherent parallelism exists.  This parallelism is best realized in a simulation if the model 
architecture follows the same physical design as the architecture of the real system. 
 

 We note that the above example supports analyses of the complex design requirements 
for the VisiSoft Run-Time System (RTS) (see Chapter 14).  It is clearly not an embarrassingly 
parallel example.  Ensuring that the design of the RTS supports all of the possible requirements 
in this type of discrete event simulation is key to producing one of the most complex elements of 
the parallel processor RTS. 
 
 
Call Statement Rules 
 

 CALL statements are sequential; i.e., they cannot be used to increase the number of 
concurrent processes (parallel paths) or threads.  They directly control any processes they invoke 
at the time, rendering them non-independent from the calling process.  Calls from instanced 
modules will automatically carry the current value of the instance pointer(s) to the called 
process.  If independent modules are to be run concurrently, they must be scheduled.  Called 
processes are in the same thread as the calling process. 
 

 Calls that invoke a process on another processor, e.g., a utility, are not an efficient way to 
use multiple processors containing either the process or the call statement.  As described above 
in the “False Memory Saving Dilemma”, multiple copies of frequently called utilities are a much 
more effective solution when they can run in parallel.  This represents the typical time-memory 
tradeoff, with memory being relatively inexpensive, especially on a parallel machine.  This leads 
to the requirement for utilities that can be copied (or instanced) to be distinguished from those 
that can't.  More generally, threads can not span multiple processors. 
 
 
 
                                 
†  A property of the VisiSoft scheduler implying that processes scheduled at the same time and priority 
are ordered in sequence as they were scheduled. 
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CREATING INDEPENDENT (IND) MODULES FOR PARALLEL PROCESSORS 
 

 A major feature of the GSS architecture environment is the Independent (IND) Module 
illustrated in Figure 9-10.  IND Modules IND_MAIN, IND_SAT, IND_F15_PLATFORMS, etc., 
may reside on different parallel processors under the single simulation GLOBAL_ PLANNER. 
 

 
 

Figure 9-10. IND Modules in a parallel processor simulation. 
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IND Modules Must Be At The Top Of A Parallel Processor Task 
 

 The top level module(s) of a Parallel Processor Task (Simulation) must all be IND 
Modules.  These IND Modules may also be instanced modules as shown in Figure 9-10.  The 
number of instances, or IND Modules in general, is limited only by the memory in the machine. 
 

 In the case of fine grain models where the space is split into very small cells, e.g., those 
in particle or wave type simulations, one may increase the speed of the simulation by grouping 
multiple cells into separate IND Modules.  This is not driven by the desire to reduce the number 
of model instances.  It is driven by the speed of information exchange when dealing with huge 
numbers of processors, the resulting spatial footprint of the computer, and the corresponding 
potential distances between cells that must communicate.  Algorithms that take full advantage of 
inherent parallelism may reduce the computational burden by preprocessing solutions that cover 
many cells, making them much faster than those running in parallel.  The resulting grouped cells 
can take much greater advantage of the individual processors, being able to do more processing 
independently - in parallel - while minimizing the time delays between processors. 
 
 
IND Modules Communicate Via IP Resources 
 

 IND Modules may only communicate with other IND Modules through shared IP 
Resources.  In Figure 9-10, IND SAT and IND AIR_PLATFORMS each contain one IP 
Resource and IND MAIN contains four (green borders).  Using VisiSoft, many processes may 
share IP Resources, but only one can have write privileges.  These IP Resources, denoted by 
green ovals, must reside within the module containing the process that has write access. 
 
 
IP Resources Support Full Duplex Communications 
 

 To communicate bi-directionally, in parallel, it follows from communications theory that, 
to ensure coherency, a full duplex approach must be used for two-way independent 
communications, implying the use of dual IP Resources.  Figure 9-11 illustrates a combination of 
one-way write and read resources, one for each direction in a single module, IP_MODULE_11.  
A complimentary module is shown attached, i.e., IP_MODULE_22.  These share a Full-Duplex 
communications channel.  IP resources are automatically copied by to the colored shadow copies 
at the beginning of the receiving process (only one receiving process within an IND module may 
be attached to an IP resource).  The shadow copies do not appear on the drawing.  Because of the 
implementation of the IP Resources, coherency is ensured.  Processes in separate IND Modules 
that are not connected to IP Resources may run concurrently on different processors. 
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Figure 9-11.  Example of dual paired One-Way IP Processes & Resources. 
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 Figure 9-12 illustrates a one-way write module IP_MODULE_33.  This module writes to 
multiple copies of IP_RES_33 in modules IP_MODULE_44 down to IP_MODULE_NN, a one-
to-many case.  The modules on the right can only read that resource, and the latest copy is made 
available to them when they start to run.  In addition, IP_PROC_33 may RELEASE the resource 
at any time while it is running, and the receiving processes IP_PROC_41, etc., may ACCESS the 
latest copy at any time while they are running. 
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IP_RES_33IP_PROC_33 33

IP_MODULE_44

IP_PROC_41
IP_RES_33

33

IP_MODULE_NN

IP_PROC_N1
IP_RES_33

33
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Figure 9-12.  Example of single paired IP one-to-many Resources & Processes. 
 
 
 
SAVING MEMORY - THE FALSE DILEMMA 
 
Wasting Time By Saving Memory 
 

 In the case that one must model the processing of information from multiple instances 
concurrently, e.g., when doing calculations based upon signals from every radio, one could save 
memory by using a central utility or library module to be called from the environment model.  
These modules can store information on every link, including all of the databases required to do 
the processing.  However, this approach is clearly a major bottleneck in that it may be called by 
many instances at the same time.  In a light scenario, it may be used infrequently, e.g., only when 
there is movement or power changes in radios.  This implies that, on the average, the links are 
stationary, occasionally requiring cross-link loss calculations for all links to a radio that has 
moved.  In a heavy traffic scenario, i.e., those typically of interest, it will be used heavily. 
 
 
Saving Time By Using Memory 
 

 The alternative approach is to copy the utility or library module onto every processor, 
including all of the databases required to handle every link.  This allows the major computational 
burden for communications to be done in parallel, dramatically increasing the useful processor 
time overlap and thus the processor utilization efficiency as described in Chapter 6. 
 

 The decision to copy utility and library modules must be made by the model architect.  
Only an architect can characterize the inherent parallelism in the system being modeled (or built 
in the case of a software system).  Such a decision should never be based upon the desire to save 
memory which is abundant in a well designed parallel processor. 
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 One normally decides to use parallel processors to cut the time to obtain answers or keep 
up with real-time applications.  Typically, time is of the essence.  Parallel processor hardware 
designers who understand this trade-off have provided huge amounts of memory so that saving 
memory is almost never a concern.  They have also addressed the problem of delay times 
crossing multiple memory boundaries.  In the CAD system described here, this problem is 
addressed by co-location of resources with processes that use them.  So, in general, an architect 
using a parallel processor should not be concerned about using huge amounts of memory. 
 

 Unfortunately, there are huge piles of software that exist in production where 
programmers have reused a single index number to mean different things in the same routine, 
saving 2 bytes while making it difficult to understand and potentially creating subtle bugs during 
maintenance.  Worse, sharing data between modules (routines) to save memory is rampant in 
most modern development environments.  Global memory does not exist in VisiSoft. 
 
 
INTER-PROCESSOR (IP) COMMUNICATIONS 
 

 A general representation of the above architectures can be illustrated as shown in 
Figure 9-13 below.  In this figure there are I instances of the top-level module MODULE_T, 
and J instances of the IP module MODULE_E within each of the MODULE_T modules.  We 
note that in the radio example, it is likely that J is equal to or very close to I. 
 

 MODULE_T is instanced I times.  Within each instance, MODULE_H is a hierarchical 
module that is independent of each of its counterparts in the other instances.  Similarly, each 
instance of IPC MODULE_E within an instance of MODULE_T is independent of those in the 
other instances of MODULE_T. 
 

 It may be that only a few of the IP MODULE_E instances within a MODULE_T instance 
will be active at a given point in time during the course of a scenario.  However, once a 
MODULE_T instance is assigned to a processor, all of the internal modules that have been 
previously called upon will be available when needed, without any additional assignments of 
threads to processors.  When called upon they will just run - with their memory in place and 
ready to go. 
 
 
INSTANCE POINTER VALUE RULES 
 

 To specify an instance from outside an instanced module, the instance value pointers (up 
to a maximum of n = 6) are assigned in a schedule or cancel statement.  This implies that a 
hierarchy of instances within instances may not exceed 6.  It should be noted that, historically, 
even 4 - the maximum ever used - is very rare.  The format to schedule a process at the current 
time is as follows. 
 

SCHEDULE  process_name INSTANCE  instance_pointer_1, ..., instance_pointer_n 
 
 When a process starts to execute, the instance pointers defined for modules containing 
that process hold the current values of the instances that the process represents.  These instance 
pointers are used to automatically attach the proper resource instances to the process when it 
runs.  Instance pointers are also available for use by the process in a read-only mode, i.e., values 
of module instance pointers cannot be changed by processes within that module instance. 
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Figure 9-13.  Example of a parallel architecture for IP resources. 
 
 
 When one process is scheduled by another in the same module instance, the instance 
pointers are passed implicitly and must not appear in the argument list.  Because module 
instances must be independent, processes in an instance cannot schedule any in a different 
instance of the same module. 
 

 Referring to Figure 9-13, a process in MODULE_1 can schedule a process in 
MODULE_E with the pointer to the proper instance of MODULE_E being automatically 
invoked.  However, the instance of MODULE_E must be explicitly provided: 
 

SCHEDULE process_in_E INSTANCE j ... 
 

where j may be any properly defined numeric attribute or literal. 
 

 The general format for a SCHEDULE statement is given in Chapter 12, Section 12.3.4. 
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MODULE INSTANCE CASES OF CONCERN 
 
 The following cases represent the allowed use of statements for transferring control 
among processes, including scheduling and deleting threads from the schedule.  These rules are 
enforced automatically by the process translator in the development environment. 
 
 
Case 1  SCHEDULEs, CANCELs & CALLs from a non-instanced module to an 

 instanced module. 
 

 Referenced module (process) instances must be identified by specifying a value for the 
instance pointer, i.e., SCHEDULE/CALL process_name INSTANCE instance_pointer.  
CALLs may not occur across IND module boundaries. 

 
 
Case 2(a) SCHEDULEs, CANCELs, & CALLs within the same module instance. 
 

 References to the instance pointers of processes within the same instance are implicit, 
being resolved automatically by the process translator and run-time monitor.  Values of 
the instance pointers of a module are read-only by processes within that module. 

 
 
Case 2(b) SCHEDULEs, CANCELs & CALLs across instances of the same module. 
 

 References to resources across instances of the same module must be accomplished by 
using a shared interface in a separate module.  Direct resource references are not 
permitted across different instances of the same module.  CALLs may not occur across 
IND module boundaries. 

 
 
Case 3(a) SCHEDULEs, CANCELs, & CALLs from an instanced module to a 

noninstanced module. 
 

 The instance pointer of the referencing process is passed automatically to the referenced 
process by the run-time monitor.  There is no need for an explicit reference to point back 
to the resource instances in the referencing module that the referenced process shares 
with it. 

 
 
Case 3(b) SCHEDULEs, CANCELs & CALLs from one instanced module to another 

instanced module. 
 

 The designer must identify the referenced process instance by specifying a value for the 
instance pointer, i.e., SCHEDULE/CALL process_name INSTANCE instance_pointer.  
Again, pointers to resource instances within the referencing module that are shared with 
the referenced module are automatically passed to the referenced process.  CALLs may 
not occur across IND module boundaries. 
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SUMMARY OF RULES 
 
Single Processor Versus Parallel Processor Rules 
 

 There are essentially no differences in Resource or Process languages with respect to a 
single or parallel processor environment except for the CALL restrictions stated in the prior 
section.  There are additional statements to support parallel processing in the Task Control 
Specification language.  These provide for specification of a MAIN_MODULE and IND 
modules (they may be instanced) that may be allocated to separate processors by VPOS. 
 
 
Creating And Addressing Instanced Module Resources 
 

 The instanced module quantity specification does not create multiple copies of instanced 
resources inside instanced modules directly.  Instead, multiple copies are created automatically 
by the system translators and monitors.  These are created as separate instanced data structures, 
with each effectively having their own names.  Up to six levels of module instancing are 
allowed, including any QUANTITY levels of hierarchy within the lowest level module. 
 
 
Basic Rules 
 

 The following general rules apply to both single and parallel processor environments. 
 

• When a process in an instanced module is scheduled or called, the instance pointers 
must be specified explicitly if not implicitly.  The values of the pointers are set as 
follows: 

 

− When referenced from a process inside the same module instance, the 
instance pointer is specified implicitly and must not appear in the 
instance_pointer list. 

 

− When referenced from a process outside the module, the module instance 
must be specified as an instance_pointer after the process name. 
Example:  SCHEDULE  process_name  INSTANCE  instance_pointer 

 

• When a process within an instanced module references another process in that same 
instance, it automatically invokes the same instance pointers.  No arguments are 
specified relative to the common module instances after the process name. 

 

• When referencing (1) hierarchical modules, or (2) other entities using multiple 
instance pointers, the pointers must be ordered as specified in the instance pointer 
list of the process being called.  This must be in the order of (1) the hierarchy, from 
the top down, and (2) the instance pointers that do not reference module instances 
going last and ordered as specified in the instance pointer list of the called process. 

 

• If a process within a hierarchically instanced module is scheduled from outside a 
subset of the instances, only the new instance pointers must appear in the instance 
pointer list of the process, in order from the top of the hierarchy down. 

 

• Reuse of instance-pointer names in resources attached to any process interior to an 
instanced module must be qualified. 
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SPECIFYING A SOFTWARE OR SIMULATION TASK 
 

 A software system or simulation is defined by its control specification, of which many 
may reside in a given directory.  Both of these are tasks when run on a parallel processor.  
Parallel processor tasks are composed of IND modules, each of which may contain hierarchies of 
sub-modules.  If enough processors exist, each IND module may be placed on a separate 
processor.  If not, multiple IND modules may be placed on a single processor.  The number of 
processors to be used (assuming they exist) may be selected by the user.  The system may decide 
on the allocation and assignment of actual processors to IND modules.  Given that VisiSoft will 
likely use substantially fewer processors to improve speed over other approaches, processors 
assigned to a task will not be shared with other tasks. 
 
 
Identifying The IND Modules In A Task 
 

 Each IND Module may have its own architectural drawing.  Those IND Modules that are 
to be part of a task, must have their architectures reside in the same directory.  [Downstream, 
VisiSoft may provide for IND Library Modules.]  The current approach to identifying the IND 
modules to be used in a task will remain unchanged except that IND modules must be “top level” 
modules (not part of a module hierarchy).  IND modules to be used in a task may be named in 
the control specification, and at least one of their constituent processes must also be identified 
with Start Codes in the architecture, along with their starting section and priority.  IND Modules 
may also be started by Cross-Schedules and may be identified directly from the architecture and 
the corresponding “SCHEDULE/CALLing trees” maintained in the architecture database.  The 
sections in which they are started (there may be more than one) will be determined by when they 
are called. 
 
 
Parallel Processor Tasks 
 

 IND Modules must be defined in the control specification, along with the started 
processes, the sections in which they are to be started, and their corresponding priorities.  On a 
single processor, the scheduler is used typically to support a discrete event simulation.  However, 
that simulation may be tied to the real-time clock as part of a real-time control system, in which 
case it may look like a piece of real-time software. 
 

 In the case of software tasks residing on parallel processors, the IND Modules that may 
run concurrently on different processors must be synchronized.  In this sense, there may be no 
implementation difference between a discrete event simulation and a software system. 
 

 It is important to note that the RESUME statement is used for resuming that part of a task 
that is suspended on a separate processor. 
 

 Software processes running concurrently will likely require synchronization.  This may 
be achieved using the SCHEDULE statement, which ensures that certain processes run before 
others, and that they all synchronize at a given point.  When using the scheduler, this point is 
defined by the ΔTmax interval, which is selected by the software system architect. 
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 In the case of discrete time simulations of certain types of physical systems - sometimes 
referred to as fine-grain - running on parallel processors, they are typically broken into cells that 
may run concurrently.  These cells communicate via “cell faces” that represent the interface data 
shared by the cells.  Cells typically access data from their faces at the start of a clock period, and 
update the cell faces at the end of a clock period.  In between the clock periods, they can run 
concurrently.  Interchanges within a clock period as well as those used to terminate that period 
may be timed using the schedule statement.  These schedules should be apparent from the 
application requirements and easily recognized by a subject area expert. 
 
 
MEMORY SHARED BETWEEN IND MODULES 
 

 The manner in which memory is shared between IND modules within a task will depend 
upon whether these modules are loaded onto the same processor or different processors.  In 
either case, this decision is made by VPOS.  The user may designate that an IND module is to be 
run exclusively on a separate processor in which case memory will be shared accordingly. 
 

 When loaded onto the same processor, the threads inside IND modules must run 
sequentially, with synchronization guaranteed by the sequence of operations.  When loaded on 
separate processors, memory shared between IND modules will be shared through the Inter-
Processor Communications (IPC) system.  These facilities eliminate concerns about data 
synchronization. 
 
 
VSE & GSS TASK OR PROCESSOR EVENTS 
 
 When designing software using multiple tasks or multiple processors, events may occur 
in one task or processor that are required to trigger events in another task or processor.  This may 
be done for communications or for synchronization.  For example, when writing into a resource 
shared between two tasks or processors, one may want to determine if the write operation is 
completed on one processor before it is read on the other.  This may be handled using the 
EVENT attribute.  This attribute is a special VisiSoft data type that is processed by VPOS to 
ensure that EVENTs that occur in one task or IND Module are immediately processed by tasks 
or IND Modules on another processor.  Changes in EVENT attributes in one task or IND Module 
typically cause a process to resume in a different task or IND Module on another processor, 
supporting synchronization requirements. 
 
 
 



Software Theory                Page  9 -  31  

DETERMINING CONNECTIVITY BETWEEN IND MODULE PLATFORMS 
 
 Figure 9-14 provides the basis for an analysis of the calculations required to determine 
connectivity between N objects (airplanes, satellites, etc.).  The number of possible connections 
and the approach to minimizing the calculations is given in the figure. 
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Figure 9-14.  Connectivity between 4, 5, and 6 objects. 
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 As indicated in the examples in Figure 9-14, the number of possible connections between 
N objects is given by N(N - 1)/2.  Since connectivity may be determined by either of the two 
objects, one is best spreading the calculations so they are done within each object on a separate 
parallel processor.  Figure 9-14 contains the potential sequence of calculations below each of the 
connectivity drawings for each of the objects to spread the calculations. 
 

 Table 1 provides a look at the spreading of calculations when the number of objects 
ranges from 4 to 29.  When N is odd, the number of connections is divisible by N, providing an 
even number of calculations for each object (right-most column).  With 13 objects, there are 78 
possible connections total, so that each object can do 6 calculations to determine the connectivity 
of the set.  Note that each object does half of the calculations for connectivity with those that it is 
connected to.  This is because connectivity only needs to be done in one direction for each pair. 
 

Table 1.  Optimal spreading of calculations. 

N N(N - 1) / 2 EVEN X
4 6
5 10 2
6 15
7 21 3
8 28
9 36 4
10 45
11 55 5
12 66
13 78 6
14 91
15 105 7
16 120
17 136 8
18 153
19 171 9
20 190
21 210 10
22 231
23 253 11
24 276
25 300 12
26 325
27 351 13
28 378
29 406 14

 
 

 Looking back at Figure 9-10, if 16 processors are used, three are required for the separate 
IND Modules: MASTER_SYNCHRONIZER, IND_MAIN, and IND_ SAT.  This leaves 13 
processors for 13 IND Modules for airplanes and other platforms, whereby each platform would 
be required to do a maximum of 6 LOS calculations every time they move.  If 5 processors were 
used for 5 platforms, each platform would only need to perform 2 calculations.  Alternatively, 
using 5 processors for 15 platforms, one could put 3 platforms on each processor with each 
platform doing 6 calculations.  Using 29 processors requires 14 calculations. 
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FINE GRAIN MODELING 
 
 An approach to fine-grain problems, e.g., molecular structure models, fluid flow models, 
and meteorological models, is shown in Figure 9-15.  In these types of models, one is typically 
concerned with the dynamics of particles under the influence of fields, e.g., gravitational, electro-
magnetic, or temperature.  Field forces typically depend upon distance from the source of the 
force, decreasing as 1/R2 in most cases.  Forces on each particle may also depend upon those 
emanating from the other particles.  These models are typically described by systems of partial 
differential equations in three dimensions as well as time, and the state vectors may be large, 
involving position, velocity, acceleration, etc. 
 

 When translating the system of equations into digital form for computer solution, one 
typically descretizes both time and the physical space.  Time is represented by sufficiently small   
ΔT window increments while space is descretized into sufficiently small cells, both to represent 
continuous dynamics with sufficient accuracy.  Typically one may have to use a parallel 
processor because of the huge computational requirements.  Some applications allow approaches 
that place a single cell on each processor.  The approach presented here is aimed at getting a 
potentially more accurate solution in a shorter amount of time with a much smaller number of 
processors. 
 

 In the example shown in Figure 9-15, minor cells are grouped into a 10x10x10 structure 
of 1000 to create a major cell.  The example then proceeds to use a 3x3x3 structure of 27 major 
cells to model the system (only two 3x3 structures are depicted in the figure). 
 

 The intent is to show how a large number of cells can be grouped on a single processor 
with internal cells having no interfaces with the other major cells.  Using this approach, there are 
only 300 external interfaces to the other major cells out of a total of 3000 interfaces.  Each cell 
must take the information from the interface to the adjacent cells (6 each) and the central 
information from within that cell, and perform the calculations to determine the new central and 
interface values for the next time step.  However, there need only be a single resource to support 
all of the internal cell interfaces, and only a single resource for each of the faces (max of 6) for 
the external cell interfaces. 
 

 Using this approach, if the system is linear, each major cell is doing significant 
calculations that are independent of the other major cells.  If the system is nonlinear, then one 
can estimate the values for the nonlinear interface as a starting point and iterate if necessary 
using a fast converging linear segmentation algorithm that may be used for all the cells.  In either 
case, the amount of computation within each major cell will be huge compared to the cross 
processing necessary to update and synchronize the interface processing. 
 

 The result is that the interface processing between major cells will be a small part of that 
done within each major cell.  If IND modules are then grouped on processors so that the 
processor utilization is approximately the same on each, a high Processor Utilization Efficiency 
(PUE) will result as described in Chapter 6.  One may then expect to get a speed multiplier that 
will be a high percentage of the number of processors housing each major cell (27 in this case). 
 

 For many problems of this type, one can gain further increases in speed using optimal 
sparse matrix techniques within each major cell, making those computations significantly faster 
(typically a factor of N where N is the side of the NxN matrix). 
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Figure 9-15.  Approach to fine-grain models. 
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Similarity To Tiling 
 

 Fine grain modeling as described above is similar to tiling in FORTRAN or C-based 
languages where tile directives are used to group cells into tiles.  This is generally accomplished 
by grouping (tiling) multiple iterations within a 3D loop structure.  Tiles are then assigned to 
processors to increase the workload on each processor while reducing the number of processors 
required.  In most of these applications, the nature of the algorithms is not substantially changed 
from cell to cell, and the interfaces are typically of the same structure.  Figure 9-16 illustrates a 
more general facility using VisiSoft IND modules that may perform different functions. 
 

IND_1

IND_13

IND_12

IND_11

IND_10

IND_9

IND_8

IND_7

IND_6

IND_5

IND_4

IND_3

IND_2 IND_15

IND_14

IND_16

3D
_C

EL
LS

  5
/0

9/
14

A single resource is shared between
each face of each Major Cell Stack.

1 Major Cell Stack
1Km X 1Km

20 x 20  =
400 Major Cell Stacks

20Km X 20Km

 
 

Figure 9-16.  Grouping minor cells into IND modules for placement onto separate processors. 
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Using Discrete Spaces - A More General Approach 
 

 In applications covered in Chapter 19, IND modules can be totally different with different 
sets of instances.  As illustrated in Figure 9-17, multiple IND modules may be best designed 
using multiple spaces.  This allows one to represent different shapes that interface at similar 
surfaces, where each shape is best represented in a different space.  As shown above in 
Figure 9-16, each space that interfaces with another can be connected by a different IP resource.  
This simplifies modeling of fluid flow type systems where constraint surfaces can be modeled 
using the best space for each of the particular shapes that are connected. 
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Figure 9-17.  An example of different spaces for IND modules. 
 
 
  These IND module spaces can also be “grouped” onto processors based upon their 
connectivity as well as the loading.  This reduces the idle time on a given processor, increasing 
the PUE as described above.  It also reduces the number of processors required to perform an 
application task. 
 

 When dealing with more general applications, module loading may be nonstationary.  
This implies that their processing intensity or connectivity may vary unpredictably with time.  It 
may be desirable to reassign these modules to different processors during the course of a run.  
IND modules may also be a nonlinear function of the state vector, including elements in IP 
resources, thus requiring iterative solutions.  These considerations affect the architectural design. 
 
 
SUMMARY OF PARALLELISM, ARCHITECTURE AND DECOMPOSITION  
 

 Parallelism implies that a software architecture can be produced that decomposes the 
system into modules such that modules can be designated as independent, implying that they 
may run concurrently with other modules in the system when they are invoked.  The decision to 
invoke a module at run-time is based upon application requirements and the software design.  
We note that the software architecture for a single processor may be different from that for a 
parallel processor.  For example, copies of memory in each module may be used to gain speed in 
a parallel processor, whereas using more memory may cause more paging on a single processor.  
Such factors must be considered to compare speeds fairly, see [7]. 
 

 The order of a decomposition is equal to the number of INDependent (IND) modules.  
Decomposition of order M implies that the architecture has decomposed the application into M 
IND modules that can run concurrently with each other. 
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 When using n processors in parallel, the speed multiplier, Sn, is the ratio of measured 
values of run-time on a single processor (R1), and run-time on n processors (Rn): 
 

Sn   =  1

n

R
R

 
 

The percent parallelism, P, achieved by a software architecture running on a machine with up to 
N processors is measured as follows. 
 

P   = n

n 1 N

S
MAX

n= →

⎡ ⎤
⎢ ⎥⎣ ⎦

  
 

 We note that these measures must be obtained by experiment, and are independent of 
whether the software or hardware architecture is the same for both the single processor case and 
the parallel processor case.  If minimum run-time for a single processor is achieved using a 
different software architecture than that for the parallel processor case, then different 
architectures should be used to produce a fair value for the speed multiplier.  Likewise, one may 
use different hardware architectures; dependence of the speed multiplier upon hardware is 
described elsewhere, [39].  As indicated above, these outcomes may be scenario dependent, 
requiring measures of statistical distributions for validity.  We can now define the inherent 
parallelism of a system (and scenario) as the maximum percent parallelism, PMAX, which can 
be achieved theoretically by the best hardware and software architectures for both the single and 
parallel processor cases.  We now describe ways to estimate these measures based upon models 
of hardware and software architectures and factors that affect them. 
 
 
Estimating Speed Multipliers 
 

 Given a software architecture that decomposes a system into IND modules, then a 
module may take the same amount of useful processor time on a separate processor as it would 
running in the single processor case.  However, if the hardware or software architecture in the 
parallel processor case is different from that of the single processor, then the useful running time 
will likely change.  For example, a table may be used to store information for hundreds of 
instances of an entity being simulated on a single processor and common data for each instance 
may occur once.  On a parallel processor, the data for each instance may be on a separate 
processor, eliminating the table, but the common data will be repeated with each instance. 
 

 If the table is large, then paging may be required across multiple memory boundaries on a 
single processor, but not on a parallel processor since the table size may be cut by the number of 
instances.  Common data used to manage a table is usually small compared to table sizes, but 
that also depends on the application.  The point is that a decomposition that minimizes the run-
time for a single processor will likely differ from that for a parallel processor.  Also, cache sizes 
local to a processor may be the same for each parallel processor as for a single processor.  Or one 
may select a single processor with much greater cache sizes to reduce the swapping and paging 
overhead from that of one of the parallel processors.  Regardless of the differences in hardware, 
given that communication between processors is treated separately, swapping and paging within 
a processor on a parallel machine may be reduced dramatically from that on a single processor. 
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 Overhead time may change also.  For example, when modules on different processors are 
communicating, overhead will accrue that is not needed on a single processor.  In addition, 
excess overhead time may accrue as well as idle time waiting for return communications.  This 
time will effectively reduce the measure of parallelism.  However, if a module requires a large 
database, and that database can reside in the cache of its designated processor with no paging, 
then overhead time may be reduced when it runs on a separate processor. 
 

 For each IND module, one must estimate the useful time, overhead time, and idle time for 
both the single processor case and the N processor case - where N equals the number of IND 
modules.  This may be accomplished by estimating the single processor case, and then treating 
the parallel processor case as a normalized percentage (increase/decrease) of the single processor 
case.  Communication between IND modules on different processors will accrue additional 
overhead as well as idle time in the parallel processor case.  Thus overhead must be broken into 
parts: (1) time required for communication between processors, TC; (2) time required for 
swapping, TS; and (3) time required for paging, TP.  For the mth module, total runtime overhead 
is given by  
 

TOHm = TCm + TSm + TPm 
 

 Both communication between processors and paging depend upon the software 
architecture as well as the parallel processor facilities.  Communications will depend upon the 
size of data transfers, and the memory boundary crossing delays between processors.  Paging 
will depend upon the memory size required for each IND module, the amount of local cache next 
to each processor, and the delays associated with each memory boundary crossing. 
 

 In the parallel processor case, if the number of processors equals the number of IND 
modules, then swapping overhead may be reduced to zero if the module remains by itself on that 
processor.  This requires a run-time system that has the information on module independence so 
that all threads in an IND module are put on the same processor.  It also implies OS facilities for 
controlling processor allocation and assignment from the task. 
 

 With a good software architecture, paging overhead for a module on a parallel processor 
may be significantly lower than that on a single processor if not nil.  If there is a high degree of 
inherent parallelism, and a good software architecture to take advantage of it, it is conceivable 
that the speed multiplier could be greater than the number of processors.  This would result from 
excessive swapping and paging overhead incurred on a single processor that disappears when a 
large number of IND modules are spread onto separate parallel processors.  To achieve this also 
requires that the software architecture is taken advantage of at run-time. 
 

 The major factor affecting the speed multiplier is the ability to achieve overlap of useful 
times as illustrated in Figure 6-2.  To estimate this, one must effectively estimate the useful time 
overlap between each IND module.  This is not a simple process.  One must consider that an 
overlap of 50% of the modules during a given time period represents 50% parallelism being 
taken advantage of during that time period.  This must be done for all time periods.  It is possible 
to capture this data by instrumenting the software in a way that is virtually nonintrusive. 
 

 To estimate the run-time for a single processor, (RSE), useful time and overhead must be 
summed for each module, accounting for swapping and paging overhead. 
 

RSE = [ ]
M

Um OHm

m 1

T  + T
=
∑  ,     where m represents the mth module. 
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 For the parallel processor case, the estimated run-time, (RPE), will equal that of the 
module with the largest sum of useful time, overhead, and idle time. 
 

RPE = [ ]Um OHm Im
m 1 M
MAX T  + T  + T
= →

 
 

 Since idle time and overhead may play significant roles, one must perform this estimate 
for each IND module to determine the total time.  Modern parallel processors collect data that 
can help to estimate these times.  Without such data, estimates may be very difficult if not 
intractable.  What is important is to analyze this data to understand directions for improving 
architectures. 
 

 We note that the above approach is based upon the unsaturated case (number of 
processors available equals or exceeds number of IND modules).  The saturated case is much 
more complex, depending upon load balancing as well as having IND modules share the same 
processor, and is beyond the scope of this treatment. 
 
 
GENERAL SUMMARY 
 

 The speed multipliers to be gained from using a parallel processor depend upon a number 
of factors that may be evaluated prior to making an implementation investment.  First is the 
inherent parallelism of system.  This determines the potential for useful processing to occur 
concurrently (useful time overlap) on a parallel processor.  Second, the hardware architecture 
must support the ability to access memory local to each processor concurrently as well as 
minimize the time for transfers between processors.  Third, the OS supporting the hardware must 
provide facilities to allocate and assign processor resources by a run-time system that has been 
optimized to use knowledge of the software architecture. 
 

 Given that the above criteria are met, the most difficult hurdles to date have been the 
ability to: effectively decompose a software application with inherent parallelism; and effectively 
use the knowledge of that decomposition at run-time.  This requires a software development 
environment that makes it easy to develop architectures of IND modules that minimize 
communication between them, reducing overhead and idle time.  It also requires that a run-time 
environment be generated with knowledge of the module independence (the software 
architecture), so that IND modules are allocated to processors, and assigned in a way that takes 
maximum advantage of parallel processor resources. 
 
 
Designing System Architectures 
 

 Visualization of architecture is critical to the design of an engineering system.  It 
permeates the ability to address and control complexity, from decomposition to fault isolation.  
When looking at drawings that are many layers deep, it is apparent that orders of magnitude of 
complexity can be put under tight control through visualization.  Where pertinent, these drawings 
reference clearly identified specifications. 
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 In the Computer-Aided Design (CAD) approach presented here, data is separated from 
instructions using two separate language translators, one for Resources and one for Processes.  
One can click on the lowest level iconic elements in the drawing to see the “code”.  The 
Resource and Process code is easily understood because of its hierarchical nature and English-
like language.  The code can be modified right on the drawing. 
 

 Modern engineering environments depend upon CAD systems to simplify the design and 
enhancement process.  Huge sets of engineering drawings are automatically cross-referenced in 
large databases.  Libraries of modules are stored for reuse in multiple drawings, and easily 
modified and identified accordingly.  In many cases, these CAD systems provide simulation 
tools to further simplify and automate the design and test process. 
 

 System complexity is conquered when it is decomposed into an architecture of modules 
that are maximally independent and easy to modify.  If new functionality is required, then both 
the architecture and design details must be easily understood to allow for redesign by other 
engineers.  These are the same principles that simplify complex software in general and parallel 
processing in particular. 
 

 Approaches to this type of engineering design include the ability to: 
 

• Decompose a system into modules and submodules that can be designed and tested 
independently - by different design teams. 

 

• Design modules that can be redesigned and replaced with minimal impact on the rest 
of the system. 

 

• Design modules that degrade gradually, support rapid fault isolation, and produce 
information regarding faulty components. 

 

• Design modules that may be run concurrently (e.g., on a parallel processor). 
 

• Design an architecture that supports control over the growing complexity of modules 
of a system as it is enhanced. 

 

• Design a new sub-architecture so that further expansion is accommodated easily. 
 

 Reducing the cost of fabrication or implementation is part of the engineering design 
process.  Ambiguities in either the drawings or specifications that result in improper 
implementation or fabrication are the fault of the engineer who did the design.  Except for 
mathematical formulations, engineering specifications are written in English or other native 
languages for clarity, and accompanied by more drawings and pictures to ensure ease of 
understanding.  Engineers are measured based upon the understandability of their design.  If an 
engineer’s peers find it easy to understand, it is considered a good design. 
 
 
THE CAD INTERFACE FOR SOFTWARE ARCHITECTURE 
 

 Because the underlying theme of this book is the theory of software, we have not 
included descriptions of the CAD interface and user facilities for building software architectures.  
Detailed descriptions of the user interface for this system can be found in the GSS or VSE User 
Reference Manuals, see [67] or [150].  Conversely, the elements of the languages that support 
this system are closely tied to the theory and are explained in detail in the following sections. 
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CHAPTER 10 
 

SOFTWARE LANGUAGES FOR PARALLEL PROCESSING 
 
 
 

 We estimate that, in a competitive software product organization, 65% to 85% of 
development time is spent working with existing software modules.  Therefore, the ease with 
which one can understand and modify an existing module directly impacts software productivity.  
This impact is amplified when changes are made by someone other than the original author.  In 
most applications, one is also concerned about run-time speed.  This chapter analyzes language 
properties that affect both productivity and run-time speed. 
 

 Conventional software languages require textual documentation - both external and 
internal (comments in the code) - for people other than the original author to understand complex 
algorithms.  In most programming environments, enforcing production of textual documentation 
is difficult.  Understandable code reduces the need for textual documentation as well as the time 
spent trying to understand complex algorithms written by another author.  This chapter examines 
the properties of programming languages that affect the understandability of production code, 
and the approach to language design that ensures these properties.  It also describes the 
properties of a language that support speed on a single processor, particularly the ability to easily 
create and manipulate complex data structures where a single move can take the place of many 
instructions. 
 

 Figure 8-2 depicts the interplay of external documentation, architecture, and language for 
the CAD software environment described in the previous chapters.  Three separate languages are 
shown at the bottom of the figure: one for declaring data, one for stating instructions, and one for 
run-time control.  These languages were developed and refined over many years specifically to 
maximize both productivity and run-time speed. 
 

 It should be apparent by now that the CAD approach described here is a complete 
departure from conventional software development using C-based programming languages and 
FORTRAN.  Although this departure is most evident from the architecture environment, it is also 
true in the language environment.  As shown in Figure 8-2, there are three languages, each with 
their own translators.  Each translator is tightly tied to the Run-Time System environment as well 
as the architecture environment. 
 

 Why three languages?  First, resources (hierarchical data structures) are created and 
modified separately from processes (hierarchical rule structures).  This is the result of the 
Separation Principle, separating data from instructions so that the independence of modules may 
be determined directly from visualization using engineering drawings.  As we will show, this 
provides for multipliers on run-time speed as well as on productivity during development.  In 
addition, there are many properties of a run-time task that must be defined, such as use of 
specific files, hardware devices, library facilities, graphical facilities, and other controls, some 
specific to simulation.  These facilities warrant a task control specification language that is both 
hardware and OS independent.  When this is achieved, a complete software system may be 
developed on one set of computers and run on another set without change.  This is the case with 
the CAD system described here. 
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GENERAL OBSERVATIONS ON LANGUAGES 
 
Computer languages versus human languages 
 

 The Instruction Set Architecture (ISA) defines the language of the computer, i.e., the 
instructions.  This language is specified in binary.  However, the description is normally 
augmented using mnemonic codes or an assembly type language so humans can more easily 
understand what is represented by the strings of 1’s and 0’s. 
 

 In the early days of computers, engineers wrote programs in machine language using 
binary coding sheets.  This was time consuming, error prone, and difficult to understand.  The 
next round of improvement provided mnemonic codes for the instruction types, and decimal 
numbers for specifying memory locations.  Although much more readable, it took many lines of 
code to do simple arithmetic, including the tracking of scale factors for real numbers. 
 

 As the need for a more human oriented language became apparent, assemblers came into 
being.  This provided for relative addressing so that labels could be used to define memory 
locations for both instructions and data without being tied to specific hard-coded memory 
locations.  Subroutines could be defined relative to a starting memory location and relocated to a 
different area of memory using relative addressing.  Arrays could be accessed using indirect 
addressing, implying a starting location and an offset.  Then floating point arithmetic became 
part of the assembler, so that scale factors were kept automatically.  These human oriented 
functions were huge improvements for programmer productivity. 
 

 Fast forwarding ahead to FORTRAN and COBOL, these higher order language compilers 
quickly took over the translation from human-to-computer languages.  People stopped thinking 
in computer languages and instead thought in terms of a much more organized design approach 
using higher-level languages.  Programs were much more easily shared by humans.  Because of 
the organized designs, programs ran much faster. 
 

 Fast forwarding again to CAD systems, these provided significant breakthroughs in 
productivity.  They not only provided the human-to-human languages specific to an application 
area, they added graphical interfaces to help engineers easily create and change complex designs.  
These facilities minimized time consuming mistakes in human-to-human understanding. 
 
 
Organizing Data Memory Resources For Speed And Understandability 
 

 The basic concepts of using Generalized State Vectors to maximize speed and simplicity 
of transformations leads to creating, changing and sharing hierarchical data structures.  These 
data structures can be designated to serve different requirements, e.g., the following: 
 

Dedicated Resources - dedicated to a given process 
 

Shared Resources - shared directly between two or more processes 
 

Aliased & Shared-As Resources - shared by pointer between two or more processes 
 

Inter-Task Resources - global & local sharing data among multiple tasks 
 

Inter-Processor Resources - memory shared between processes on different processors 
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DRAWING BOUNDARY LINES AROUND THE LANGUAGE 
 

 In the case of the VisiSoft integrated approach, the architecture environment is used to 
produce software using easily understood architectures that provide maximum independence 
between modules.  Therefore, the language must be designed to interface with the architecture 
facilities in the development environment. 
 

 On the other side of the VisiSoft integrated environment lays the run-time environment.  
This includes the Run-Time System (RTS), the VisiSoft Parallel OS (VPOS) and the hardware 
(see Figure 8-1).  The language environment is used to generate a tailored RTS that, in turn, must 
interface with the VPOS and take maximum advantage of the particular hardware used to run the 
application.  To take maximum advantage of a parallel processor, these interface design 
constraints have directly affected the language design. 
 
 
Maximizing Speed 
 

 The main driver in language design is time: time to run, time to produce, and time to 
enhance.  By produce, we imply a highly reliable piece of software; similarly for enhancements. 
 

 When the issue of speed comes up, some people think that writing in assembly language 
is more efficient being closer to the machine.  Carrying that argument a step further, writing in 1s 
and 0s should be even more efficient.  Both of these claims have been proven to be false in many 
experiments.  Matrix inversion is probably an excellent example to observe.  Writing in 1s and 0s 
or assembly language does not affect the speed of matrix inversion.  Rather, it is a matter of 
mapping complex algorithms into an effective solution space.  Visualization of this solution 
space is critical to understanding the concepts as well as designing the algorithms. 
 

 Underlying this problem is that of laying out complex hierarchical data structures that 
represent the solution space.  These data structures are difficult to observe and work with in C-
based languages as well as assembly language.  But one must go through the experiment of 
building such algorithms in these languages.  One then quickly observes the huge differences in 
understandability, as well as the sheer size of the resulting code.  More importantly, it is difficult 
to think at the conceptual level without a language conducive to working at that level. 
 

 Using VisiSoft, all data is shared automatically by pointer.  There is no global data.  Data 
structures should be limited to what is needed to be shared between processes.  The more 
processes that share a resource, the more likely a bottleneck will occur when using parallel 
processors. 
 
 
Maximizing Understandability (By Whom Or What) 
 

 When we measure understandability, we are talking about measuring the time it takes for 
people - other than the original author - to understand the software.  The C language was 
designed to make the compiler simple to write.  The language is concerned with ease of 
translation into machine language, i.e., the language that the machine understands.  C meets this 
requirement - translation to machine code is simple, making compilers easy to write.  This goal is 
made clear in various Bell System/Laboratories journals.  C was designed to quickly port a game 
onto a PDP-7 computer with a very small memory.  Furthermore, the key developer of C liked 
Spartan syntax - read minimal keystrokes. 
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 But in a large team environment, where the team is charged with the development of 
large pieces of complex software, where should the burden be?  On the compiler or the 
programmer?  Or, on the team trying to work together to build the application? 
 

 In the case of VisiSoft, the burden of language understandability is on the CAD system 
designed to support team building the total integrated development / run-time environment.  It 
should be apparent from this book, that VisiSoft is not simply another compiler development 
effort.  The background of the team that created it lays in the development of highly 
sophisticated CAD products for engineering design.  The intent is to minimize the effort required 
to create complex software designs that are highly reliable and run extremely fast. 
 
 
Using A Language To Ensure Understandability 
 

 Understandability clearly depends upon those using the language.  And using the 
language clearly depends upon the facilities it provides.  The topics below consider both sides of 
this issue. 
 
 
Selecting Names 
 

 Very few highly experienced people responsible for large critical projects go back and 
write about their experiences.  Jerry Sitner is a rare case, see [136].  In this reference he discusses 
selecting names of objects in a complex piece of software.  When reading code representing an 
algorithm that controls many different objects, where each object has different numbers of 
instances, using I, J, and K provides no indication of what the object is whose instance is being 
referenced.  Consider that the path database in Figure 10-1 represents paths for different types of 
platforms, e.g., airplanes, ships and vehicles on the ground.  Consider also that there are different 
types of each platform, e.g., F15s, and F18s. 
 

 

PATH_DATABASE 
    1  PATH_RECORD  QUANTITY (500000) 
      2  PATH_NUMBER                       INTEGER 
      2  PATH_POINT                        INTEGER 
      2  WAY_POINT                         INTEGER 
      2  BEARING                           DREAL 
      2  MOVE_POINT                        INTEGER 
      2  PATH_POSITION_LLA 
         3  LATITUDE                       DREAL 
         3  LONGITUDE                      DREAL 
         3  ALTITUDE                       DREAL 
      2  PATH_POSITION_XYZ 
         3  X_POS                          DREAL 
         3  Y_POS                          DREAL 
         3  Z_POS                          DREAL 
      2  DISTANCE                          DREAL 
      2  VELOCITY                          DREAL 
      2  PATH_ROTATION 
         3  X_ROT                          DREAL 
         3  Y_ROT                          DREAL 
         3  Z_ROT                          DREAL 
 

 
Figure 10-1.  Resource: PATH_DATABASE. 
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 If we want to reference the velocity of a particular plane, we could use VELOCITY(I), 
where I is the pointer for a particular platform.  But then we would not know what type of 
platform it is.  To improve this, we could use AIR_PTR to indicate that the pointer is for an air 
platform.  But if there are different instances of F15s and F16s, we could use F15_PTR, yielding 
VELOCITY(F15_PTR), a much better designation of the platform. 
 

 Considering the resulting improvement in understandability in the code, this is not hard to 
do.  Yet in most publications or academic examples, single character names are used over and 
over.  Some of this is driven by people writing papers for journals that restrict page counts.  So if 
you want to get a paper published, you must use terse representations.  Another case is that of an 
instructor, who is pressed for time, writing examples on the blackboard in a programming class.  
In the later case, one can use modern facilities, e.g., showing examples from a laptop to a screen, 
or sharing examples on a network of computers to eliminate this restriction.  As Sitner points out, 
this restriction can be driven by the language itself. 
 

 These considerations not withstanding, it is clear to those experienced in overseeing 
major software projects that naming is critical to understanding.  Furthermore, naming should be 
part of a hierarchical description of a complex space as illustrated in Figure 10-1. 
 

 In the literature of the 1970s it was made clear that good languages were organized to 
support the space, such as in Figure 10-1.  TYPEing followed the structure of the space.  Poor 
languages were organized by type, e.g., INTEGER I, J, K;  REAL X, Y, Z.  In addition, really 
poor languages allowed one to “type as you go,” i.e., one could define types as you typed - 
anywhere in the code.  This made typing much faster.  Of course it made it harder for others to 
find the type of a particular variable, especially when it was referenced via layers of argument 
lists.  Years later it was even difficult for the original coder. 
 

 As described in Chapter 5, one must compare the time it takes to type code versus the 
time it takes another programmer to understand that code.  When building complex software in a 
competitive environment, minimizing coding keystrokes becomes equally nonproductive.  
Numerous articles support this statement; see for example, [2], [66], [89], [111], [136] - [139], 
[141], and [146].  Considering the current popular software languages and apparent desire to 
produce Spartan code, this tradeoff warrants further investigation.  But to get fair answers 
requires fair experiments, experiments that are repeatable by independent parties. 
 
 
 The Problem With Symbolic (Terse) Programming Languages 
 

 Some languages encourage minimization of keystrokes with their Spartan syntax and 
symbology.  This is tantamount to minimizing information transfer and therefore 
understandability of the code.  Such languages may reduce the time to type a line of code; but 
this is an extremely small part of the time spent on a module.  Anyone who has had to work with 
another author’s Spartan syntax will confirm that the time lost trying to understand, test and 
debug complex algorithms far exceeds that spent saving keystrokes.  Our experience in working 
with complex software algorithms is that terse symbology is the wrong direction. 
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 Symbolic languages also have the problem that loss or misplacement of a single symbol 
can lead to a totally different meaning, if not just a misunderstanding.  An example is use of the 
symbols <,  ≤ ,  -<,  >,  ≥ ,  ->, versus spelling out the meaning, e.g., “not greater than”.  Change 
or loss of a single symbol in the spelled out case creates an obvious visible error, clearly a case 
for Shannon’s theory of redundancy.  This is why legal contracts require that numbers be spelled 
out for clarity.  Changing a single (important) digit can go unnoticed, whereas changing a single 
character in a written number is easy to discern.  That is why checks require written numbers. 
 

 One can also argue the alternative of producing documentation inside code with large 
blocks of comments.  In fact, this is a good indicator of a poor language - one that has to be 
heavily annotated to be understood by the reader.  Good languages minimize the need for 
comments while providing a high degree of understandability directly from the code.  COBOL 
required very few comments, FORTRAN about 50% of a routine.  It is not unusual to find well 
documented C-based language programs where 70% or more of the code is comments. 
 

 Grace Hopper understood this.  That is why she maintained that programs should be 
written in a language that was close to English, and why COBOL has been the outstanding leader 
in the productivity race. 
 

 As determined by Jerry Sitner, [136], Understandability is the most important factor in 
human-to-human communications and the resulting productivity of teams working on large 
complex software systems.  As told by Paul Strassmann, [141], the loner programmers do not 
care about this aspect of a programming language.  According to Sitner, neither does the IEEE.  
His view was derived from the definition of the IEEE standard measurement of productivity 
which at the time disregarded the understandability of the language. 
 

 When a manager spends many years reading other people’s programs, trying to 
understand why new people cannot pick up an unfinished effort or make changes, it becomes 
apparent why so much time is wasted.  In some cases it is wasted on simple problems.  In more 
difficult areas, the modifications may be easy.  Upon inspecting the cases that are time 
consuming, it is most always because it’s hard to understand what the code means - even though 
the algorithms may be simple.  In the quick to modify cases, it is easy to understand the code, 
even though the algorithms are very complex.  By understandability we mean: How easy is it for 
a new person to sufficiently understand someone else’s code so they can modify it. 
 

 There are many language factors that go into understandability.  We try to cover most of 
them here.  But it is important for the reader to understand that there are many programmers who 
do not agree with our measures.  We have heard these reasons and have been surprised that the 
programmers who have stated them were that honest about their feelings.  Examples follow. 
 

 When a prior employee moved to a new company and suggested they use VisiSoft, he 
was told that it would make their software insecure - because anyone could easily understand the 
algorithms.  In the engineering world, particularly in the design of complex hardware systems, 
security of secret information is handled totally separately - by different people - from 
understandability of the design.  Security and protection of secrets is a totally separate issue from 
building highly competitive designs.  Why would one want to mix these issues?  Are they 
confused about job security?  What creates real job security?  Detroit is a great example. 
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THE CASE FOR UPPER CASE 
 

 When using the English language, upper case is used typically to denote the start of a 
sentence or special names.  These may occur in the middle of a paragraph.  The additional 
information provided by the upper case characters is helpful in understanding the context of the 
words.  There are no similar contexts in programming languages, unless one writes code in 
paragraph blocks instead of starting instructions on a new line.  Differentiation between upper 
and lower case mostly adds confusion as explained in the next sections. 
 

 Because C-based languages are small, they depend heavily on library calls, so the 
libraries tend to be very large.  The classic case is X-Windows, with hundreds of similar names 
and no hierarchy to differentiate them.  This led to the use of lower and upper case to ensure 
differentiation without typing more than 30 to 40 characters. 
 

 When reading code, trying to find a variable that could be in upper or lower case formats 
is unnecessarily difficult.  This is a visual scanning process.  Looking for an identical pattern is 
much easier than looking for similar patterns.  The following differences in examples of names 
are easy to spot since they are right next to each other, not scattered.  However, if they appear in 
different positions in equations on different pages, they are hard to spot. 
 

Critical_number = QUANTUM_NUMBER_L + 3.5e-2 
 

Critical_Number = Quantum_Number_1 + 3.5e-2 
 

CRITICAL_NUMBER = quantum_number_l + 3.5e-2 
 

critical_Number = Quantum_Number_L + 3.5e-2 
 
 There are two cases to be considered for upper and lower case.  These are the following. 
 
 
Case Insensitive - Translator Does Not Distinguish Between Upper & Lower Case 
 

 In this case, the writer can use all upper case, all lower case, or any mix desired while 
typing.  The translator ignores the difference.  All of the above statements look the same to the 
translator.  They are obviously different to the reader when grouped as above. 
 

 When using a case insensitive language, getting agreement on standard conventions to 
help recognition of names is difficult.  They cannot be enforced automatically.  Without 
consistent approaches that are easily enforced they are quickly discarded.  The result is that when 
debugging another author’s code, scanning for a variable name becomes much more complex to 
match.  One must look for all of the possible different names in the code that mean the same to 
the translator.  Visual pattern search is very difficult in a case insensitive environment, unless the 
names are grouped together as in the example above.  And mixing cases is incompatible with 
case sensitive translators. 
 
 
Case Sensitive - Translator Does Distinguish Between Upper & Lower Case 
 

 In this case, the writer must carefully distinguish between upper case and lower case, 
since editors allow for any mix desired while typing.  The translator carefully picks out the 
difference.  In this case, all of the statements in the above example look totally different to the 
translator, making them incompatible with the case insensitive approach. 
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Upper & Lower Case Sensitivity - Driven By Large Libraries 
 

 Anyone who has used X_Windows libraries knows the difficulties encountered when 
typing long names correctly using upper and lower case.  Worse is the difficulty in searching for 
problems while debugging complex graphical code.  This is aggravated when referencing two or 
more libraries containing the same (wrong) function name, and library selection is random.  
Because of the size of C-based libraries, with no ability to distinguish between these libraries 
when linking, many names are more than 30 characters long with various mixes of case, making 
it hard to get them right.  What’s the solution?  Provide a hierarchy.  VisiSoft provides for calling 
library processes by process_name - within a specified module by module_name - within a 
specified library by library_name.  This three-layer hierarchy greatly simplifies the selection of 
simple names while ensuring that one never gets the wrong library. 
 
 
The Incompatibility Problem 
 

 When using Windows, C-based compilers are Case Insensitive.  When using Linux or 
UNIX, the compilers are Case Sensitive.  Moving a large piece of software from Windows (Case 
Insensitive) to Linux or UNIX (Case Sensitive) presents a huge incompatibility problem for 
software taking advantage of case insensitivity.  All upper case solves all of these problems. 
 
 
The Case For Fixed Width Fonts 
 

 If the argument for upper and lower case is really about style or acceptance by a popular 
culture, then we should consider variable width fonts.  This makes reading code even more like 
reading text.  Of course there are drawbacks.  Nothing lines up, especially with numbers and 
decimal points 
 
 
THE CASE FOR COLOR 
 

 Being able to quickly distinguish types of words (e.g., KEY words that the translator 
recognizes) is desirable.  This may be accomplished easily using a smart editor that 
automatically colors KEY words; see Figures 10-2 and 10-3.  More importantly, there are more 
choices one can use to distinguish between types of words, not just upper or lower case.  As 
illustrated in the figure, five colors are used: black, gray, red, blue, and green. 
 

 Using this approach, one does not have to go through a translator to get the colors.  The 
editor recognizes the KEY words and colors them automatically - as you type.  In addition, if one 
mistakenly types a lower case letter that is not in a comment (started by three asterisks ***), it is 
automatically changed to upper case by the editor. 
 

 The VisiSoft system - all upper case - is compatible with Windows, Linux or UNIX 
conventions: Case Sensitive or Case Insensitive.  More importantly, the built-in editor recognizes 
KEY words and colors them accordingly - as you type. 
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Figure 10-2.  The case for COLOR to recognize types of words. 
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Figure 10-3.  The case for COLOR to recognize types of words. 
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THE CASE FOR CONTEXT ORIENTED LANGUAGES 
 

 Context free languages are taught in compiler writing courses in Computer Science 
schools because the compilers for them are easy to write.  Major portions can be written 
automatically using “Compiler Compilers.”  FORTRAN is a context free language as illustrated 
in Figure 4-3.  A basic property of context free languages is that spaces may be removed (e.g., by 
a PACK_LEFT routine) since scans for key words are simple. 
 

 When working with large data structures, e.g., those used in production software to 
access and update complex data files, hierarchical data structures are critical to run-time speed as 
well as ease of understanding.  Moving large data structures in and out of records may be done in 
a single instruction fetch with all of the elementary data items being directly available.  In a good 
language, qualifying names may be used at any higher level in the hierarchy to uniquely specify 
a data item below it. 
 

 This is similar to saying “pass the red book,” where red is a qualifier.  This requires a 
sophisticated (context oriented) translator to deal with all of the complex possibilities that may 
occur.  It puts the burden is on the translator - exactly where it should be - not on the person 
reading the code.  See the example below. 
 

 An example of a VisiSoft hierarchical data structure is the following: 
 

 1  ENTRANCES 
    2  FRONT 
  3  DOOR   STATUS OPEN 
       CLOSED 
  3  WINDOW   STATUS OPEN 
       CLOSED 
    2  BACK 
  3  DOOR   STATUS OPEN 
       CLOSED 
  3  WINDOW   STATUS OPEN 
       CLOSED 

 

 An example of a VisiSoft conditional statement using the above data structure: 
 

 IF FRONT DOOR IS OPEN OR BACK DOOR IS OPEN 
  EXECUTE ENTRY . 

 
 
Visualizing Scope 
 

 The architectural approach described in the prior chapters provides a visualization of how 
data is shared by instructions. All data must appear in resources.  Dedicated resources are used 
only by a single process, and have only a single connect line to that process.  Shared resources 
are connected to those processes which share that data. 
 

 Forcing every data element into this structure is a great simplification.  It ensures 
immediate visibility of what instructions have access to what data.  It forces designers to put 
more thought into architectures that promote independence, therefore affording ease of 
restructuring.  More importantly, one can determine from a quick visual inspection of an 
engineering drawing which processes share a resource, and therefore any subset of a data 
structure. 
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 An architect can minimize the connectivity between processes at the drawing level.  
Since it is the connectivity that determines independence, this serves to maximize independence 
of modules, supporting software designs that are best suited to parallel processing. 
 

 Many organizations impose coding restrictions above and beyond those in a given 
language to attempt to achieve some level of independence.  However, without preprocessors, 
and with access to individual variables as in C-based languages, one must track down all the 
functions that contain data definitions of each individual variable used by a function to enforce a 
standard, or to locate a problem in that function.  Languages with the potential for creating high 
connectivity make it difficult to achieve independence. 
 

 Separation of data from instructions in the development environment produces an entirely 
new view of scope, one that is specified precisely in the architectural drawing.  Since there is a 
direct mapping from architecture to code, language design in this paradigm is not concerned with 
scope.  More importantly, allowing scope changes in the language conflicts directly with 
architectural control.  Since architecture is at a higher level of purview in the design chain, and 
provides direct visualization of independence, scope is best determined at the architectural level. 
 
 
Simplifying Subroutines 
 

 In the CAD system described here, a process contains the instructions that act on data.  
At first glance, a process may look like a function or subroutine in a typical programming 
language.  However, many of the problems we deal with today are dominated by sets of rules 
that operate on complex data structures, not just mathematical functions.  This implies many 
large dissimilar transformations that must be tailored to the complex data structures upon which 
they operate. 
 

 In current popular programming languages, the lack of strict one-in one-out control 
structures (as described by Mills, [102]) creates problems in the support phase of a software 
product.  Using a C-based language, the resulting code can contain complex conditional 
statements implemented with many layers of nested brackets.  This becomes a problem when 
new features are added to a function and the number of conditions must grow to support these 
features.  Unless one takes the time to break up the C function into multiple subroutines - or 
resorts to the use of GOTOs - the nesting continues to increase. 
 

 Since breaking up a complex nested conditional statement is difficult, and creating a new 
function (subroutine) means deciding what data must be available to the new function, the 
nesting typically grows.  Using C, the local data becomes global.  If C++ is used, it can be shared 
among “friends.”  These decisions are all practical deterrents to breaking up the nests.  And as 
they grow, they become more difficult to maintain. 
 

 So what is the solution?  Add another layer of hierarchy into the process (hierarchies 
serve to control complex organizations).  This is implemented by inserting rules into a process, 
whereby a rule may be executed as a one-in one-out control structure, including the ability to 
execute a rule multiple times.  Examples of this improvement are described in subsequent 
sections. 
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Sharing Data – Elimination of Argument Lists 
 

 Most older programming languages use argument lists when calling subroutines or 
functions. A simple example is SIN(THETA).  This approach is handy for built-in scientific and 
Boolean functions.  However, when passing multiple arguments, things can easily get confused.  
Unless otherwise specified, the data values in the argument list are copied to new memory 
locations before being operated upon by the function.  Upon return from the function call, they 
may or may not be copied back into memory locations associated with the calling routine. 
 

 When nonnumeric data structures are used, passing data becomes cumbersome and error-
prone.  For medium size data structures, processing time can become troublesome.  In these 
cases, many languages provide for passing pointers to the data, instead of passing the data.  
However, it is up to the programmer to manage and pass the pointers.  Using the CAD approach 
defined here, resources are shared directly by those processes to which they are connected in the 
architecture.  Access is always by pointers that are managed automatically behind the scenes. 
 

 If the designer wants to make a copy of an attribute structure, he simply copies that 
structure to a corresponding structure, typically in a different resource.  The original attribute 
structure remains in tact.  Often one may want to look at the data using a different structure in the 
receiving resource.  This can only be accomplished if the attribute structures preserve their size 
and structure when moved.  Because of the well specified nature of hierarchical data structures in 
a resource (What You See Is What You Get), and the corresponding group move property, this is 
simple to do. 
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CHAPTER 11      MEMORY RESOURCE DESCRIPTIONS 
 
11.1 DECLARATION OF DATA 
 

The Problem of Global Types 
 

 If one tries to use some of the more complex C-code functions, e.g., those for graphics or 
Inter-Process Communications (IPC), one typically runs into the problem of variable data type 
definitions, or defined data types.  These types are defined in one C routine, and used in another.  
In C++, the type can be in a “class” that is shared. 
 

 The problem encountered with user defined data types occurs when trying to locate the 
data type definition in the routine of interest, and determining that it is defined elsewhere.  One 
must then locate the source code for the defining routine to determine the data type.  Having 
found the source code for the defining routine, and then the data type definition, one may 
discover that this definition depends upon yet another defined data type in yet another routine.  
When one finally gets to the end of such a chain, one should not be surprised to discover that the 
data type is simply an integer.  Such mystery chains are not uncommon in large systems when 
user defined data type definitions are permitted, and people elect to redefine the dictionary. 
 

 When data declarations are imbedded in code with instructions, programmers are inclined 
to minimize the size of data declarations, or just minimize the keystrokes.  This is most evident 
when reading C-based code, where programmers use terse data definitions that allow them to 
type the data as they go, within arithmetic or conditional constructs, making it hard to identify 
the type definition.  Such practices clearly minimize understandability along with keystrokes. 
 

 Clarity is enhanced with a single fixed dictionary for all data types.  Enforcement of this 
principle becomes simple if data typing is not mixed with the executable statements, but placed 
in a separate entity.  Since resources are separate entities that are defined and shared by 
processes that want access to them, then by virtue of connect lines in the architecture, there are 
no data declarations in a process.  Therefore, the re-typing problem does not exist. 
 

 The presence of global data types generally creates a dependency with any subprogram 
that shares them.  This lack of independence creates severe bottlenecks for parallel processing.  
With the CAD approach described above, the architect determines explicitly - by design - what 
processes have access to what resources.  The connectivity is clear, visually, from the drawing.  
There are no global types. 
 
 
Machine Independent Standards (What You See Is What You Get!) 
 

 Older languages, e.g., C, C++ and their derivatives, perform word boundary alignment of 
arithmetic type data.  Yet data has not been organized as words since the birth of the “byte” in 
the IBM 360 (1960s).  Word boundary alignment causes data structures to get padded with 
“slack” bytes, implying that group level structures are not stored as defined by the programmer’s 
code.  Moving group level structures will generally cause data to be inserted incorrectly into 
another structure, unless great care is taken to define the structures on precise word boundaries.  
This is a very undesirable restriction when working with databases or performing message or 
symbol string processing.  Even when compilers offer an option to ignore word boundary 
alignment, programmers ignore the option for fear of incompatibilities across a team. 
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Using Hierarchies To Control Complexity 
 

 As stated in the introduction, software must deal with ever increasing levels of 
complexity.  Complex organizations are best understood and controlled using hierarchies.  The 
number of hierarchical levels must be sufficient to push down the complexity.  This makes a 
system easy to understand.  Languages can be designed with hierarchical properties that aid in 
visualization of the organization, clearly simplifying understandability. 
 

 Hierarchical structures are a critical property of software languages.  This principle was 
clearly understood by the world’s best language designer, Grace Hopper.  Hierarchies are a 
major factor in ease of understanding.  They simplify the specification of complex data spaces as 
shown in Figure 11-1.  In turn, data spaces such as these can support great simplification of 
complex algorithms.  As described further in this chapter, hierarchies also apply directly to the 
simplification of complex instruction sets.  The proper use of hierarchies in a software language 
requires data structures that are easily created, referenced, and understood.  Equally important, 
the structures must be organized and grouped to match the application - not grouped by type. 
 

 

 
 

 

 
 

 
 

 

RESOURCE NAME: MESSAGE_FORMATS        INSTANCES: TRANSMITTER
                                                 RECEIVER

MESSAGE
    1  SYNC_CODE                    CHAR 6
                 ALIAS  VALID     VALUE '101010',
                                        '010101'
    1  TYPE                         STATUS FORMAT_A
                                           FORMAT_B
    1  CONTENT                      CHAR 46

FORMAT_A    REDEFINES MESSAGE
    1  PAD                          CHAR 14
    1  HEADER
       2  PRIORITY                  STATUS FLASH
                                           IMMEDIATE
                                           ROUTINE
       2  ORIGIN                    INDEX
       2  DESTINATION               INDEX
              ALIAS   BROADCAST           VALUE 0
    1  BODY
       2  LENGTH                    INTEGER
    1  TRAILER
       2  MESSAGE_NUMBER            INTEGER
       2  TIME_SENT                 REAL
       2  TIME_RECEIVED             REAL
       2  ACKNOWLEDGEMENT           STATUS RECEIVED
                                           NOT_RECEIVED
       2  LAST_SYMBOL               CHAR 2
            ALIAS  TERMINATOR     VALUE '\\', '//', '<<','>>'

FORMAT_B    REDEFINES MESSAGE
    1  PAD                          CHAR 14
    1  HEADER
       2  SOURCE                    INDEX
       2  SINK                      INDEX
    1  BODY
       2  CONTENTS                  CHAR 42

 
 

Figure 11-1.  Example of hierarchical data structures in a resource. 
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 Resource structures are byte oriented and fully compatible with current and planned chip 
designs.  Since data on today's chips is byte addressable, a designer can create complex 
hierarchical structures that are most convenient for meeting requirements.  What You See (in 
your attribute structure) Is What You Get (in memory), independent of the machine you are 
using.  Clearly the language translators are much more complex since the burden is shifted from 
the developer to the computer - at translation time.  However, the real achievements occur at run-
time with dramatic increases in speed. 
 
 
Achieving Speed With Hierarchical Group Moves 
 

 The ability to move a complete hierarchical structure, or any substructure within a 
hierarchy, with a simple MOVE statement is important to the implementation of transformations 
in complex systems.  This permits group moves of one complex structure or substructure to 
another with a single instruction.  Not only does this simplify the code, it requires only a single 
instruction fetch, dramatically reducing running times.  A good example is moving complete 
messages, or fields containing subfields, as illustrated in Figure 11-1.  These speed differences 
are demonstrated in Chapter 17.  When creating communications protocols or simply transferring 
records on a file, one may want to move subfields into a packet, and packets into a frame.  These 
group moves are executed simply by referring to the attribute name of the highest level group to 
be moved. One need not worry about its size or structure.  The implementer need only ensure 
that the receiving structure is organized to properly receive the data being moved.  This reduces 
instruction code as well as running time. 
 

 The ability to use hierarchical group moves results from the machine independence 
properties described above.  Hierarchies are easy to define and easy to understand using the 
approach shown in Figure 11-1.  Ease of use in a process is also significantly improved by 
minimizing the qualification of names in a hierarchy to that sufficient for unique identification. 
 
 
Reusable Names And Qualifiers 
 

 It is common to have many thousands of attributes in a large system, and the selection of 
names in large modules becomes a critical part of helping others to understand the module.  In 
the CAD environment described here, names may be reused without qualification except in the 
same process.  Within a single process, one does not have to make up different names to 
distinguish the same type of data from another when they are obviously used in different 
contexts. 
 

 For example, when reading the specifications for two different equipment locations, one 
would expect to find the same words reused, possibly with other names as qualifiers, e.g., 
RADIO LOCATION or ANTENNA LOCATION.  One can easily understand the meanings in 
accordance with the context of each separate specification. 
 

 VisiSoft translators recognize the context of attribute names and qualifiers.  This frees the 
user from having to create needlessly different names that mean the same thing in different 
contexts.  What’s more, this is done without injecting special delimiters, e.g. an underscore or 
period, to signify qualification.  This implies translation based upon context; again, putting a 
heavy burden on the translator - not the user. 
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11.2 LEVEL NUMBERS 
 
 Level numbers are used to organize a resource into a hierarchical structure of group and 
elementary attributes.  Level numbers subdivide a resource, and once a subdivision has been 
specified, it may be further subdivided to permit more detailed resource reference. 
 

 The basic subdivisions of a resource, that is, those not further subdivided, are called 
elementary attributes; consequently, a resource will consist of one or more elementary attributes. 
 

 In order to refer to a set of elementary attributes, the attributes are combined into groups.  
A group attribute consists of a named collection of one or more elementary attributes.  Group 
attributes, in turn, may be combined into larger groups.  Thus, an elementary attribute may 
belong to a set of nested groups.  A maximum of 800 lines are allowed within each unnumbered 
group attribute.  
 

 A system of level numbers shows the hierarchical structure of elementary attributes and 
group attributes.  The first or "top-level" attribute cannot have a level number.  For each level of 
subdivision, level numbers must be assigned in increasing order.  Except for the top level group, 
the integers 1, 2, 3, ... are used as level numbers.  Level numbers are integer value less than or 
equal to 45 and must be contiguous starting from the top. 
 

 Other than top level attributes starting in columns 1 to 4, and all others in 5 or beyond, no 
spacing rules are enforced in GSS.  However, the benefits of following indentation and 
alignment conventions for improved readability are obvious. 
 
 
Figure 11-1 illustrated the hierarchical nature of the VisiSoft Resource, and the level of 
complexity of a typical shared resource.  Internally, each resource statement has the following 
format: 
 

[level_number]  attribute_name  [data type]  [qualifying clauses] 
 

 Each statement begins on a new line and the different parts of the statement are separated 
by one or more spaces.   Top-level group attribute statements (see below) must begin in 
columns 1 through 4.  All other resource statements must begin in column 5 or beyond.  A 
maximum of 72 characters are allowed per line.  If necessary, statements may be continued on to 
more than one line, although qualifying clauses may not be split between lines (see below).  
 
Example 
 

   INPUT MESSAGE 
  1  ORIGIN    INTEGER   
  1  DESTINATION   INTEGER   
  1  MESSAGE   
     2  MESSAGE HEADER  CHAR 10 
     2  MESSAGE BODY  CHAR 24 
        2  MESSAGE TRAILER   CHAR 10 
  1  ARRIVAL TIME    INTEGER 
  1  DURATION      INTEGER 
  1  TYPE          CHARACTER 5 
   OUTPUT MESSAGE     CHARACTER 50 
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11.3 ATTRIBUTE NAMES 
 

 Attribute names must be GSS words (limited to 32 characters, starting with an alphabetic 
character).  When used in a resource, attributes at the same level (directly subordinate to the 
same attribute) must have unique names.  Note:  Since top-level attributes are directly 
subordinate to a resource, they must have unique names. 
 

 Attribute names used in a process must be uniquely qualified.  This can be accomplished 
by using any combination of higher level names in the hierarchy.  Note:  Resource names are at 
the top of the hierarchy. 
 
 
REUSE OF ATTRIBUTE NAMES 
 

 Reuse of names that refer to different physical attributes in a GSS process is allowed 
provided the intended use could be uniquely resolved.  For example, the use of the name DOOR 
to mean FRONT DOOR or BACK DOOR is resolved by adding the qualifier FRONT or BACK.  
Consider the following example from a GSS resource description. 
 

 1  ENTRANCES 
    2  FRONT 
   3  DOOR  STATUS OPEN 
       CLOSED 
   3  WINDOW  STATUS OPEN 
       CLOSED 
    2  BACK 
   3  DOOR  STATUS OPEN 
       CLOSED 
   3  WINDOW  STATUS OPEN 
       CLOSED 
 
A GSS conditional statement using that resource can be written as follows: 
 

  IF FRONT DOOR IS OPEN OR BACK DOOR IS OPEN 
   EXECUTE ENTRY 
  ELSE IF FRONT WINDOW IS OPEN OR BACK WINDOW IS OPEN 
   EXECUTE CHECK ENTRY 
  ELSE ... 
 
 Although the same names (e.g., DOOR) are reused in the resource, the intended use is 
resolved by using the qualifiers FRONT or BACK in the process.  In the case of OPEN or 
CLOSED, reuse of STATUS names is qualified automatically by the particular status attribute 
FRONT DOOR or BACK DOOR.  This is also true for alias names.  They are automatically 
qualified by the attribute names that use them. 
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 Names are reusable within the same resource or over multiple resources.  Reuse of names 
in a GSS process requires qualification only to the extent sufficient to insure uniqueness at the 
lowest (innermost) level in the resource hierarchy.  For example: 
 

   HIGH POWER 
  1  TRANSCEIVER 
     2  HEIGHT  REAL 
     2  LOCATION 
   3  X LOCATION REAL 
   3  Y LOCATION REAL 
   LOW POWER 
  1  TRANSCEIVER 
     2  HEIGHT  REAL 
     2  LOCATION 
   3  X LOCATION REAL 
   3  Y LOCATION REAL 
 
One can write the following statements: 
 

  MOVE HIGH POWER HEIGHT TO LOW POWER HEIGHT 
  MOVE HIGH POWER X LOCATION TO LOW POWER X LOCATION 
 

   This is also true for ALIAS names as defined below.  They are automatically qualified 
by the attribute names that use them. 
 
 
MULTIPLE INSTANCED ATTRIBUTE STRUCTURES 
 

 Description of multiple instances of attribute structures is implemented using the 
QUANTITY clause in GSS.  For example an incoming message buffer may provide for up to 20 
stored messages at any instance of time.  This requires 20 slots in the buffer, each slot being able 
to store one message. 
 

 At any instance of time, we may want to check certain fields, e.g., 
MESSAGE_PRIORITY, in all of these messages to determine which message to pull from the 
input buffer next.  The resource structure to support this may appear as follows: 
 

   MESSAGE BUFFER 
  1  MESSAGE     QUANTITY(20) 
     2  MESSAGE HEADER 
   3  MESSAGE TYPE  CHAR 8 
   3  MESSAGE PRIORITY STATUS LOW 
         MEDIUM 
         HIGH 
     2  MESSAGE BODY  CHAR 68 
 

 Each MESSAGE (there are 20) has a MESSAGE_HEADER and MESSAGE_BODY, 
each storing its own MESSAGE_TYPE and MESSAGE_PRIORITY by virtue of the 
QUANTITY clause. 
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11.4 DATA TYPES AND QUALIFYING CLAUSES 
 
 Each elementary attribute must have a data type clause to describe the values it may 
assume, and may also have a qualifying clause.  Group attributes may either have no type or 
qualifying clauses, or one QUANTITY clause as described below.  The order of clauses within a 
statement is not important.  The possible type clauses are defined below within groups of types: 
 

 NUMERIC 
  INTEGER 
  INDEX 
  INDEX 1 
  REAL 
  DREAL 
  COMPLEX 
  DCOMPLEX 
 

 DECIMAL 
  DECIMAL 
 

 CHARACTER 
  CHARACTER 
  STATUS 
  COLOR 
 

 CONTROL 
  RULE 
  PROCESS 
  EVENT 
 
 For character data, the number of bytes used is specified using the CHARACTER or 
DECIMAL data type clause.  For numeric type data, the specified types are given in the 
following sections.  For status attributes, the number of bytes used is equal to the length of the 
longest status name.  Additional qualifying clauses are as follows: 
 

  QUANTITY 
  ALIAS 
  REDEFINES 
  INITIAL VALUE  
 

 All of the above are described in the sections that follow. 
 
 
11.4.1 NUMERIC DATA TYPES 
 

 Numeric attributes have special properties because of the way they are stored.  This is to 
allow for fast binary computations.  These types are described in the following sections. 
 
 
11.4.1.1 INTEGER Attributes 
 

 The INTEGER clause specifies that the attribute is expected to be any positive or 
negative integer.  An INTEGER attribute may assume positive or negative values with 9 digits of 
precision in the range -2,147,483,648 to +2,147,483,647.  Integer takes 4 bytes of storage. 
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11.4.1.2 INDEX Attributes 
 

 An INDEX attribute specifies an integer that may assume positive or negative values 
with over 4 digits of accuracy in the range -32,768 to +32,767.  The INDEX attribute is stored as 
a binary number and occupies 2 bytes of storage.  The abbreviation INDX is recognized by GSS 
as equivalent to the keyword INDEX. 
 
 
11.4.1.3 INDEX_1 Attributes 
 

 The INDEX_1 attribute specifies an integer that may assume positive or negative values 
with over 2 digits of accuracy in the decimal range [-128, +127].  The INDEX_1 attribute is 
stored as a binary number and occupies 1 byte of storage. 
 
 
INTEGER, INDEX, and INDEX_1 examples 
 

  FLIGHT CONTROLS 
       1  NUM CHANGES    INTEGER 
       1  MISSION TIME    INTEGER 
       1  AIRCRAFT TRANS NUM     INDEX 
       1  CHANGE NUM    INDEX 
      1  TRANSACTION TYPE     INDEX 1 
      1  CHANNEL NUMBER    INDEX_1 
 
 
11.4.1.4 REAL and DREAL Attributes 
 

 The REAL and DREAL clauses specify that the attribute is expected to be a positive or 
negative real or double precision real number.  A REAL attribute is represented by a floating-
point real number in the format:  ±.999999E±99 
 

 The mantissa (portion before the 'E') is a signed decimal number with 6 digits of 
precision.  The exponent (portion after the 'E') is a signed two-digit integer whose value must lie 
in the range [-38, +37].  It occupies 4 bytes of storage. 
 

  A double precision real attribute is specified by the reserved word DREAL.  The 
mantissa of a double-precision number is a signed decimal number with 15 digits of precision.  
The exponent must lie in the range [-308, +307].  It occupies 8 bytes of storage.  A DREAL 
attribute is represented by a floating-point real number in the format:  
±.999999999999999E±999 
 
REAL and DREAL examples 
 

  TRANSCEIVER LOCATION 
        1  X LOCATION TR   REAL 
        1  Y LOCATION TR     REAL 
         1  ELEVATION    DREAL 
     ANTENNA GAIN       REAL 
     SAVED CLOCK VALUE     DREAL 
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11.4.1.5 COMPLEX And DCOMPLEX Attributes 
 

 The COMPLEX clause specifies that the attribute is a complex number  x + iy, where i is 
the imaginary part.  It is represented by an ordered pair, (x, y), of REAL numbers.   It occupies 8 
bytes of storage.  Refer to the above section for the definition of a REAL number. 
 

 A double precision, complex number may be specified by using the reserved word 
DCOMPLEX in place of COMPLEX.    It is represented by an ordered pair, (x, y), of DREAL 
numbers.   It occupies 16 bytes of storage.  Refer to the above section for the definition of a 
DREAL number. 
 

 Both COMPLEX and DCOMPLEX numbers can be redefined as a pair of REAL and 
DREAL numbers respectively. 
 
COMPLEX and DCOMPLEX examples 
 

  HIGH_VOLTAGE_VALUES 
        1  LINE_1     COMPLEX 
        1  LINE_2       COMPLEX 
    TOTAL_VOLTAGE_VALUES      DCOMPLEX 
 
 
11.4.2  DECIMAL DATA TYPES 
 

 The DECIMAL clause is used for formatting attributes to be displayed, printed, or 
written to external files.  DECIMAL is a character field; therefore no arithmetic may be 
performed on attributes of type DECIMAL.  The optional suppression qualifying clauses are 
useful for reporting on real-valued attributes, without restrictions to a specified floating-point 
format of a REAL or DREAL attribute (16 digit mantissa followed by a 3 digit exponent). 
 The symbol_string following the keyword DECIMAL (or DEC) specifies how the 
attribute is to be represented.  The symbol_string may be composed of the following symbols: 
 

+ Indicates that a character position will be reserved to print the sign of the number 
whether it is positive or negative.  The sign occupies one byte of storage. 

 

- Indicates that a character position will be reserved to print the sign of the number 
only when it is negative.  The sign occupies one byte of storage. 
 

.  Indicates the decimal point in a float number or before an exponential mantissa.  It  
will explicitly appear in printed output.  It occupies one byte of storage. 
 

E+ Indicates an exponent will appear explicitly in printed output.  E+ occupies two 
bytes of storage.  E+ must be placed between the mantissa - which must start with a 
decimal point - and decimal digits representing the exponent. 
 

9 Indicates that a character position will contain one of the digits 0-9.  One byte of 
storage per digit is occupied. 
 

 ( ) Parentheses are used to indicate the number of occurrences of the 9 symbol.  For 
example, 9(3) is equivalent to 999 and will occupy three bytes of storage. 
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 The above decimal qualifying symbols produce numbers (no internal spaces) that can be 
read as character data on input using a matching DECIMAL symbol_string or CHARACTER 
field.  They can also be converted into binary number fields using the CONVERT statement. 

 
 
DECIMAL Examples  (NOTE: b implies a blank space.) 
 

SENDING_FIELD CONTENT RECEIVING_FIELD FORMAT OUTPUT_RESULT 

        +11.5    DECIMAL  999.99            011.50 

         +1.5    DECIMAL -9(2).9(3)           b01.500 

      +1295.5    DECIMAL +.9(3)             +.500 

        +95.    DECIMAL +.99E+9(2)       +.95E+02 

        +.0095    DECIMAL +.99E+9(2)          +.95E-02 

         -1.    DECIMAL +.9(9)E+9(3)   -.100000000E+001 

 

 Values may only be assigned explicitly to DECIMAL attributes by using a MOVE 
statement (see Section 9.1.3).  Numeric assignment statements (Section 9.1.1) are not valid.  
Note that truncation will occur when a value MOVED into a DECIMAL attribute is too large. 

 
 
Decimal Attribute Output Display Formatting 
 

 Additional symbols are available for formatting output displays.  Attributes using these 
symbols are not allowed in sending fields in a MOVE statement.  They are designed to create 
spaces or shift digit positions to accommodate readable report formatting 
 

Z Indicates zero suppress (replace zeros by spaces) under a MOVE statement, refer 
to Section 9.1.3.  Z's may not appear following a 9, L, R or the explicit decimal 
point, or in a symbol_string containing the exponent E+.   

 

L Indicates left justification of all symbols after zero suppress.  L's may not appear 
following a 9, Z, R, or the explicit decimal point, or in a symbol_string containing 
the exponent E+. 

 

R Indicates right justification of the sign field prior to leading zeros after zeros are 
suppressed.  R's may not appear following a 9, Z, or L, or the explicit decimal 
point, or in a symbol_string containing the exponent E+. 

 

 ( ) Parentheses are used to indicate the number of occurrences of a symbol.  For 
example, 9(3) is equivalent to 999 and will occupy three bytes of storage.  L(3) is 
equivalent to LLL and will occupy three bytes of storage. 
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Display Formatting Examples  (NOTE: b implies a blank space.) 
 

SENDING_FIELD CONTENT RECEIVING_FIELD FORMAT OUTPUT_RESULT 

        +11.5 DECIMAL  Z(2)9.99        b11.50 

         +1.5 DECIMAL +Z(2)9.99       +bb1.50 

      +1295.5 DECIMAL +L(2)9(2)         +1295 

        +95. DECIMAL -L(2)9(2)         b95bb 

         -1. DECIMAL  L(3)9(2)         01bbb 

        +11.5 DECIMAL +9(4).9(2)      +0011.50 

        +11.5 DECIMAL +Z(2)9(2).9(2)      +bb11.50 

        +11.5 DECIMAL +R(2)9(2).9(2)      bb+11.50 

        +11.5 DECIMAL +R9(3).9(2)      b+011.50 

 
 When using a DECIMAL attribute in a class or relation conditional construct, it must be 
considered character data after suppression or justification is applied. 
 
 
11.4.3 CHARACTER DATA TYPES 
 
11.4.3.1 CHARACTER Attributes 
 
 The CHARACTER clause specifies that the attribute is expected to take on alphanumeric 
values, that is any nonnumeric literal value with one byte per character, followed by an integer.  
The integer represents the length of the character string, and may take on values from 1 to 
999999.  If no integer is specified, the default is CHARACTER 1. 
 
CHARACTER examples 
 

  INPUT MESSAGE 
 1  MESSAGE HEADER    CHARACTER 10 
 1  MESSAGE BODY      CHAR 54 

 
 
11.4.3.2 STATUS Attributes 
 

 The STATUS clause is used to indicate each of the allowed states which an attribute may 
assume during a simulation run.  Each state is identified by a status name.  The length of the 
longest status name (number of characters) determines the size of storage for that STATUS 
attribute.  One byte of storage per character is occupied. The list of status names may appear on 
one line, separated by commas or on separate lines. 
 

 Up to 50 status names may be used for STATUS attributes.  Within a resource, the same 
status name may be used more than once provided it is unique within each STATUS attribute. 
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STATUS examples 
 

TRANSCEIVER   STATUS TRANSMITTING, 
          RECEIVING 
PROBABILITY   STATUS LOW, MEDIUM, HIGH 

 

 STATUS attributes can only take on the specified values. 
 
 
11.4.3.3 COLOR Attributes 
 

 The COLOR attribute allows one to assign colors from the built-in color map in RTG.  
Refer to the RTG manual for the selectable color names and shade numbers.  The size of a color 
attribute is 24. Shades can be specified by adding the shade number (i ), [ i = 1, 2, ..., 64], e.g., 
RED(24).  If shade is not specified, it is set to 32, the default color.  A total of 2560 colors and 
shades are available for foreground and background colors and ramps.  Of these, 2016 colors are 
predefined using the color names.  The remaining 545 can be redefined by the user for color 
ramps. 
 

COLOR examples 
 

 PROBABILITY  COLOR 
 CONNECT_LINE COLOR GREEN, 
     YELLOW(2), 
     RED(28) 
 CABLE_TYPE  COLOR INITIAL_VALUE YELLOW(2) 
 
 
11.4.3.4 RULE Attributes 
 

 The RULE clause is used to define each of the allowed rule names that a rule_pointer 
attribute can assume during a simulation run.  It is used to support the RULE_POINTER version 
of the CASE statement as described in Section 9.2.5 as well as conditional statements.  An 
attribute with a RULE clause is called a rule-pointer attribute. 
 

 The list of rule_names may appear on one line, separated by blanks or commas or on 
separate lines.  Rule_names must be GSS words (section 7.6.4) and must always be in column 5 
or beyond.  Each rule_name must correspond to a rule name in the process that contains the 
single construct CASE statement invoking the RULE clause.  The length of the longest rule 
name (number of characters) determines the size of storage for that RULE attribute.  One byte of 
storage per character is occupied. 
 

 There may be up to 50 rule_names for each RULE attribute.  Within a resource, the same 
rule_name may be used more than once; however it must be unique within each rule_pointer 
attribute.  There may be a maximum of 50 rule-pointer attributes within one resource. 
 

RULE examples 
 

RULE POINTER NAME  RULE INITIALIZE NETWORK 
     ROUTE NEXT CALL 
    DISCONNECT CALL 
 
CURRENT SECTION  RULE CONTROL SECTION 
    PROCESS SECTION 
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11.4.3.5 PROCESS Attributes 
 

 The PROCESS pointer clause is used to define each of the allowed process names that a 
PROCESS pointer attribute can assume during a simulation run.  It is used to support the 
PROCESS pointer version of the CALL statement as described in Section 9.2.6 as well as 
conditional statements.  An attribute with a PROCESS pointer clause is called a PROCESS 
pointer attribute. 
 

 The list of process_names may appear on one line, separated by blanks or commas, or on 
separate lines.  Process_names must be GSS words and must always be in column 5 or beyond. 
Each process_name must correspond to a process in the task that contains the process invoking 
the PROCESS pointer clause.  The size of storage for the PROCESS pointer attribute is always 4 
bytes, since the PROCESS pointer is stored as an INTEGER, and is thus a numeric attribute. 
 

 There may be up to 50 process-names for each PROCESS pointer attribute.  Within a 
resource, the same process_name may be used more than once; however it must be unique within 
each PROCESS pointer attribute.  There may be a maximum of 50 PROCESS pointer attributes 
within one resource. 
 

PROCESS Name examples 
 

PROCESS POINTER NAME  PROCESS INITIALIZE NETWORK 
      ROUTE NEXT CALL 
     DISCONNECT CALL 
 
NEXT_PROCESS     PROCESS CONTROL TIMERS 
     DRAW_TERRAIN 
     COMPUTE_MEASURES 

 
 
11.4.3.6 EVENT Attributes 
 

 EVENTs may occur at any level in a computer system, and must be handled by the OS.  
EVENT attributes support events occuring in separate tasks or within a single task running on 
different processors.  To be recognized, EVENTs must be defined in those resources, within 
different tasks or IND Modules, that are shared by the processes that use them.  The data type is 
EVENT and stored as an INTEGER.  It may only take on the values of 0 or 1. 
 

 An example of the use of the EVENT attribute along with the ALIAS is shown below: 
 

1  GATE_SIGNAL_5                      EVENT 
                               ALIAS GO               VALUE  1 
                               ALIAS STOP             VALUE  0 
 
 We note GO could be aliased to VALUE 0 and STOP could be aliased to VALUE 1.  The 
allowed values are binary but the assigned ALIASes can be anything that the user wants to read 
in an event condition to determine whether to wait or proceed.  This is a matter of using 
redundancy to ensure understandability. 
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11.5 QUALIFYING CLAUSES 
 

 This section defines the qualifying clauses used in VisiSoft. 
 
 
11.5.1 QUANTITY Clause 
 

 The QUANTITY clause is used to create vector, tabular or generally recurring attribute 
structures.  It eliminates the need for separate entries for recurring attributes since it indicates the 
number of times an attribute or set of attributes with identical structures is repeated.  It also 
supplies information required for the application of subscripts. 
 

 This format is used to specify a fixed-sized table.  The integer specified within 
parentheses represents the exact number of occurrences, and must be greater than zero.  It must 
appear on the same line as the QUANTITY keyword in the range [1, 999999]. 
 

 The other resource clauses associated with an entry whose attribute includes a 
QUANTITY clause apply to each occurrence of the attribute described.  In particular, a group of 
attributes may be repeated by specifying a QUANTITY clause for the group attribute.  A 
maximum of six nested levels of the QUANTITY clause is allowed.   
 

 The attribute names of the entries that contain the QUANTITY clause, and any entries 
within it, must be subscripted whenever they are referred to in any statement of a process.  Refer 
to Section 7.6.5.  The number of subscripts must match the number of hierarchical levels of 
quantity clauses that affect the attribute.  The order of the subscripts must match the order of the 
hierarchy, from top to bottom. 
 

 To refer to a group of recurring attributes, for example when assigning identical values 
(such as zero or spaces) throughout the group, they must be specified using the group name.  See 
the group MESSAGE_GROUP in the examples below. 
 

 Note that when initializing or moving values at a group level, unpredictable results may 
occur if the attributes within a group have different qualifying clauses.  To set zero values for 
INTEGER, INDEX, INDEX_1, REAL, and DREAL each individual attribute must be separately 
initialized with a MOVE ZERO statement.  To initialize a group of INTEGER, INDEX, and 
INDEX_1 attributes, use a MOVE LOW_VALUES statement at the group level.  The MOVE 
LOW_VALUES statement cannot be used to initialize REAL and DREAL attributes in a group.  
The abbreviation QUAN is recognized by GSS as equivalent to the keyword QUANTITY. 
 
QUANTITY examples 
 

  MESSAGE GROUP QUANTITY(50) 
 1  INPUT MESSAGE      CHARACTER 20 
 
  TRANSCEIVER CONNECTIVITY  QUANTITY(500) 
 1  TRANSCEIVER CONN RC   QUANTITY(500) 
  2  ATTENUATION FACTOR    REAL  
  2  SIGNAL POWER     REAL  
 
  RECEIVER    QUANTITY(500) 
  1  RECEIVER CONN     REAL 
 1  RECEIVER PWR      REAL 
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QUANTITY Clause – Creating Complex Tables 
 

 The quantity clause allows the modeler to define multi-dimensional tables, which 
themselves are hierarchical.  This is a valuable property of the resource structure.  In the example 
shown above, the links between 500 transceivers can be evaluated by checking the link between 
every receiver (there are 500) and all other possible transmitters (there are 500 - 1). 
 

IF LINK(RECEIVER, TRANSMITTER) IS POOR 
     SET TRANSCEIVER RULE TO TURN_OFF_RECEIVER 
ELSE 
IF LINK(RECEIVER, TRANSMITTER)) IS GOOD 
     SET TRANSCEIVER RULE TO RECEPTION . 

 
 
11.5.2 ALIAS Clause 
 

 The ALIAS clause enables a group of values to be identified by a single collective 
identifier called the alias name.  The alias_name is a GSS word, and must follow the rules given 
in Section 11.3.  Reserved words may be used for alias names.  It is used to check broad 
conditions (alias conditions) as described in Section 12.2.1.6.  The ALIAS clause may be used 
along with a CHARACTER, DECIMAL, INTEGER, INDEX, INDEX_1, REAL, or DREAL 
clause for an elementary attribute.  It may not be used alone or with a STATUS clause. 
 

 The ALIAS clause must immediately follow the other qualifying clause associated with 
the attribute.  The list of numeric or nonnumeric literals, separated by commas, specify the group 
of values which are to be associated with the alias name.  The type of literals specified must be 
consistent with the other clause for that attribute in terms of class (numeric or nonnumeric) and 
length.  Each literal may be up to 24 characters long, and there may be up to 50 literals for one 
alias_name.  More than one ALIAS clause may be specified for one attribute.  The ALIAS clause 
may be applied to a group attribute. 
 
ALIAS examples 
 

  INPUT MESSAGE 
 1  LEAD CHARACTER    CHAR 1 
    ALIAS CONTROL CHAR      VALUE 'S', 'R' 
    ALIAS DELIMITER      VALUE '.', ',', ';', ':' 
 1  MESSAGE TEXT     CHAR 78 
 1  LAST DIGIT    INDEX 1 
     ALIAS TERMINATOR       VALUE 0,9 
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Defining Properties That Can Be Tested Easily 
 

 When large quantities of conditional statements are nested to specify what action must be 
taken, clarity is lost.  One must be able to represent compound conditions easily.  One also wants 
to read and understand the conditions quickly and reliably.  This requires potential states of 
attributes to be represented by names of groups or sets of states. 
 

 Consider, 
 

CALENDAR_INFORMATION 
    1  MONTH                           CHARACTER 9 
         ALIAS THIRTY_DAY_MONTH        VALUE 'APRIL    ', 
                                             'JUNE     ', 
                                             'SEPTEMBER', 
                                             'NOVEMBER ' 
 
         ALIAS THIRTY_ONE_DAY_MONTH    VALUE 'JANUARY  ', 
                                             'MARCH    ', 
                                             'MAY      ', 
                                             'JULY     ', 
                                             'AUGUST   ', 
                                             'OCTOBER  ', 
                                             'DECEMBER ' 
 
    1  YEAR                            STATUS NORMAL, 
                                              LEAP_YEAR 

 
The attribute structure above supports the following conditional statement: 
 

IF MONTH IS A THIRTY_DAY_MONTH 
 EXECUTE THIRTY_DAY_RULE 
ELSE IF MONTH IS A THIRTY_ONE_DAY_MONTH 
 EXECUTE THIRTY_ONE_DAY_RULE 
ELSE IF YEAR IS A LEAP_YEAR 
 EXECUTE TWENTY_NINE_DAY_RULE 
ELSE EXECUTE TWENTY_EIGHT_DAY_RULE. 

 
 In this example, the ALIAS qualifier names a set of VALUEs that MONTH can take on.  
The names of a month (in quotes) are used as the VALUEs of the attribute to be tested or printed 
directly.  The STATUS attribute type provides discrete character states that can be SET as well 
as tested directly.  The reader of this conditional statement does not have to refer to any other 
documentation to understand the conditions for setting and testing these attributes. 
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11.5.3 REDEFINES Clause 
 

 The redefines clause may be used along with one of the elementary attribute qualifying 
clauses (INTEGER, INDEX, INDEX_1, DECIMAL, REAL, DREAL, or CHARACTER) or to 
specify a group attribute.  Its purpose is to redefine a data structure into a new structure, typically 
at a group level.  Any attributes linked by a REDEFINES clause must have the same level 
number and must be the same size.  REDEFINES clauses may be nested. 
 
REDEFINES examples 
 

  INPUT MESSAGE     CHARACTER 30 
 

  MESSAGE DETAIL REDEFINES INPUT MESSAGE 
 1  MESSAGE SENDER    CHAR 10  
 1  TIME SENT      INTR 
 1  AMOUNT WANTED   REAL 
 1  MESSAGE RECEIVED    CHAR 12 
 

  PARTS NEEDED QUANTITY(10) 
 1  PART NUMBER     DECIMAL 9(4) 
 1  DETAIL CODE REDEFINES PART NUMBER 
    2  DEPT NUMBER    CHAR 2 
    2  ITEM NUMBER 1    CHAR 
    2  ITEM NUMBER 2    CHAR 
 1  NUMERIC CODE REDEFINES DETAIL CODE 
    2  .     INDEX 
    2  .     INDEX 1 
    2  .     INDEX 1 
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11.5.4 INITIAL VALUE Clause 
 

 The INITIAL_VALUE clause allows values to be assigned to resource attributes at the 
beginning of a simulation run.  It may be used alone (for a group attribute) or following any of 
the other qualifying clauses.  For numeric attributes (REAL, DREAL, COMPLEX, 
DCOMPLEX, INTEGER, INDEX, INDEX_1, DECIMAL) the literal must be numeric or a 
numeric named constant.  When using INITIAL_VALUE at the group level, rules for moving 
group values must be followed, refer to Section 12.1.3. 
 

 For CHARACTER attributes, a non-numeric literal enclosed in single quotes, or the non-
numeric named constants, e.g., SPACES, may be used after INITIAL_VALUE.  In the case of 
STATUS attributes, the literal must be one of the status words for that attribute.  In the case of 
RULE attributes, the literal must be one of the rule_names for that attribute.  When used with an 
ALIAS clause for an elementary attribute, the INITIAL_VALUE clause must come after the 
ALIAS clause, on a separate line.  See examples below 
 

 INITIAL_VALUE may also be used as a qualifying clause within a structure that is 
subsequently redefined.  However it may not be used after a REDEFINES clause is used.  Refer 
to the REDEFINES example in Section 11.5.3. 
 

 COMPLEX and DCOMPLEX numbers can be initialized using a complex pair 
(real_number, imaginary_number), or the REDEFINES clause to treat them as pairs of REAL 
and DREAL numbers. 
 
INITIAL VALUE examples 
 

AIRCRAFT DATA 
    1  AIRCRAFT NUMBER         INTEGER INITIAL VALUE 1 
    1  S N RATIO           REAL    INITIAL VALUE 3.2 
    1  USER INPUT 2         DECIMAL Z(3)9.9  INITIAL VALUE 6.1 
 

    1  TOTAL_POWER         COMPLEX INITIAL_VALUE (30.06, 42.5) 
 

    1  LOCAL_POWER 
       2  REAL_POWER              REAL INITIAL VALUE 28.44 
       2  IMAGINARY_POWER             REAL INITIAL VALUE 21.56 
    1  COMPLEX_POWER  REDEFINES LOCAL _POWER   COMPLEX 
 

    1  AIRCRAFT MESSAGE              CHAR 50 INITIAL VALUE SPACES 
 

    1  AIRCRAFT POSITION              STATUS GROUNDED, IN FLIGHT 
                       INITIAL VALUE GROUNDED 
 

    1  AIRCRAFT POSITION              CHAR 9 
             ALIAS GROUNDED                  VALUE ‘GROUNDED ’ 
             ALIAS IN FLIGHT                 VALUE ‘IN_FLIGHT’ 
                    INITIAL VALUE ‘GROUNDED ’ 
 

 INITIAL_VALUE may not be used with QUANTITY clauses or subordinate to QUANTITY.  
One can, however initialize a whole group of DECIMAL or CHARACTER data array if a top-level 
attribute is created, for example: 
 

TOP LEVEL GROUP   INITIAL VALUE ZERO 
    1  NEXT LEVEL  QUANTITY(3) 
  2  DEC ATTRIBUTE  DECIMAL 9(2) 
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 INITIAL_VALUE Clause – Creating Complex Tables 
 

 By defining INITIAL_VALUEs as shown in Figure 11-2, one does not have to search 
through the rules to see where initial values are set.  This helps to ensure proper initialization, 
since the designer simply checks the attributes in the Resource. 
 

  
                                                           

 
 

 

 
 

 
 

 

RESOURCE NAME:  TRANSCEIVER

TRANSCEIVER_INSTANCES
    1  TRANSMITTER                 INDEX
    1  RECEIVER                    INDEX

GENERAL_PARAMETERS
    1  TRANSMITTER_POWER           REAL  INITIAL_VALUE 100
    1  RECEIVER_THRESHOLD          REAL  INITIAL_VALUE 120

RADIO    QUANTITY(500)
    1  TRANSCEIVER                 STATUS TRANSMITTING
                                          RECEIVING
                                          IDLE
                                          OFF
    1  LOCATION
       2  X_POSITION               REAL
       2  Y_POSITION               REAL
       2  ELEVATION                REAL
    1  ANTENNA_HEIGHT              REAL
    1  ANTENNA_GAIN                REAL

RECEIVER_CONNECTIVITY_VECTOR  QUANTITY(500)
    1  POWER_AT_RECEIVER           REAL
    1  TOTAL_NOISE_POWER           REAL
    1  CONNECTIVITY_MATRIX       QUANTITY(500)
       2  PROPAGATION_LOSSES
          3  TERRAIN_LOSS          REAL
          3  FOLIAGE_LOSS          REAL
          3  TOTAL_LOSS            REAL
       2  SIGNAL_POWER             REAL
       2  SIGNAL_TO_NOISE_RATIO    REAL
       2  LINK_DELAY               REAL
       2  LINK                     STATUS GOOD
                                          FAIR
                                          POOR

TRANSCEIVER_RULES
    1  TRANSCEIVER_PROCESS         RULES GOOD_RECEPTION
                                         CONFLICTING_RECEPTION
                                         CONFLICTING_BROADCAST  

 
Figure 11-2.  Example of hierarchical tables. 
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CHAPTER 12. 
 

PROCESS DESCRIPTIONS 
 
 
CREATING AND MANAGING TRANSFORMATIONS 
 

 In the CAD system described here, a process contains the instructions that act on data as 
transformations.  At first glance, a process may look like a function or subroutine in a typical 
programming language.  However, many of the problems we deal with today are dominated by 
sets of rules that operate on complex data structures, not just mathematical functions.  This 
implies many large dissimilar transformations that must be tailored to the complex data 
structures upon which they operate.  Although the VisiSoft process language has properties 
similar to CMS-2 (developed by Grace Hopper), it is an obvious departure from all programming 
languages, especially those in use today. 
 
 
AN ELEGANT SOLUTION TO FLOW OF CONTROL 
 

 Nesting of control structures is a feature of virtually all conventional programming 
languages.  For example, it is not uncommon to see  
 

An if-statement 
containing an if-statement 

which contains a while-loop 
 

Such an example by itself is not especially problematic, but does suggest the mental complexity 
of keeping track of code with nested control.  Moreover, the mental complexity increases as the 
length of the code and the length of nested sequences grows.  When using a poor language, it is 
not uncommon for single blocks of code to extend over more than one page 
 

 Things can get complex even without a nested loop.  When there is nesting and the 
statements contained in the IF are of some length, getting a clear picture of the entire structure is 
difficult.  When nested IFs cover many lines, the logic becomes hard to understand. 
 

 We propose a fresh look at something so commonplace that we take it for granted, that is, 
flow of control.  To control the complexity of highly conditional transformations, we must again 
make use of hierarchies and be able to deal easily with multiple layers of hierarchy.  One 
approach is using nested IFs.  The VisiSoft approach is to group statements into RULEs within 
processes.  This solves multiple problems.  An example is shown in Figure 12-1. 
 

 Each process is decomposed into rules that share the same resources as the process.  The 
hierarchical rule facility is provided through a simple one-in, one-out control structure embodied 
in the EXECUTE statement, which takes on various forms.  This statement allows the designer 
to deal with rules that are at an "equal level" in the hierarchy of logical operations, without 
resorting to the dangers of GOTO statements.  The control structures are strictly one-in, one-out.  
We note that “one-in one-out” implies control is transferred to a rule, then transferred back to the 
statement following the one that invoked the rule. 
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Controlling Complexity With Rule Hierarchies 
 

 A collection of statements that is given a name is called a "rule".  Figure 12-1 shows an 
example of a process that has six rules.    Generally a process will consist of a number of rules.  
Rules that are specific to an algorithm's data structures are all usually contained in the same spot, 
are easier to build, and much easier to understand during the support years. 
 

 Each process has a top-level rule, e.g., PLACE_CALL  in Figure 12-1.  When the 
statements in the top-level rule have been executed, control returns to the calling process.  Any 
rule may contain EXECUTE statements that invoke other rules within the process. 
 
 

 

PLACE CALL                                             level 1  
     IF CLOCK TIME IS GREATER THAN ONE HOUR                     
         STOP.                                                  
     IF ACTIVITY IS WAITING TO CALL                             
         EXECUTE ATTEMPT CALL                                   
     ELSE EXECUTE RETRY LATER.                                  
                                                                
--------------------------------------------------------------- 
ATTEMPT CALL                                            level 2 
      INCREMENT CALLS ATTEMPTED                                 
      IF LINES IN USE(OFFICE) ARE LESS THAN                     
             LINES IN OFFICE(OFFICE)                            
         EXECUTE MAKE CALL                                      
      ELSE EXECUTE BLOCK CALL.                                  
                                                                
RETRY LATER                                                     
     SET ACTIVITY(SOURCE) TO RETRY LATER                        
     CALL TERMINATE CALL                                        
                                                                
--------------------------------------------------------------- 
MAKE CALL                                               level 3 
     INCREMENT LINES IN USE(OFFICE)                             
     IF CALLERS PLAN(SOURCE) IS PLACE NEW CALL                  
         SET PHONE NUMBER TO UNKNOWN                            
         EXECUTE LOOK UP NUMBER UNTIL PHONE NUMBER IS FOUND.    
     OFFICE NUMBER = OFFICE(DESTINATION)                        
     CALL CONNECT CALL                                          
                                                                
BLOCK CALL                                                      
     INCREMENT CALLS BLOCKED                                    
     SET SIGNAL TO SUBSCRIBER TO BUSY                           
     MOVE 'BLOCKED AT SOURCE' TO CALL STATE_OUTPUT              
                                                                
--------------------------------------------------------------- 
LOOK UP NUMBER                                          level 4 
     DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1             
     IF DESTINATION IS NOT EQUAL TO SOURCE                      
         SET PHONE NUMBER TO FOUND.                             
 

 

Figure 12-1.  Example of a Process. 
 
 
 The example of Figure 12-1 involves four levels of hierarchical control, yet is simple to 
understand.  It also shows the ability to "push down" the complexity of rule sets into a hierarchy 
of logical levels.  As a result, a process is typically somewhat larger (containing much more 
logic) than “well written” C++ or Java functions that are more typically the size of a rule.  But it 
should be much more understandable, and will require many fewer comments, most often none.  
A process with 20 rules may take 8 to 10 C-based language functions to implement. 
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 This dual structure has several advantages: 
 

1. At the end of a rule, control returns to the statement following the EXECUTE statement 
that invoked that rule.  This guarantees the 1-in, 1-out property. 

 

2. Flow of control is linear within a rule. 
 

3. A process may contain one or more rules, each identified by a name.  This provides 
flexibility in the number of conditional statements that a process can support. 

 

4. One may EXIT a rule at any time, e.g.,  
 

IF SOME_CONDITION IS SATISFIED 
EXIT THIS RULE . 

 

5. There is no need for nesting of IF statements. 
 

6. Except for the first rule, rules may be placed in any order. 
 

7. There is no recursion of rules. 
 
Understandability of Complex Conditional Situations 
 

 One of the most important benefits of this approach is the simplicity of complex 
conditional situations.  Consider the following example: 
 

IF SYMBOL IS AN UNDERSCORE 
OR SYMBOL IS A PERIOD 
    EXECUTE CHECK_WORD_BLOCK 
ELSE  
    EXECUTE SCAN_FOR_SPECIAL_CASES. 
 

IF STATEMENT IS A SPECIAL_CASE 
    EXIT THIS RULE 
ELSE ... 

 

 Here we see the equivalent of the case statement.  However, the statements that are 
normally contained within a case statement may now be placed in a separate rule, in this case 
CHECK_WORD_BLOCK and SCAN_FOR_SPECIAL_CASES.  This adds great clarity, as we 
can read and understand the higher level of control without being distracted by nested details in 
the next level that themselves may be quite complex. 
 

 Figure 12-1 provides an example of a process structure that follows the rule for grouping 
hierarchical logical levels.  The built-in rules eliminate strings of call statements that cause 
unstable designs because of the complex dependencies created.  They also run faster.  And, since 
a large set of rules shares only the data available to the process, they also support ease of use of 
parallel processors.  Since the logical levels are totally independent of position, the process may 
be organized in any manner the designer deems most understandable.  Except for the first rule 
appearing first, the rest of the rules may be shuffled like a deck of cards. 
 

 The largest benefits of the hierarchical rule structure of processes are the 
understandability of complex conditional statements, and the ease with which one can add new 
conditions as the software is enhanced.  Additional features of the process language, particularly 
the EXIT THIS RULE statement, serve to flatten conditions within a rule, making the logic 
apparent.  This eliminates nested IF statements as well as call strings to small fragments of code 
that are used as the typical alternative. 
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Understandability of Loop Structures 
 

 A related property of the approach to control structures is the isolation of the body of a 
loop (the statements to be repeated) in a separate named rule.  Only the rule name is used within 
the control structure itself.  
 

 Thus we may write something like 
 
   EXECUTE LOOK UP NUMBER  
      UNTIL PHONE NUMBER IS FOUND 
 

and place the body of the loop elsewhere 
 
   LOOK UP NUMBER 
        DESTINATION = (TOTAL SUBSCRIBERS * RANDOM) + 1 
        IF DESTINATION IS NOT EQUAL TO SOURCE 
            SET PHONE NUMBER TO FOUND. 
        . . . 
 

 After the LOOK_UP_NUMBER rule is executed, control automatically returns to the 
EXECUTE statement.  Here again, rather than a sequence of nested structures, we can  easily 
understand the control since it is at a single level. 
 
Rule Pointers  
 

 Another step towards speed and understandability of processes is the ability to assign the 
name of a rule to a “rule pointer” . 
 

 A RULE clause is used to define the allowed rule names that a rule pointer can assume 
during execution.  Consider: 
 

NEXT_ACTION     RULE  INITIALIZE_NETWORK, 
                      START_TRANSMISSION, 
                      START_RECEPTION, 
                      DISCONNECT_CALL 

 

Here, NEXT_ACTION defines a set of allowed rules. 
 

The rule pointer NEXT_ACTION will likely be set in a conditional statement prior to a point 
where the rule is to be executed, such as: 
 

IF TRANSCEIVER(TRANSMITTER) IS TRANSMITTING 
 SET NEXT_ACTION TO START_TRANSMISSION 
ELSE IF TRANSCEIVER(RECEIVER) IS RECEIVING 
 SET NEXT_ACTION TO START_RECEPTION 

 

Later one can then simply have. 
 

EXECUTE NEXT_ACTION 
 

 This mechanism provides a direct, and therefore fast, transfer of control similar to the 
computed GOTO in FORTRAN.  The improvement of this approach is twofold.  First is the 
direct return of control to the next statement (one-in one-out versus GOTO).  Second, the name 
of the rule, e.g., START_RECEPTION is used in the set statement, instead of a number - making 
it clear what the pointer is being used for.  As above, meaningful names are used and the choice 
of action can be set when an appropriate condition is met. 
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Process Pointers  
 
 The PROCESS pointer clause is similar to the RULE pointer clause.  It is used to define 
each of the allowed process names that a PROCESS pointer can assume during execution.  It is 
used to support the PROCESS pointer version of the CALL statement for executing processes. 
 
 The mechanism is almost identical to rule pointers.  For example, the process pointer is 
defined in a resource: 
 

NEXT_PROCESS    PROCESS COMPUTE_TIMERS, 
              DRAW_TERRAIN, 
              COMPUTE_MEASURES 

 
It can then be used in a process as shown below. 
 

IF INPUT_OPTION IS INITIATE 
 SET NEXT_PROCESS TO COMPUTE_TIMERS 
ELSE IF INPUT_OPTION IS CALCULATE 
 SET NEXT_PROCESS TO DRAW_TERRAIN 
. . . 

CALL NEXT_PROCESS 
 
 
 
 Chapter 7 set out the information required to describe the architecture for a process, the 
second language of VisiSoft.  The internal process description consists of statements, which are 
grouped into hierarchies of rules.   
 

 When a software language provides the ability to define large data hierarchies, a number 
of important capabilities are facilitated.  However, recognition of the value of these facilities 
takes time to measure and appreciate. After many years of of experience working with large 
teams of engineers building complex systems, the contribution of these facilities to the critical 
time factors becomes obvious.  Some of these are offered below. 
 

• Fast run times due to the ability to move complex data structures using a single 
instruction fetch. 

 

• The ability to access elements within a complex data structure - where it is clear 
where each fits within the organization (like standing on a parade ground). 

 

• Small processes are useful.  But without the ability to build large representative 
hierarchies of both data and instructions, one is forced into small routines for 
everything, eliminating the ability to build obviously simplified instruction 
hierarchies.  Recognition is the key to understandability, conquering size.  Having 
to read and change many routines to modify a complex algorithm can be greatly 
simplified with a large but obvious hierarchy. 

 

• Simplifying architectures by reducing the number of processes and resources in a 
module, and also the number of modules in a system. 
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Statements and rules form a hierarchical structure for describing processes, as follows: 
 

• Each process may consist of one or more rules, each with a unique name.  The rule 
name is any GSS word (other than the reserved words listed in the GSS or VSE 
User Manuals, see [67] or [150]). 

 

• Each rule name must appear on a separate line followed by the statements, which 
make up the rule. 

 

• Each statement must begin on a new line, but can extend over many lines. 
 

• All process statements must begin in column 5 or beyond, except for rule names, 
which must begin in columns 1 through 4.  The maximum line length is 72 
characters. 

 
 When a process is invoked, the first rule is executed first, starting with the first statement.  
Other rules within this process may be executed by using an EXECUTE statement which alters 
the flow of control (see Section 12.3.1).  Execution of a process terminates once the last 
statement in the first rule is performed.  This control structure means that the ordering of rules 
within a process is unimportant, and they may therefore be arranged for ease of readability.  The 
only exception is that the main rule, which begins the process, must be written first. 
 

 Figure 12-1 shows an example of the process PLACE_CALL, which has six rules.  The 
statements, which describe a process, may be drawn from any of four statement types: 
 

 (1)  Assignment statements 
 

 (2) Conditional statements 
 

 (3) Control statements 
 

 (4) Input/Output (I/O) statements 
 

Each of these is described in the sections below.  
 
 



Software Theory             Page  12 -  7  

12.1 ASSIGNMENT STATEMENTS 
 
 Assignment statements instruct GSS to move data, assign numeric values, or assign states 
to specified resource attributes.  Different forms of the assignment statement are used for the 
different types of attributes.  For numeric attributes (those with INTEGER, REAL, DREAL, 
COMPLEX, DCOMPLEX, INDEX or INDEX_1 qualifying clauses) use a numeric assignment 
statement or a MOVE statement; for data (CHARACTER or DECIMAL) attributes, use a 
MOVE statement; for STATUS attributes, use a SET statement.  Details on these various forms 
of the assignment statement follow. 
 
 
12.1.1 NUMERIC ASSIGNMENT STATEMENTS 
 
 Scientists and engineers will appreciate the fact that VisiSoft arithmetic statements are 
fashioned after FORTRAN, a well-designed language for writing equations.  The exception is 
the use of multiple subscripts, where a common complaint in FORTRAN is the ordering of the 
subscripts.  In VisiSoft, they follow the typical matrix notation with the right most iterator being 
first.  When assigning values to numeric resource attributes, the assignment symbol (=) is used. 
 

numeric_literal

ZERO(E)(S)
attribute_name_1  [,...attribute_name_n]  =  

arithmetic_construct

attribute_name

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭  

 
 More than one attribute may appear to the left of the assignment symbol.  Arithmetic 
constructs are formed by combining attribute names, numeric literals, arithmetic operators, built-
in functions, and parentheses to represent computations to be performed before assigning a value 
to the attribute(s) named on the left of the assignment symbol.  The arithmetic operators are: 
 
 Operator    Meaning 
 

 +    addition 
 

 -      subtraction 
 

 *      multiplication 
 

  /      division 
 

 **     exponentiation 
 
 VisiSoft also recognizes the unary operators + and - , denoting multiplication by +1 
and -1, respectively.  When used in this sense, the operators and their single operand must be 
enclosed in parentheses.  For example, the product of attribute A and the negative of attribute B 
must be written as A * (-B). 
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 Parentheses may be used in arithmetic expressions to specify the order in which elements 
are to be evaluated.  Expressions within parentheses are evaluated first.  When expressions are 
contained within a nest of parentheses, evaluation proceeds from the least inclusive (innermost) 
to the most inclusive (outermost) set. 
 

 When parentheses are not used, or parenthesized expressions are at the same level of 
inclusiveness, the following hierarchical order is implied: 
 

  1. ** 
 

  2. * and / 
 

  3.  + and - 
 
 Parentheses are used either to eliminate ambiguities in logic where consecutive 
operations of the same hierarchical level appear, or to modify the normal hierarchical sequence 
of execution, in expressions where it is necessary to have some deviation from the normal 
precedence.  When the order of consecutive operations on the same hierarchical level is not 
completely specified by parentheses, the order of operation is from left to right. 
 

 When numeric assignment operations are performed, decimal points (whether explicitly 
or implicitly defined) are automatically aligned first. 
 

Numeric assignments may be of the form: 
 

(1)  Deterministic   -   represented by a positive real numeric literal or resource attribute 
value, or 

 

 (2)  Probabilistic   -    represented by a statistical distribution with specified parameters.   
 

Numeric assignment examples 
 
   CALL DURATION = TNORMAL(AVERAGE CALL DURATION, 1) 
  S N DISCRIMINATION(TRANSCEIVER NUM) = .015 
  X DIR,Y CHANGE(1),X CHANGE(3) = 1 
  AIRCRAFT STATE = ZERO 
  PERCENT BUSY = (TOTAL BUSY CALLS * 100)/TOTAL CALLS 
  TOTAL CALLS  = TOTAL CALLS + 1 
  POS_RESULT   = (-NEG -RESULT) 
  LOG_TERM = 10**(NOISE_POWER*7.1/.03) 
  ANSWER   = TABLE_VALUE(M+1, N(M+1)) 
 
 
12.1.1.1 Built-In Functions 
 

 Built-in functions are special (reserved) words, which represent intrinsic numeric 
functions contained in what is typically referred to as a set of scientific subroutines.  A complete 
list of the built-in functions with explanations of their meanings is given in the GSS or VSE 
User’s Manuals.  Some Built-in function examples are ATAN(  ) and MAX(  ): 
 
 AZIMUTH ANGLE  =  ATAN(Y COORDINATE/X COORDINATE) 
 BUSY CALLS     =  MAX(CALLS(LOCAL), CALLS(FOREIGN)) 
12.1.1.2 Complex Functions 
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 Complex functions are supported in GSS in assignment statements and arithmetic 
constructs.  Addition, subtraction, multiplication, division, and power are translated 
automatically for complex numbers.  Additional built-in functions can be used in complex 
algebraic expressions.  Built-in functions such as ABS, EXP, LN, and SQRT will depend upon 
whether the argument is real or complex.  The rules for complex arguments are given below. 
 
 
Complex Number:   COMPLEX(a, b) 
 

 A complex number, z, can be defined by its real (a) and imaginary (b) parts. 
 

 Z = COMPLEX(a, b) = a + ib, where i is the imaginary operator -1  . 
 
 
Real Value:  REAL(z) 
 

 The real value of a complex number is the value of the real part of the complex number. 
 

REAL(z) = a, where z = a + ib 
 
 
Imaginary Value: IMAG(z) 
 

 The imaginary value of a complex number is the value of the imaginary part of the 
complex number. 
 

IMAG(z) = b, where z = a + ib 
 
 
Conjugate:  CONJ(z) 
 

 The conjugate of a complex number is the complex number with the sign of the 
imaginary part reversed. 
 

CONJ(z) = a - ib, where z = a + ib 
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Absolute Value:   ABS(z) 
 

 The absolute value of a complex number is the positive square root of the sum of the 
squares of the real and imaginary parts. 
 

z  = 2 2+ a  + b  
 

 
Exponential:   EXP(z) 
 

 The exponential (e) raised to a complex number is given as follows. 
 

 z (a + ib) a ibe  = e  = e *e ,   where ibe  = cos(b) + i sin(b) 
 

 ze  = ae *(cos(b) + i sin(b)) = ae *cos(b) + i ae *sin(b) 
 
 
Natural Log:   LN(z) 
 

 The natural log of a complex number is, in general, a multi-valued function given as 
follows. 
 

 ln(z) = ln(a + ib)  =  ln( Z ) + j(θ  + 2nπ), 

                  where θ = arctan b

a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 , and  n = 0, ±1, ±2, ... 
 

We will use the principal value, defined as: 
 

 LN(z)  =  ln( Z ) + iΘ,   where -π < Θ ≤ π 
 

 
Power:   z∗∗u 
 

 A complex number, z, raised to a power, u (a real number), is given as follows: 
 

 uz  = )uln(ze   
 

    = u*ln(z)e ,   where ln(z) =  LN(z) = ln( Z ) + iΘ, 
 

       and  Θ = arctan b

a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

then, 
 

 uz  = )u*ln( iu* * ze e Θ  
 

    = uz *[cos(u*Θ) + isin(u*Θ)] 
 

thus, 
 

 uz  = uz *cos(u*Θ) + i uz sin(u*Θ) . 
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12.1.2 INCREMENT, DECREMENT, ADD, SUBTRACT STATEMENTS 
 

 Four special keywords exist for the common operation of adding or subtracting a positive 
constant value.  The words INCREMENT, DECREMENT, ADD, and SUBTRACT are used as 
follows: 
 

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

eralumeric_litunsigned_n

nameattribute_
 BY                                

 n]bute_name_[,...attri  name_1attribute_  
DECREMENT

INCREMENT

 
 

 
 n]bute_name_[,...attri  name_1attribute_  TO  

eralumeric_litunsigned_n

nameattribute_
 ADD

⎭
⎬
⎫

⎩
⎨
⎧

 
 

 
 b_name_n][,...attri  name_1attribute_ FROM 

eralumeric_litunsigned_n

nameattribute_
 SUBTRACT

⎭
⎬
⎫

⎩
⎨
⎧

 
 
 When the INCREMENT or DECREMENT keywords are used, the value to be added to 
or subtracted from the named attribute may be omitted.  If so, the default is an increment 
(decrement) of 1. 
 
Examples 
 
 DECREMENT TOTAL LOSS BY 100  
 INCREMENT CHANGE NUM  
 DECREMENT TOTAL LOSS BY PART SUM 
 INCREMENT DAY COUNT BY 7  
 INCREMENT X COUNT, Y COUNT 
 ADD 100.3 TO TOTAL LOSS 
 SUBTRACT PART SUM FROM TOTAL LOSS 
 
 
12.1.3 MOVE STATEMENT 
 

 The MOVE statement is used to move data or assign values to data or numeric attributes.  
It is particularly useful when assigning values to a group attribute, which may contain a mixture 
of attribute types. 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

 n]bute_name_[,...attri  name_2attribute_

ame_2resource_n
  TO  

teralnumeric_li

tantnamed_cons

_literalnonnumeric

name_1attribute_

ame_1resource_n

  MOVE

 
 
 The movement of nonnumeric data to numeric attributes is not allowed.  The move 
statement is subject to the following automatic editing rules. 
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 When the receiving area of a MOVE statement is a numeric attribute (REAL, DREAL, 
INTEGER, INDEX, or INDEX_1) or a decimal attribute: 
 

• Decimal points will be aligned and digits of the sending number will be truncated 
at either end, as required by the size of the receiving area.  Any receiving number 
digit not covered by the sending number will be filled with zeros.  When there is 
no explicit decimal point (as in INTEGER attributes) the decimal point is 
'implied' to be in the right-most position.  No sign implies a positive number.  

 
• When a numeric attribute is moved to a DECIMAL attribute, zeros are changed to 

spaces when zero suppression (Z) is specified.  When moving a decimal field to a 
numeric attribute, zeros are assumed present in the Z fields.  

 
 When the receiving area of a MOVE statement is a data attribute (CHARACTER, 
STATUS, or RULE): 
 

• Data is aligned on the left and is either truncated at the right or filled with spaces 
to match the size of the receiving area. 

 

• When moving a STATUS attribute to another STATUS attribute, the sending 
status names must be a subset of the receiving status names. 

 
 Movement of a group level attribute is treated the same as a character data move, with no 
regard for the elementary data types within the sending (or receiving) field. 
 

Table 12-1  Allowed sending and receiving attribute types in a MOVE statement. 
 

ALLOWED RECEIVING FIELD

SENDING FIELD CHARACTER NUMERIC DECIMAL

CHARACTER DATA YES NO NO

NUMERIC DATA NO YES YES

DECIMAL DATA YES YES YES

NAMED CONSTANT
SPACE YES NO NO
LOW_VALUE YES NO NO
HIGH_VALUE YES NO NO
ESCAPE_CHARACTER YES NO NO
LINE_FEED_CHARACTER YES NO NO
CARRIAGE_RETURN YES NO NO
ZERO YES YES YES
PI NO YES YES

NONNUMERIC LITERAL YES NO NO

NUMERIC LITERAL NO YES YES
VSE\FIGUR 9-1   As of 11/15/05  
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MOVE examples 
 
Example 1. 
 
 MOVE ATTENUATION FACTOR TO STORED NUMBER 
 

where: 
 ATTENUATION FACTOR is REAL and STORED NUMBER is DEC 9(2).9(3) 
 
 Attribute   Before move     After move 
 
 ATTENUATION FACTOR 3.276000E-1    3.276000E-1 
 STORED NUMBER        00.327 
 
Example 2. 
 
 MOVE TOTAL CALLS TO SUMMARY VALUE 
 

where: 
 TOTAL CALLS is INTEGER and SUMMARY VALUE is DEC 9(5) 
 
 Attribute   Before move  After move 
 
 TOTAL CALLS     55231    55231 
 SUMMARY VALUE       55231 
 
 
12.1.4 CONVERT STATEMENT 
 

 The CONVERT statement is used to convert CHARACTER attributes containing valid 
numbers to numeric attributes. 
 

CONVERT  numeric_literal_name  TO  internal_number_name 
ON_ERROR statement 

 
 When using CONVERT, numeric_literal_name is a CHARACTER field of not more 
than 24 characters, and internal_number_name may be an INDEX_1, INDEX, INTEGER, 
REAL, or DREAL number.  Errors are handled using the ON_ERROR statement.  In the case of 
an error, the internal_number_name is not updated.  The Content in the example below indicates 
the possible numeric representations. 
 
Examples 
 
       NUMBER_X_COLS           CHAR 6       Content: ‘  999 ’ 
       INPUT_FLOAT             CHAR 8       Content: ‘+999.99 ’ 
       INPUT_EXPO              CHAR 12      Content: ‘   +.999E+99’ 
       INPUT_NUMBER            CHAR 16      Content: ‘   +.999E+99    ’ 
 
       COLUMNS                            INDEX 
       REAL_FLOAT                         REAL 
       REAL_EXPO                          REAL 
       INTERNAL_NUMBER                    DREAL 
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More Examples 
 
 CONVERT NUMBER_X_COLS TO COLUMNS 
          ON_ERROR EXECUTE NUMERIC_ERROR_RULE 
 
 CONVERT INPUT_FLOAT TO REAL_FLOAT 
          ON_ERROR EXECUTE NUMERIC_ERROR_RULE 
 
 CONVERT INPUT_EXPO TO REAL_EXPO 
          ON_ERROR EXECUTE NUMERIC_ERROR_RULE 
 
 CONVERT INPUT_NUMBER TO INTERNAL_NUMBER 
          ON_ERROR EXECUTE NUMERIC_ERROR_RULE 
 
 
12.1.5 SET STATUS STATEMENT 
 

 The SET STATUS statement is used to set the state of resource attributes defined by the 
STATUS clause.  It is another major contributor to understandability of complex algorithms, 
making it much easier to understand why an attribute is being set, as well as simplify complex 
conditional statements.  
 

SET  attribute_name  [STATUS]  TO  status_name 
 
 Status-name must be one of the status conditions associated with the named attribute(s).  
It must be a VSE word.  This provides an understanding of how a particular conditional variable 
is set. 
 
SET STATUS examples 
 
 SET TRANSCEIVER(RECEIVER) TO IDLE 
 

where TRANSCEIVER is defined as follows: 
 
 TRANSCEIVER DATA   QUANTITY(50) 
     1  TRANSCEIVER     STATUS IDLE 
         TRANSMITTING 
        RECEIVING 
        BUSY 
 
 
12.1.6 SET ALIAS STATEMENT 
 

 The SET ALIAS statement is used to set the state of resource attributes as defined by the 
ALIAS clause.  
 

SET  attribute_name  [ALIAS]  TO  alias_name 
 
 Alias-name must be a unique alias condition associated with the named attribute, i.e., it 
cannot have  multiple values.  It must be a VSE word.  This provides an understanding of how a 
particular aliased variable is set. 
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SET ALIAS example 
 
 SET MONTH TO JUNE 
 

where MONTH is defined here as a single byte integer as follows: 
 

CALENDAR_INFORMATION 
    1  MONTH                           INDEX_1 
         ALIAS MARCH                     VALUE  3, 
         ALIAS JUNE                      VALUE  6, 
         ALIAS SEPTEMBER                 VALUE  9, 
         ALIAS DECEMBER                  VALUE 12 

 
 
12.1.7 SET COLOR STATEMENT 
 

 The SET COLOR statement is used to set the color of graphical objects that have been 
defined using the COLOR qualifying clause.  Refer to Chapter 11,Section 11.4.3.3, and 
Chapter 2 of the Run-Time Graphics (RTG) User’s Manual. 
 

SET  object_color  [COLOR ]  TO  color_name[(ramp)] 
 
 Color_name must be one of the color names defined with the color attribute.  Having 
performed the SET statement shown above, the object will be displayed with the selected color 
when drawn on the screen.  In addition, the object_color can be tested in a conditional statement 
(refer to Section 12.2.1.3).  A color attribute is 24 bytes and you can set the color attribute 
to a color with color ramp.  The default ramp number is 32. 
 
SET COLOR examples 
 
 SET LINE_COLOR TO RED 
 SET CONNECTING_LINK COLOR TO GREEN(22) 
 
 
12.1.8 SET RULE STATEMENT 
 

 The SET RULE statement is used to set the state of rule-pointer attributes that have been 
defined using the RULE qualifying clause. 
 

SET  rule_pointer  [RULE]  TO  rule_name 
 
 Rule_name must be one of the rule names associated with the rule_pointer attribute.  
Having performed the SET statement shown above, "rule_name" will be executed when an 
EXECUTE RULE_POINTER statement is encountered (refer to Section 12.3.1).  In addition, the 
rule_pointer can be tested in a conditional statement (refer to Section 12.2.1.4). 
 
SET RULE examples 
 
 SET CURRENT_SECTION RULE TO CONTROL_SECTION 
 SET CONTROL_POINTER RULE TO PHASE_1 
 
 CONTROL_SECTION must be one of the rules that can be executed in a statement of 
the form EXECUTE CURRENT_SECTION RULE.  PHASE_1 must be one of the rules that can 
be executed in a case statement of the form EXECUTE CONTROL_POINTER RULE. 
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12.1.9 SET PROCESS STATEMENT 
 

 The SET PROCESS statement is used to set the state of process_pointer attributes that 
have been defined using the PROCESS qualifying clause (refer to Section 11.4.3.5). 
 

SET  process_pointer  [PROCESS]  TO  process_name 
 
 Process_name must be one of the process names associated with the process_pointer 
attribute.  Having performed the SET statement shown above, "process_name" will be executed 
when an CALL PROCESS_POINTER statement is encountered (refer to Section 12.2.6).  In 
addition, the process_pointer can be tested in a conditional statement (refer to Section 12.2.1.5). 
 
SET PROCESS examples 
 
 SET NEXT_PROCESS TO COMPUTE_PERFORMANCE 
 SET PROCESS_POINTER PROCESS TO PHASE_1 
 

 COMPUTE_PERFORMANCE must be one of the processes listed in the 
NEXT_PROCESS attribute statement defined in a resource.  PHASE_1 must be one of the 
processes listed in the PROCESS_POINTER attribute statement defined in a resource. 
 
 
12.1.10    SET EVENT Statement 
 

 The SET EVENT statement is used to set the event_states that have been defined using 
the EVENT qualifying clause. 
 

SET  event_name  [EVENT]  TO  event_state 
 
 Event_name must be an EVENT attribute with corresponding defined event_states.  
Having performed the SET statement shown in the Format box, the value of the event_name 
EVENT will be set to that of the specified event_state.  Processes sharing the event_name 
EVENT will be checked by the OS to determine if they are in a WAIT state.  If so, and if the 
wait state is to be terminated upon the newly changed event_state, then the value of the new 
event_state will be put into that process’s OS resource, and the process will continue with the 
next statement following the WAIT UNTIL statement (see Section 12.7.1 below). 
 
SET EVENT examples 
 
 SET MY_EVENT_STATE TO GO 
 SET MY_EVENT_STATE TO STOP 
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12.2 CONDITIONAL STATEMENTS 
 

 Conditional statements instruct VSE to take different actions depending on the 
circumstances that exist when the conditional statement is encountered.  Conditional statements 
are used to form the most complex algorithms in any language.  It is imperative that they are 
easily understood, particularly by subject area experts that may be the only people that 
understand the effect of conditions to be achieved.  It is interesting to watch people explain 
conditional statements in difficult to understand programming languages.  The explanations are 
almost always done in English. 
 

 Direct readability depends upon the ability to describe complex conditions easily.  To do 
this requires different contructs that support the expression of different types of conditions.  
Most importantly, the rule hierarchies eliminate the need for nested IFs, i.e., an IF statement 
inside of an IF statement.  We note that CASE statements are not nested IFs. 
 

The general format of the conditional statement is: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

 STATEMENT NEXT               

RULE [THIS] EXIT  ent_n][...statem  1statement_
  ELSE                  

STATEMENT NEXT                

RULE [THIS] EXIT  ent_n][...statem  1statement_
  [THEN] condition [NOT] IF 

 
 
 Each statement begins on a new line and different parts of the statement are separated by 
one or more spaces.  Each part of the conditional statement format is now described. 
 
 
12.2.1 CONDITIONAL CONSTRUCTS 
 

 A conditional construct is an expression that, taken as a whole, may be either true or 
false, depending on the circumstances existing when the expression is evaluated.  They are 
designed to make the language understandable.  The following conditional constructs are 
available in VisiSoft: 
 

  (1)  Class condition 
  (2) Status condition 
  (3) Color condition 
  (4)  Rule condition 
  (5)  Process condition 
  (6)  Alias condition 
  (7)  Event condition 
  (8)  Relation condition 
  (9)  Sign condition 
 (10) File condition 
 (11) Compound condition 
 (12) Simulation condition 
 (13) Optimization condition 



Software Theory             Page  12 -  18  

12.2.1.1 CLASS Condition 
 

 The class test determines whether the current value of a CHARACTER or DECIMAL 
resource is composed of alphabetic characters (A-Z or space) or is numeric (digits 0 through 9). 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
 ALPHABETIC 

NUMERIC 
  [NOT]  

ARE

IS
  nameattribute_

 
 
 The clarity words, IS or ARE, are optional in this format.  The keyword NOT may 
optionally be included to test the converse condition. 
 
 
12.2.1.2 STATUS Condition 
 

 In a status condition, a status attribute is tested to determine if its state is that of the 
specified status name.  The status_name must be one of the allowed states associated with the 
named status attribute.  The clarity words STATUS, IS, ARE, A, or AN may also be included.  
The keyword NOT may optionally be included to test the converse condition. 
 

estatus_nam  
AN

A
  [NOT]  

ARE

IS
  [STATUS]  ributestatus_att ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

 
 
Status condition examples 
 
  TRANSCEIVER IS TRANSMITTING 
  TELEPHONE IS NOT BUSY 
 
 
12.2.1.3 COLOR Condition 
 

 In a color condition, a color attribute is tested to determine if its color is that of the 
specified color_name. 
 

color_name  
AN

A
  [NOT]  

ARE

IS
  [COLOR]  ibutecolor_attr ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

 
 
 The color_name must be one of the allowed colors associated with the named color 
attribute.  The clarity words COLOR, IS, ARE, A, or AN may also be included.  The keyword 
NOT may optionally be included to test the converse condition.  
 
Color condition examples 
 
  RADIO_LINK COLOR IS GREEN 
  FLAG IS NOT RED 
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12.2.1.4 RULE Condition 
 

 In a rule condition, a rule_pointer attribute is tested to determine if its state is that of the 
specified rule name. 
 

Rule_pointer  [RULE]  IS [NOT]  rule_name 
 
 Rule_name must be one of the allowed rules associated with the rule_pointer attribute 
defined using the RULE qualifying clause.  The clarity words RULE may also be included.  The 
keyword NOT may optionally be included to test the converse condition. 
 
Rule condition examples: 
 
  CURRENT SECTION IS CONTROL SECTION 
  NEXT_RULE IS NOT FINAL STEP 
 
 CONTROL_SECTION must be a rule listed in the CURRENT_SECTION attribute 
statement defined in a resource.  FINAL_STEP must be a rule listed in the NEXT_RULE 
attribute statement defined in a resource. 
 
 
12.2.1.5 PROCESS Condition 
 

 In a process condition, a process_pointer attribute is tested to determine if its state is that 
of the specified process name. 
 

Process_pointer  [PROCESS]  IS [NOT]  process_name 
 
 Process_name must be one of the allowed processes associated with the process_pointer 
attribute defined using the PROCESS qualifying clause (refer to Section  11.4.3.5.).  The clarity 
word PROCESS may also be included.  The keyword NOT may optionally be included to test 
the converse condition. 
 
PROCESS condition examples: 
 
  CURRENT PROCESS IS CONTROL PROCESS 
  NEXT_PROCESS IS NOT FINAL PROCESS 
 
 CONTROL_PROCESS must be a process listed in the CURRENT_PROCESS attribute 
statement defined in a resource.  FINAL_PROCESS must be a process listed in the 
NEXT_PROCESS attribute statement defined in a resource. 
 
 
12.2.1.6 ALIAS Condition 
 

 In an alias condition, a resource attribute is tested to determine if its value is one of a 
group collectively identified by a specified alias name. 
 

alias_name  
AN

A
  [NOT]  

ARE

IS
  nameattribute_ ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
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 The alias_name must be associated with the named attribute via an ALIAS qualifying 
clause in the resource (see Section  11.5.2).  The clarity words IS, ARE, A, and AN are optional 
in this format.  The keyword NOT may optionally be included to test the converse condition. 
 
Alias condition examples: 
 
  LEAD CHARACTER IS A DELIMITER 
  LAST DIGIT IS NOT A TERMINATOR 
 
 
12.2.1.7 EVENT Condition 
 

 The process specification provides for a WAIT UNTIL statement whereby the process is 
stopped and held at that statement depending on the value of the binary event attribute (it may 
be 0 or 1).  It automatically continues when the event attribute is changed.  The format of the 
event condition is shown below. 
 

event_value
event_name  [EVENT]  IS [NOT]   

alias_name
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 
 An example of the use of the EVENT attribute along with the ALIAS is shown below: 
 
  1  MY_NEXT_EVENT                    EVENT 
                         ALIAS GO              VALUE  1 
                         ALIAS STOP            VALUE  0 

 
IF MY_NEXT_EVENT IS STOP 
    WAIT UNTIL MY_NEXT_EVENT IS GO . 

 
 The event_value is stored as an integer, and may NOT be changed by a MOVE or 
arithmetic statement.  Group moves must preserve the value assigned by a SET statement. 
 
 
12.2.1.8 RELATION Condition 
 

 A relation condition causes a comparison of an attribute with either another attribute, a 
literal, or a named constant. 
 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

_constructarithmetic

tantnamed_cons

literal

name_2attribute_

 

[TO] [S] EQUAL

[THAN] LESS

[THAN]GREATER 

  [NOT]  
ARE

IS
  

tc_construcarithmetri

name_1attribute_

 
 
 The clarity words IS, ARE, TO, and THAN are optional but may be added to improve 
readability.  The keyword NOT may optionally be included to test converse conditions. 
 

 When comparing numeric attributes (i.e., REAL, DREAL, INTEGER, INDEX, 
INDEX_1, or DECIMAL) the numeric values are compared. 
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 When evaluating a non-numeric relation condition, the following collating sequence is 
used to determine the relative value of VisiSoft characters, in ascending order from the space 
character to the underline character as defined in the VisiSoft Collating Sequence below. 
 

VisiSoft Conditional Language Collating  Sequence 
 

  Character    Meaning 
 

         blank (space) 
  '     single quote/apostrophe 
   (        left parenthesis 
  )        right parenthesis 
   *      asterisk (multiplication sign) 
  +      plus sign 
  ,        comma 
  -     minus sign 
  .        period (decimal point) 
  /        slash (division sign) 
  0,1,...,9    digit 
  =      equal sign 
  A,B,...,Z    uppercase letter  
           underline 
 
Relation condition examples 
 
 TRANSCEIVER NUM IS GREATER THAN TOTAL TRANSCEIVERS 
 CLOCK TIME IS NOT GREATER THAN 25 
 SIN(THETA 1 + THETA 2) EQUAL ZERO 
 
 
12.2.1.9 SIGN Condition 
 

 The sign condition determines whether or not the value of a numeric attribute (i.e., an 
attribute described with an INTEGER, REAL, DREAL, INDEX, or INDEX_1 clause) is 
NEGATIVE (less than zero), POSITIVE (greater than zero), or ZERO (equal to zero). 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

ZERO

NEGATIVE

POSITIVE

  [NOT]  
ARE

IS
  

_constructarithmetic

nameattribute_

 
 
 
12.2.1.10   FILE Condition 
 

 The file condition can be used to determine whether a file already EXISTS before 
creating new ones.  It can also determine whether an existing file is EMPTY.  The format is: 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

EMPTY [NOT] [IS]

EXIST NOT [DOES]

EXISTS    

    
_literalnonnumeric

nameattribute_
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 The attribute_name must contain the filename, and the non numeric literal is of the form 
'file_name', either of which can be a fully qualified path_name/file_name of up to 40 characters. 
 
File condition example 
 
 IF  MY EXTERNAL FILE EXISTS 
 AND MY EXTERNAL FILE IS NOT EMPTY 
  ASSIGN MY EXTERNAL FILE TO MY EXTERNAL RESOURCE. 
 
 
12.2.1.11 COMPOUND Conditions 
 

 Two or more simple conditions can be combined to form a compound condition.   
Parentheses may be used to group simple conditions together.  Each subsequent simple condition 
in the compound condition must begin with one of the logical operators AND or OR. 
 

 Logical Operator  Meaning 
 

  OR   Logical inclusive OR, i.e., either or both are true 
  AND   Logical conjunction, i.e., both are true 
  NOT   Logical negation 
 
Table 12-2 shows the relationships between the logical operators and simple conditions A and B. 
 

Table 12-2  Logical Operators and the Resulting Values Upon Evaluation 
 

 
A 

 
B 

 
A AND 

B 

 
A OR B 

 
NOT A 

NOT (A 
AND B) 

NOT A 
AND B 

NOT (A 
OR B) 

NOT A 
OR B 

True True True True False False False False True 

False True False True True True True False True 

True False False True False True False False False 

False False False False True True False True True 
 
 
 Logical evaluation of compound conditions begins with the least inclusive (innermost) 
pair of parentheses and proceeds to the most inclusive (outermost).  If the order of evaluation is 
not specified by parentheses, the expression is evaluated in the following order: 
 

(1) Arithmetic constructs (in the sequence **, * and /,+ and -) 
(2) Relational operators 
(3)  NOT condition 
(4)  AND and its surrounding conditions are evaluated first, starting at the left 

of the expression and proceeding to the right. 
(5) OR and its surrounding conditions are then evaluated, also proceeding 

from left to right. 
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 Each simple condition within a compound condition must be written fully. 
 
For example: 
 
 A EQUALS B OR C OR D 
 

is not valid, and must be written as 
 
 A EQUALS B 
   OR A EQUALS C 
     OR A EQUALS D 
 
Compound condition examples 
 
 TOTAL IS GREATER THAN ZERO 
  OR TOTAL IS EQUAL TO ZERO 
 
 CLOCK TIME IS GREATER THAN 25 
  AND (TELEPHONE STATUS IS BUSY 
    OR START INDEX IS POSITIVE) 
 
 
12.2.1.12 RUN_TYPE Condition 
 

 The user can test to determine if a normal task is being run or if an optimization task has 
been invoked by testing the VisiSoft RUN_TYPE attribute. 
 

    RUNRUN_TYPE IS [NOT] OPTIMIZATION

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
Example: 
 
  IF RUN_TYPE IS OPTIMIZATION 
   AND SOLUTION_TYPE IS OPTIMAL 
  PRINT 'OPTIMAL SOLUTION FOUND'. 
 
 
12.2.1.13 OPTIMAL/FEASIBLE SOLUTION Condition 
 

 When running optimization, the user can test to determine if a feasible or optimal 
solution has been found by testing the SOLUTION_TYPE attribute. 
 

⎭
⎬
⎫

⎩
⎨
⎧
OPTIMAL

FEASIBLE
  [NOT]  IS  YPESOLUTION_T

 
 
See the example in 12.2.1.12 above. 
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12.2.2 THEN AND ELSE CLAUSES 
 

 VisiSoft IF statements are designed to read like English, and must end with a period.  The 
only exception to this rule arises when IF statements are used in a CASE type statement (see 
Section 12.2.4), in which case the CASE statement must end with a period.  Most importantly, 
the rule hierarchies eliminate the need for nested IFs, i.e., and IF statement inside of an IF 
statement.  We note that CASE statements are not nested IFs. 
 

 Referring to the format diagram in Section 12.2, the THEN clause consists of the optional 
word THEN and the words and constructs following it, up to the ELSE keyword or period.  The 
optional ELSE clause consists of the ELSE keyword up to the end of the IF statement. 
 

When an IF statement is executed, the following action is taken: 
 

If the condition is true, the THEN clause is executed.  Control is then passed to the 
statement following the period denoting the end of the IF statement. 

 

• If the THEN clause contains the keywords NEXT STATEMENT, no other 
constructs are permitted, and control passes directly to the statement following the 
period. 

 

• If the THEN clause contains the keywords EXIT [THIS] RULE, the rule is exited 
immediately, and control passes back to the statement following the one 
executing the rule. 

 

If the condition is false, the ELSE clause is executed and control passes to the statement 
following the period.  

 

• If the ELSE option is omitted or if the ELSE clause contains the keywords  
 NEXT STATEMENT, control passes directly to the statement following the 
 period. 

 

• If the THEN clause contains the keywords EXIT [THIS] RULE, the rule is exited 
immediately, and control passes to the statement following the one executing the 
rule. 

 

Within the THEN and ELSE clauses, each statement must begin on a separate line. 

 
 
12.2.3 IF - THEN - ELSE STATEMENTS 
 

 Referring again to the format diagram in Section 12.2, one or more of the statements in 
the THEN or ELSE clauses may themselves be conditional statements.  These are called nested 
IF statements.  Only the final clause of a nested IF statement must have a period at its end.  
Internally nested IF statements will be terminated implicitly by either the IF or ELSE keywords 
or by the period used to terminate the main IF statement of which it is a part. 
 

 IF statements contained within IF statements must be considered as paired IF and ELSE 
combinations, proceeding from left to right.  Any ELSE encountered must be considered to 
apply to the immediately preceding IF that has not already been paired with an ELSE.  If any 
ambiguities may occur, the NEXT STATEMENT option may be used to clarify the pairings. 
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IF examples 
 
 IF CATEGORY IS LOCAL 
     INCREMENT TOTAL LOCAL CALLS. 
 

 IF OUTGOING LINE IS NOT BUSY 
     THEN EXECUTE CONNECT CALL. 
 

 IF OUTGOING LINE IS NOT BUSY 
     SCHEDULE CONNECT CALL 
 ELSE INCREMENT CALLS BLOCKED. 
 

 IF OUTGOING LINE IS NOT BUSY 
 AND LINKS IN USE ARE LESS THAN 100 
     INCREMENT LINKS IN USE 
     SCHEDULE CONNECT CALL. 
 

 IF CLOCK TIME IS POSITIVE 
 AND RADIO IS READY 
     EXECUTE MESSAGES SENT 
 ELSE SCHEDULE TRANSMIT IN 3 MINUTES. 
 

 IF TOTAL ORDERS COMPLETED ARE GREATER THAN 100 
     THEN EXIT THIS RULE 
 ELSE EXECUTE MANUFACTURE_GOODS 
     SCHEDULE STOCK UP IN 1 HOUR. 
 
 
12.2.4 IF - THEN - ELSE  CASE STATEMENT 
 

 A special form of a IF statement is called the IF - THEN - ELSE CASE statement, and 
takes the form: 
 
  IF condition_1 
   statement_1 
  ELSE IF condition_2 
   statement_2 
    . 
    . 
    . 
  ELSE IF condition_n 
   statement_n. 
 
 This is a convenient structure to use when a small number of different conditions are to 
be tested, each followed by a single construct.  The keyword THEN may optionally be included 
before the statement.  Only the statement following the first satisfied condition will be executed. 
 
CASE examples 
 
 IF RADIO IS READY 
  RESUME TRANSMIT NOW 
 ELSE IF RECEIVER IS TRANSMITTING 
  RESUME TRANSMIT IN 20 SECONDS 
 ELSE IF TRANSMITTER IS NOT ON 
  EXECUTE START TERMINAL. 
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12.2.5 EXECUTE RULE_POINTER STATEMENT 
 

 This statement may be used to gain substantial speed when a large number of IF - THEN 
- ELSE CASE type statements occurs, or when the decision mechanism for setting the condition 
statement is complex.  In the later case, the decisions regarding which rules to execute may be 
spread over multiple rules themselves.  When one gets to the IF - THEN - ELSE statement, one 
cannot repeat the logic.  In this case, the EXECUTE statement defined below can use the 
RULE_POINTER clause shown below which provides a great simplification, and can be used 
without an IF - THEN - ELSE statement since the decision has already been resolved by 
selecting the desired RULE using the RULE_POINTER. 
 

  EXECUTE rule_pointer RULE. 
 
 This is a most convenient structure to use when a large number of different conditions are 
to be tested, each with corresponding rules to branch to.  Up to 50 different rule names can be 
invoked by the rule_pointer.  The rule name assigned to the rule_pointer by the SET RULE 
statement (refer to Section 12.1.7) will be executed when this statement is encountered. 
 
EXECUTE RULE examples 
 
 EXECUTE CURRENT SECTION RULE 
 EXECUTE EXISTING CASE RULE 
 
where the rule names assigned to CURRENT_SECTION and EXISTING_CASE by the 
SET RULE statement will be the rules that get executed. 
 
 
12.2.6 CALL PROCESS_POINTER STATEMENT 
 

 For reasons similar to the RULE_POINTER, this is a much faster and more convenient 
structure to use when a large number of different conditions are to be tested, each with 
corresponding processes to branch to, or when decisions regarding which process to CALL may 
be spread over multiple rules.  The CALL PROCESS_POINTER statement is similar to the 
EXECUTE RULE_POINTER statement above, having the form: 
 

  CALL process_pointer PROCESS. 
 
 Up to 4000 different process names can be invoked by the process_pointer.  The process 
name is assigned to the process_pointer by the SET PROCESS statement (refer to Section 
12.1.8) will be called when this statement is encountered. 
 
CALL PROCESS_POINTER examples 
 
 CALL CURRENT PROCESS PROCESS 
 CALL NEXT_PROCESS PROCESS 
 

where the process names assigned to CURRENT_PROCESS and NEXT_PROCESS by the SET 
PROCESS statement will be the processes that get called.  Note that the process being called 
cannot be in an external library. 
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12.3 PROCESS LEVEL CONTROL STATEMENTS 
 
 There are three keywords which deal with flow of control at the process level; these are 
EXECUTE, SEARCH, and CALL.  Each is now described in turn. 
 
 
12.3.1 EXECUTE STATEMENT 
 

 The EXECUTE statement is used to depart from the normal instruction sequence within a 
rule in order to execute another rule a specified number of times, or until a predetermined 
condition is satisfied.  This statement is defined within three different formats. 
 
Format-1 
 

rule_name unsigned_numeric_literal
EXECUTE   TIMES

rule_pointer RULE attribute_name

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎢⎨ ⎬ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦  

 
Format-2 
 

rule_name
EXECUTE  UNTIL condition

rule_pointer RULE
⎧ ⎫
⎨ ⎬
⎩ ⎭  

 
Format-3 
 

rule_name INCREMENTING
EXECUTE   attribute_name_1

rule_pointer RULE DECREMENTING

numeric_literal unsigned_numeric_literal
   FROM   BY  

attribute_name_2 attribute_name_3

   

⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎨ ⎬⎥ ⎢ ⎨ ⎬⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

numeric_literal
TO 

attribute_name_4         

   UNTIL condition

⎡ ⎤⎧ ⎫
⎢ ⎨ ⎬⎥

⎩ ⎭⎢ ⎥
⎢ ⎥⎣ ⎦  

 
 Each attribute name and numeric literal must represent integer or index values.  The 
condition may be any one of the thirteen condition types described in Section 12.2.1. 
 

 Whenever an EXECUTE statement is executed, control is transferred to the first 
statement of the rule named rule name.  Control is always returned to the statement immediately 
following the EXECUTE statement. 
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Rules For Format-1 
 

 The following rules apply to the use of a Format-1 EXECUTE statement: 
 

 (1) If the TIMES option is omitted, the named rule is executed once. 
 

 (2) If the value of attribute_name is zero or negative at the time the EXECUTE 
statement is initiated, control passes to the statement following the EXECUTE 
statement, i.e. the TIMES option is tested first. 

 

 (3) Once the EXECUTE statement has been initiated, any change in value of 
attribute_name has no effect in varying the number of times the rule is initiated. 

 

 (4) A statement in a rule cannot execute the rule currently in process. 
 

 (5) Executing rules recursively can produce erroneous results. 
 
Examples 
 
 EXECUTE NEXT CALL 
 

 EXECUTE NEXT CALL 5 TIMES 
 

 EXECUTE NEXT CALL TOTAL CALL TIMES 
 
 
Rules For Format-2 
 

 The following rule applies to the use of a Format-2 EXECUTE statement: 
 

The specified rule is performed until the condition specified by the UNTIL clause is true.  
At this time, control is transferred to the statement following the EXECUTE statement.  
If the condition is true at the time that the EXECUTE statement is encountered, the 
specified rule is not executed, i.e. the condition is tested first. 

 
Examples 
 
 EXECUTE NEXT CALL UNTIL NO LINES ARE AVAILABLE 
 

 EXECUTE NEXT CALL UNTIL CALLS ANSWERED ARE EQUAL TO 
   CALLS WAITING 
 

 EXECUTE READ MESSAGE UNTIL LEAD CHARACTER IS A DELIMITER 
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Rules For Format-3 
 

 The following rules apply to the use of a Format-3 EXECUTE statement: 
 

(1) The initial value of the FROM clause (attribute_name_2 or the default value 1) is always 
set prior to the first test.  The value of attribute_name_1 is always tested prior to 
executing the rule to determine if the TO or UNTIL clause is satisfied.  If satisfied, the 
rule is not executed.  If not satisified, the rule is executed.  Immediately after the rule is 
executed, attribute_name_1 is incremented (or decremented). 

 

(2) If the FROM or BY part of the EXECUTE statement is omitted, the default is FROM 1 or 
BY 1.  If the BY option is used, attribute_3 must be a positive integer.  If the TO option 
is omitted, then the UNTIL clause is required to limit continued execution (TO and 
UNTIL are mutually exclusive).  When the DECREMENTING option is used, the use of 
FROM is mandatory. 

 

(3) While rule_name is being executed, changing the value of attribute_name_1 (in the 
INCREMENTING / DECREMENTING clause) or attribute_name_3 (in the BY option) 
or attribute_name_4 (in the TO option) can change the number of times the rule is 
executed.  Changes in value of attribute_name_2 (in the FROM option) will have no 
effect in altering the number of times the rule is to be executed, after execution starts. 

 
Examples 
 
 EXECUTE NEXT CALL INCREMENTING CALL NUMBER BY 1 FROM 1 TO 99 
 

 EXECUTE ANSWER CALL INCREMENTING CALLS_ANSWERED 
  UNTIL CALLS_ANSWERED ARE GREATER THAN CALLS_WAITING 
 
 Note that, in this example, if the attribute CALLS_ANSWERED is changed during 
execution of the rule ANSWER_CALL, the number of times the rule is executed may be 
affected. 
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12.3.2 SEARCH TABLE STATEMENT 
 

 Designed for speed, the SEARCH table statement provides for automatic searching of 
complex hierarchical tables over all indices, and execution of a designated rule when the 
specified table conditions are found to be true.  The form of the SEARCH table statement is as 
follows: 
 

[ ]
[ ]

 
3condition_ UNTIL                  

2]condition_ [UNTIL   1]condition_ [WHEN   rule_name EXECUTING
            

 nge_6][search_ra   ...   nge_3][search_ra   name_3attribute_ AND         

 nge_2][search_ra   name_2attribute_ AND      

 nge_1][search_ra   name_1attribute_OVER    

table_name SEARCH

⎭
⎬
⎫

⎩
⎨
⎧

 
 
where search_range_n is of the form: 
 

{ } { } { }unsigned_numeric_literal numeric_literal unsigned_numeric_literalFROM   BY   TO attribute_name_5 attribute_name_4 attribute_name_6
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 
 The conditions take the standard form of a VisiSoft condition.  Table_name is the name 
of the  attribute containing the most interior QUANTITY clause to be searched.  When the 
search_range is not specified, the implied search_range will be over the full QUANTITY of the 
table, using the attribute_name specified as the variable index. 
 

 The implied search range starts FROM 1 and runs TO the value in the QUANTITY 
clause.  Then attribute_name_1, attribute_name_2, and attribute_name_3 will be incremented by 
one in all cases. 
 

 If the BY option is used, attribute_name_4 can be a positive or negative integer.  In the 
FROM and TO options, attribute_name_5, attribute_name_6, and the unsigned numeric literal 
must contain positive integers if used.  If attribute_name_4 is negative, then attribute_name_5 in 
the FROM option must be greater than one, being the starting point of the count down. 
 

 If the TO option is used when attribute_ name_4 is negative, then attribute_name_5 must 
be greater than attribute_name_6 for rule_name to be executed. 
 

 When multiple search_ranges are used, they will be varied by holding the first named 
attribute in the OVER clause to its FROM value, while varying the last named attribute through 
its entire search range.  For example, in the case of an attribute with 3 subscripts, each of 
quantity 2, the search order would be: 
      X(1,1,1), X(1,1,2), 
      X(1,2,1), X(1,2,2), 
      X(2,1,1), X(2,1,2), 
      X(2,2,1), X(2,2,2). 
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 As an example, consider the following attribute structure: 
 

NUMBER OF TRANSCEIVERS     INDEX 
RECEIVER       INDEX 
TRANSMITTER       INDEX 
 
LINK CONNECTIVITY VECTOR         QUANTITY(500) 
 1  CONNECTIVITY MATRIX     QUANTITY(500) 
    2  PROPAGATION LOSS    REAL 
    2  SIGNAL TO NOISE RATIO   REAL 
    2  LINK      STATUS GOOD 
          FAIR 
          POOR 

 
 To SEARCH this two-dimensional table executing TRANSMISSION for every LINK 
that is GOOD, one can use the following statement: 
 
 SEARCH CONNECTIVITY MATRIX OVER RECEIVER, AND TRANSMITTER 
  EXECUTING TRANSMISSION 
   WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD 
 
 To limit the search range to NUMBER_OF_TRANSCEIVERS instead of covering the 
500 by 500 range, one would write the following: 
 
 SEARCH CONNECTIVITY MATRIX 
  OVER RECEIVER TO NUMBER OF TRANCEIVERS 
   AND TRANSMITTER TO NUMBER OF TRANSCEIVERS 
    EXECUTING TRANSMISSION 
     WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD 
 
 To search the LINK_CONNECTIVITY_VECTOR to find the good links to a particular 
RECEIVER over the same range of TRANSMITTERs, one would write the following: 
 
 RECEIVER = SELECTED_RADIO 
 SEARCH LINK_CONNECTIVITY VECTOR 
  OVER TRANSMITTER TO NUMBER OF TRANSCEIVERS 
    EXECUTING TRANSMISSION 
     WHEN LINK(RECEIVER, TRANSMITTER) IS GOOD 
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12.3.3  CALL STATEMENT 
 

 The CALL statement causes control to be transferred directly from one process to 
another.  This can be done using a process_pointer PROCESS as defined in Section 12.2.6.  
When using Independent (IND) modules, e.g., when running on parallel processors, the CALLed 
process must be within the same IND module. 
 

IP_process_name
CALL 

IP_process_pointer IP_PROCESS

num_literal_1 numeric_literal_6
           [WITH] INSTANCE   ,...  

attribute_name_1 attribute_name_6

                     U

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎡ ⎤⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥
⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦

num_literal_1 numeric_literal_6
SING   ,...  

attribute_name_1 attribute_name_6

⎡ ⎤⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥
⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦

 

 
 The execution of a CALL statement causes control to pass immediately to the process 
whose name is specified.  When the called process is completed, control immediately returns to 
the statement following the CALL statement in the calling process.  Called processes may also 
contain CALL statements.  However, a "called" process must not contain a CALL statement that 
directly or indirectly calls itself, or any originator of a call chain to that process.  Recursion is 
neither necessary nor supported (it is slow).  A process may CALL, SCHEDULE, and CANCEL 
up to 30 different processes.  Up to 50 CALL, SCHEDULE, and CANCEL statements may 
appear in one process.  It may be CALLed, SCHEDULEd, or CANCELed by up to 100 different 
processes that reside within the same process directory. 
 
 
12.3.3.1 The INSTANCE Option 
 

 Section 11.3 explained the passing of INSTANCE and other pointers to processes within 
instanced or non-instanced modules.  If the process being called is within an INSTANCEd 
module, then the number of instance pointers must match the number of instance layers to the 
elementary module containing the called process (up to a maximum of 6), even when the calling 
process resides within the same instanced module.  When the CALL statement is processed, the 
values of the instance pointers are used to identify the hierarchy of instances leading to the 
elementary module containing  the desired process to be executed.  These instance pointers also 
specify the instances of each resource within the hierarchy of instanced modules containing the 
process to be executed. 
 

 The instance pointers listed after the keyword INSTANCE will be matched with the 
instances listed for the process being called in accordance with the order of listing.  This order 
must match that of the hierarchicy of instanced modules from top to bottom.  It can be viewed 
using the QUERY option.  Any numeric literals listed in an INSTANCE clause must be positive 
integers.  Attributes listed in an INSTANCE clause must be INDEX_1, INDEX, or INTEGER 
type, and must not be subscripted. 
 

 The other pointers may be used with or without an INSTANCE pointer.  Examples are 
illustrated below.  Note that the qualifying name INSTANCE must be used.  In the case of other 
pointers, the USING qualifier must be used. 
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CALL INSTANCE examples 
 
 CALL NEXT_BROADCAST 
 
 CALL ATTENUATION_CALC 
           WITH INSTANCE SOURCE, DESTINATION 
 
CALL USING examples 
 
 CALL ATTENUATION_CALC 
           USING PARM_1, PARM_2 
 
 CALL ATTENUATION_CALC 
           WITH INSTANCE SOURCE, DESTINATION 
               USING PARM_1, PARM_2 
 
 
12.3.3.2 Calling Processes by Generic Names 
 

 When changing a process to modify its functions, one may want to keep a copy of the old 
process, giving the new process a new name.  To avoid changing the call statements in those 
processes that call the old process, one can use the old process name as the new process generic 
name.  Although GSS process names must be unique, generic names can be the same as process 
names, and can be reused by more than one process.  Thus, the use of generic names requires 
resolution of referenced names, since the system must know whether the call statement applies to 
the old process or the new process whose generic name is the same as the old process name. 
 
 CALL NEXT_BROADCAST 
 

 Resolution of generic names is accomplished as follows.  A process invoked by its 
generic name in a call statement must exist in a model that is named in the MODEL SECTIONs 
of a Simulation Control Specification, reference Figure 13-1.  This model could be either 
hierarchical or elementary.  Figure 12-2 illustrates the use and resolution of generic names by 
decomposition of the system into models.  All the process and generic names shown in 
Figure 12-2 (a) are listed below. 
 
 PROCESS NAME  GENERIC NAME 
 

  P_A 
  P_B 
  P_C 
  P_D 
  P_N    P_K 
 

 In reviewing Figure 12-2 (b), old process P_K is called from both processes P_A and 
P_D.  However, the designer actually wants to call the new process P_N, using the generic name 
P_K.  This is accomplished by naming the desired process to be called inside a model named in 
the MODEL section of a Task Control Specification, or in the DEFINITION, 
IDENTIFICATION, MODEL, or EVALUATION SECTIONs of a Simulation Control 
Specification.  Only the process names (as opposed to the generic names) can be designated in a 
model, and these are unique.  If two processes within a model use the same generic name, 
CALLs by that generic name cannot be resolved. 
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GENERIC NAME REFERENCES

MODEL M_1

 

 

MODEL M_2MODEL M_1_1

R_X P_B R_Z P_D

R_U

MODEL M_1_2

 P_N
(P_K)

P_A R_Y P_C R_V

GSS CHPTR-9  08/05/13  
 
 

Figure 12-2 (a).  Use of module boundaries to resolve generic name references. 
 
 
 
 
 
 
 

PROCESS  P_A

 ----
 ----
 ----
 ----
CALL P_K   *** (P_N)
 ----
 ----
 ----
 ----

CALL P_D
 ----
 ----

PROCESS  P_D

 ----
 ----
 ----
 ----
CALL P_K   *** (P_N)
 ----
 ----
 ----
 ----

CALL P_K  *** (P_N)
 ----
 ----

GSS CHPTR-9  11/08/10  
 
 

Figure 12-2 (b).  Illustration of generic name call references. 
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12.3.3.3 Library CALL Statement 
 

 When calling a process contained in an external GSS library, a library CALL statement 
must be used to identify the particular process, module, and library selected.  In general, no 
source code will be available for that process, being stored in object form in the corresponding 
library_name.a  file.  This CALL statement identifies the interface resources shared by the 
calling process that corresponds to the aliased resources in the called module.  The order of 
resources in the USING list must be the same as that in the called module - alphabetical order by 
name.  The syntax is as follows: 
 
  CALL process_name IN module_name [IN] library_name 
      USING resource_1  [ , ..., resource_m] 
 
 The process_name must be that of a process in the specified library module.  Because of 
the way GSS library modules are prepared, every process name in a module is unique, and every 
module name in a library is unique.  The names of library files in a user's directory must also be 
unique.  Every process name in a library is automatically appended with the module_name as 
well as the library_name when it is prepared, and must be addressed as such when called from 
the outside.  This guarantees uniqueness even though the same process_name may be used in 
different library modules.  There is no limitation on CALLs to processes that reside within 
library modules.  The USING clause is used to identify resources SHARED at the interface to a 
library, corresponding to the aliased resource(s) attached to the called library process. 
 

 Library calls may be chained by calling one library from another library.  When calling a 
library that uses another library, it is up to the user to insure that all modules in a chain are 
prepared with the desired versions. 
 
EXAMPLES: 
 
    CALL COVARIANCE IN KALMAN FILTERS USING A_MATRIX 
 
   CALL GET_EIGENVALUES IN INVERT MATRIX USING F_MATRIX, R_MATRIX 
 
 In the above examples, COVARIANCE is a process in model KALMAN that resides 
inside library FILTERS.  The A_MATRIX resource is shared by the calling routine and 
corresponds to an aliased resource attached to COVARIANCE. 
 

 GET_EIGENVALUES is a process in module INVERT that resides within library 
MATRIX.  The F_MATRIX and R_MATRIX resources are shared by the calling process and 
correspond to aliased resources attached to GET_EIGENVALUES.  The order of the resources 
in the USING clause is determined by the order of the aliased resources in the COVARIANCE 
process.  Aliased resources are always attached in alphabetical order. 
 

 When using parallel processors, library modules will be copied onto each processor 
containing modules that call that library module. 
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12.3.4  SCHEDULE STATEMENT 
 

 The SCHEDULE statement is used to schedule another process, or itself, to run either 
immediately after the process that schedules it, or at a specified time in the future.  When a 
process is scheduled, it is placed in the VisiSoft schedule to be run at the specified (relative) time 
in the future.  When used on a parallel processor, the SCHEDULE statement starts a thread 
within an IND Module that runs to completion on the specified processor.  Multiple processes 
may be CALLed by processes in the thread.  The thread terminates when the statements in the 
scheduled process terminate.  The SCHEDULE statement is shown below. 
 

[ ]
process_name

SCHEDULE   IN IND_module_name  
process_pointer PROCESS

numeric_literal_1 numeric_literal_N
      [WITH] INSTANCE   ,...  

attribute_name_1 attribute_name_N

       

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎡ ⎤⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥
⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦

numeric_literal_N+1 numeric_literal_6
 USING   ,...  

attribute_name_N+1 attribute_name_6

AT numeric_literal
  [time_units]

IN attribute_name        

                NOW

⎡ ⎤⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥
⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦

⎡⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬⎢
⎩ ⎭ ⎩ ⎭

⎣

[[WITH] PRIORITY priority_code]

⎤
⎥

⎢ ⎥
⎢ ⎥⎦

 

 
 The VisiSoft SCHEDULE statement serves two purposes.  One is generally concerned 
about simulated clock times.  In this case, clock time is generally relative, being used to 
synchronize the unfolding of simulated physical events inside models.  In the case of nonlinear 
models, one must reconcile the nonlinear behavior before proceeding to the next time step.  This 
requires subject area experts to determine what is required to obtain the level of model accuracy 
that ensure validity of the simulated results.  Simulations may also be embedded in real-time 
control systems wherein they are really software systems that must be tied to the real-time clock. 
 

 Examples of real-time software are real-time control systems, transaction processing 
systems, or database update systems.  In all of these cases, the clock may be the real-time clock, 
or a relative version of the real-time clock so that events are processed in a desired time 
sequence dictated by the application.  Time is always relative to the accuracy of the clock 
differences.  Thus it is up to the application system expert to determine how far the software 
clock can drift from a real-time clock. 
 

 Using VisiSoft, both simulation and software applications may run on a single processor 
or a parallel processor.  If an application has a number of IND modules that are designed to run 
on a parallel processor, then it can also run on any number of processors except that the number 
of processors used will not exceed the number of IND modules.  If the number of processors is 
less than the number of IND modules, then modules will be stacked to fit the number of 
processors.  There is no need to change the application architecture or code to run on either.  The 
only change required is in the Control Specification which determines the number of processors 
to be used, and how the IND Modules may be initialized across processors. 
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12.3.4.1 PROCESS NAME 
 

   The process_name must be that of a process specified within the Simulation Control 
Specification.  This may be done be done through a model/module name, or a library name.  This 
can also be done using a process_pointer PROCESS as defined in Section 12.2.6. 
 
Example 
 
 SCHEDULE CLOSE_DOWN AT STOP_TIME 
 
 
12.3.4.2 IND MODULE NAME 
 

 When using parallel processors, the SCHEDULE statement is used to start threads in 
different IND Modules as well as the same IND Modules, where IND Modules may reside on 
different processors and well as the current processor.  When using parallel processors, the IND 
Module name must be specified.  This implies that the IND Module must be designated as such 
in the Architecture Environment.  In the following example, PLATFORM_MODULE is an IND 
Module. 
 
Example 
 
 SCHEDULE START_PLATFORMS IN PLATFORM_MODULE NOW 
 
 
12.3.4.3 INSTANCE & INDEX POINTERS 
 

 INSTANCE POINTERs and other POINTERs are described in Section 4.2.  They are 
used to identify both hierarchical module instances and other indices within a resource.  If a 
process in a particular Module Instance is to be scheduled, the module instance must be specified 
by listing the pointer - or set of pointers - that identifies it, in order from the highest level of 
hierarchy to lowest, after the keyword INSTANCE - explicitly - even when scheduling itself. 
 

 If the process being scheduled also uses other POINTERs then a matching number of 
other pointers must be specified.  The total number of pointers - INSTANCE plus other - cannot 
exceed 6. 
 

 When the schedule statement is processed, the values of the instance and index pointers 
are saved to be made available to the scheduled process at the time it executes.  In the case of an 
instanced module, these instance pointers specify the resources within a potential hierarchy of 
modules containing the process to be executed.  In the case of index pointers, they specify the 
element within a (potential hierarchy of) QUANTITY clause(s) in a resource. 
 

 The instance pointers listed after the keyword INSTANCE will be matched with the 
instances listed for the process being scheduled in accordance with the order of listing.  This 
order may be viewed and changed using the MODIFY PROCESS option, and viewed using the 
QUERY option.  Any numeric literals listed in an INSTANCE clause must be positive integers.  
However, literals can be negative in assignment statements.  Attributes listed in an INSTANCE 
or INDEX clause must be type INDEX_1, INDEX, or INTEGER, and must not be subscripted. 
 
Example 
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 SCHEDULE TRANSMISSION WITH INSTANCE TRANSMITTER 
              IN UNIFORM(0.5, 1.5) SECONDS 
 
12.3.4.4 AT,  IN,  NOW 
 

 If a process is scheduled with none of the optional AT, IN, or, NOW clauses, it will be 
scheduled at the current time (same time as the executing process containing the SCHEDULE 
statement).  It can run when the current process completes execution without advancing the 
schedule clock.  Whether or not it runs immediately after the current process will depend upon 
the PRIORITY of processes scheduled at the same time.  SCHEDULE process-name differs 
from a CALL statement in that control is not passed directly to the scheduled process. 
 
 
Parallel Processor Considerations 
 

 When scheduling a process in an IND module that resides on a different processor, the 
different scheduler clocks will generally be out of synchronization.  When using the IN option, it 
is up to the designer to determine whether a schedule that falls near the boundary of a Tmax 
interval should fall within or beyond that boundary.  This is easily solved by computing an AT 
time, based upon the application requirements, to be passed to the other processor. 
 
Example 
 
 SCHEDULE ARRIVAL NOW 
 

 SCHEDULE FLY BLUE AIRCRAFT IN IND_MODULE-AIRCRAFT AT END_OF_INTERVAL 
 
 When the currently executing process contains more than one SCHEDULE NOW 
statement, the processes it schedules will all begin after the current process terminates.  The 
order in which they are executed, however, will be unpredictable unless priority codes have been 
assigned (See Section 12.3.4.4).  A process may CALL, SCHEDULE, and CANCEL up to 30 
different processes.  Up to 50 CALL, SCHEDULE, and CANCEL statements may appear in one 
process.  A process may be CALLed, SCHEDULEd, or CANCELed by up to 100 different 
processes that reside within the same process directory. 
 

 If the named process is not to be executed at the current time, i.e., the same time at which 
it is scheduled, the time at which the named process is to be executed must be indicated by one 
of the keywords AT or IN. 
 

 It is possible to specify an absolute time at which execution of the SCHEDULED process 
is to begin.  This must be done relative to the simulation CLOCK_TIME and the numeric literal 
or attribute value should correspond to a value, which CLOCK_TIME is expected to reach 
during the simulation run.  Time-units may optionally be specified here (refer to Appendix 3).  
The specified attribute-name must not be subscripted. 
 



Software Theory             Page  12 -  39  

Example 
 
 SCHEDULE CLOSE_DOWN AT STOP_TIME 
 

 The second option is to specify the time interval which must elapse before the named 
process is to begin execution.  The elapsed time may be either: 
 

 (1)  Deterministic - represented by a positive real numeric literal or unsubscripted 
resource attribute value, or 

 

 (2)  Probabilistic - represented by a statistical distribution with specified parameters.  
The possible distributions are described in Appendix 4. 

 
Example 
 
 SCHEDULE ARRIVAL IN EXPON(O.5) 
 
 SCHEDULE ARRIVAL IN NORMAL(MEAN, VAR) 
 

 In addition to specifying the elapsed time, units of time may optionally be specified, refer 
to Appendix 3.  The specified attribute-name must not be subscripted. 
 
Examples 
 
 SCHEDULE CLOSE DOWN IN 10 MILLISECONDS 
 

 SCHEDULE FLY BLUE AIRCRAFT IN 1 MINUTE 
 
 
12.3.4.5 WITH PRIORITY 
 

 An option in a SCHEDULE statement is to specify a priority code for the process (see the 
format in Section 12.3.4).  This may be used along with one of the keywords AT or IN.  A 
priority-code is a one-digit or two-digit number greater than zero chosen by the user.  The 
priority-code may be a numeric literal or a non-subscripted resource attribute defined as integer.  
If a resource attribute is used, the attribute value must be within the proper range. 
 
Examples 
 
 SCHEDULE ARRIVAL IN EXPON(O.5) WITH PRIORITY PRIORITY VALUE 
 
 SCHEDULE ARRIVAL IN EXPON(0.5) WITH PRIORITY 10 
 

 In the event that more than one process is scheduled to execute at the same time, the one 
with highest priority (lowest number) will be executed first.  If no priority code is specified, GSS 
assumes a priority of 50.  If two processes are scheduled to execute at the same time, with the 
same priority, their order of execution is unpredictable. 
 
 
12.3.4.6 SCHEDULING By Generic Names 
 

 Processes can be scheduled by their generic names.  Section 12.3.3.2 described calling a 
process by its generic name.  All of the discussions in that section apply to scheduling a process 
by its generic name. 
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12.3.5  CANCEL STATEMENT 
 

 The CANCEL statement removes processes from the SCHEDULE, implying that they 
are still waiting to be run. 
 

[ ]CANCEL [ALL] process_name  IN IND_module_name  

      *       *

     INSTANCE  numeric_literal_1   ,... numeric_literal_n     

attribute_name_1 attribute_name_n

        

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥
⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

AT numeric_literal
  [TIME_UNITS]

IN attribute_name                  

               NOW

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎩ ⎭⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 The CANCEL statement may be used alone, or one of the phrases AT or IN may be 
included to indicate when the process is to be cancelled.  The ALL option may be used along 
with either AT or IN.  A process may CALL, SCHEDULE, and CANCEL up to 30 different 
processes.  Up to 50 CALL, SCHEDULE, and CANCEL statements may appear in one process.  
It may be CALLed, SCHEDULEd, or CANCELed by up to 100 different processes that reside 
within the same process directory. 
 

 The CANCEL statement causes the first occurrence of the named process to be cancelled 
on or after the time specified by the AT or IN options if they are used, or immediately after the 
current process if they are not used.  If the ALL option is used, all occurrences currently 
scheduled following the first one cancelled are also cancelled. 
 

 Figure 12-3 illustrates how the CANCEL statement operates.  The statement CANCEL 
TRANSMISSION is executed at time T1, and the time specified in the AT option is T3.  GSS 
will cancel one or more occurrences of the process TRANSMISSION, depending on whether the 
ALL option is specified.  The first occurrence was scheduled to execute at time T2, with 
subsequent occurrences at times T4 and T5.  The first occurrence after the specified CANCEL 
time, i.e. the one at T4, will be cancelled.  IF CANCEL ALL is specified, all subsequent 
scheduled occurrences of TRANSMISSION will also be cancelled. 
 
 
Parallel Processor Considerations 
 

 Note that the same parallel Processor Considerations apply to the CANCEL statement as 
applied to the SCHEDULE statement as described in Section 12.3.4.4. 
 
Examples 
 
 CANCEL NEXT CALL 
 

 CANCEL ALL NEXT CALL 
 

 CANCEL FLY BLUE AIRCRAFT IN IND_MODULE_AIRCRAFT AT TIME_BEFORE_INTERVAL 
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CANCEL              First                                First scheduled 
TRANSMISSION        scheduled                            occurrence of 
statement           example of         Specified         TRANSMISSION 
executed            TRANSMISSION       CANCEL time       after T3 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

T1   T2    T3    T4         T5 
             TIME 
 

Figure 12-3.  Operation of the CANCEL statement. 
 
 
12.3.5.1 IND MODULE NAME 
 

 When using parallel processors, the CANCEL statement is used to cancel threads that are 
in different IND Modules as well as in the same IND Module, where IND Modules may reside 
on different processors as well as on the current processor.  When using parallel processors, the 
IND Module name must be specified.  This implies that the IND Module must be designated as 
such in the Architecture Environment.  In the following example, PLATFORM_MODULE is an 
IND Module. 
 
Example 
 
 SCHEDULE START_PLATFORMS IN PLATFORM_MODULE NOW 
 
 
12.3.5.2 AT,  IN 
 

 The AT phrase must include a numeric literal or unsubscripted attribute name whose 
value corresponds to a specific clock time.  The AT phrase cancels the first occurrence of the 
process on or after an absolute time (clock time).  The AT phrase in conjunction with the ALL 
option cancels all occurrences of the process on or after the specified clock time.  Time units 
may optionally be specified here (refer to Appendix 3). 
 
Examples 
 
 CANCEL DIAL UP AT 100 
 CANCEL ALL TRANSMISSION AT STOP TIME SECONDS 
 
 The IN phrase also cancels the first occurrence of the process after a specific time 
interval has elapsed (relative to current time).  The elapsed time may be defined using any of the 
options described in Section 12.3.4.3.  The IN phrase in conjunction with the ALL option 
cancels all occurrences of the process after the specified time interval.  Time units may 
optionally be specified (refer to Appendix 3). 
 
Examples 
 
 CANCEL ALL NEXT CALL IN 20 SECONDS 
 CANCEL DIAL UP IN WAIT TIME 
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12.3.5.3 INSTANCE 
 

 Section 12.3.4.3 explained the use of instance pointers when scheduling processes.  
When cancelling a process, which uses instance pointers, the keyword INSTANCE may be used.  
The values of the instance pointers listed after the keyword INSTANCE will be matched with 
those for scheduled versions of the process to determine which occurrence of the process is to be 
cancelled. 
 

 If the keyword INSTANCE is omitted, the first occurrence of the named process instance 
will be cancelled.  (All occurrences will be cancelled if the ALL option is used.) 
 

 Any numeric literals listed in an INSTANCE clause must be integers.  Attribute_names 
listed in an INSTANCE clause must represent INDEX_1, INDEX or INTEGER attributes and 
must not be subscripted. 
 

 The special wildcard symbol  ' * ' may appear in an INSTANCE clause to indicate that all 
values of that pointer will be considered as matches when determining which occurrences of the 
process should be cancelled. 
 
Examples 
 
 CANCEL FAULT INSTANCE FAULT CODE 
 CANCEL ALL FAULT 
 CANCEL FAULT INSTANCE * 
 CANCEL RESTART INSTANCE PART NUMBER,* 
 
 
12.3.5.4 CANCEL By Generic Names 
 

 Processes can be cancelled by their generic names.  Section 12.3.3.2 described calling a 
process by its generic name.  All of the discussions in that section apply to cancelling a process 
by its generic name. 
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12.4 TASK LEVEL CONTROL STATEMENTS 
 
 In a real-time control system, one must be able to control multiple tasks that run on a 
single processor, allowing them to have access to processor resources by turning them on and off 
in a synchronized manner, or on a carefully managed as needed basis.  On a parallel processor, 
one must be able to have them run concurrently to maximize speed.  Again, one must be able to 
synchronize those processes that may run concurrently.  We note that a simulation is a task. 
 

 In some cases, tasks may be part of a family that starts with a top level task.  In other 
cases, a task may be part of a different family; this is described in Section 12.4.6. 
 

 In either case, to exchange information among tasks, one must share Inter-Task 
Resources.  In the case of a family of tasks, these are Local Inter-Task Resources.  Information 
shared between tasks that are not in the same family must use Global Inter-Task Resources. 
 

 In the case of tasks within a family, one must have more control, and VisiSoft provides 
the following statements: 
 

•    START a TASK        - This provides for starting and initializing a task so that it is 
running. 

 

•    SUSPEND a TASK       - This allows for suspension of a running task.  For example, 
a task may want to suspend itself. 

 

•    RESUME a TASK       - This provides for running a task that has been started but is 
suspended. 

 

•    TERMINATE a TASK - This shuts down another task so that it can no longer run. 
 

•    STOP - This stops the Task. 
 
 There are two ways to start family tasks.  One is to create a TASK CONTROL 
SPECIFICATION as described in Chapter 13.  The control specification names the lead-off 
process for that task.  When the control specification runs, it starts with the lead process. 
 

 The other way to start a task is by using the START statement inside a process.  The 
following sections describe the statements that support the above task control functions from 
within a process. 
 
 
12.4.1 STARTING A CONCURRENT TASK 
 

 To use the START command within a process, the designer chooses the point at which he 
wants to start a subordinate task within the controlling task, and issues a START statement.  This 
statement has the following format: 
 

START task name [[AND]WAIT] [WITH WINDOW [WITH TITLE_REGION title_name]] 
 

where task_name includes a fully qualified path name of up to 60 characters total.  Specifically, 
they can be fully qualified path/file names. 



Software Theory             Page  12 -  44  

 If the WAIT option is used, the current task will be suspended until the newly stated task 
is suspended or terminated.  Otherwise, task_name starts running concurrently.  If the WINDOW 
option is used, a window is opened for the newly started task.  This statement can appear in any 
rule in a task. 
 
 
12.4.2 SUSPENDING A TASK  
 

 Once a task is running, it can be suspended, i.e., it would not be actively running, but not 
terminated.  A task can be suspended from within itself by using the SUSPEND command.  The 
format for this command is as follows: 
 

   FOR delta_time
SUSPEND  THIS TASK  

UNTIL specified_time
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
where delta_time is a time difference and specified_time is a clock time.  If a task is already 
suspended, this command will only affect the time parameters, taking precedence over prior 
commands.  When a task is suspended without the timer options, it will be suspended until 
resumed. 
 

 The designer must be concerned about the state of the system before and after a task is 
suspended.  Particularly, how is the state of a task preserved when suspended?  For example, if it 
is in the middle of an I/O instruction, e.g., getting input from the mouse or waiting for a tape 
unit, suspension may be questionable. 
 
 
Suspending Tasks Using the Time Parameters 
 

 Handling suspensions using the time parameters - delta_time and clock_time - will 
depend upon the accuracy limitations of the operating system being used.  When a task is 
suspended using these time parameters, it can be resumed using the RESUME command, Section 
12.4.3, prior to the timer running out.  In this case, the designer must determine whether or not to 
suspend the task again to complete the time-out requirement. 
 
 
12.4.3 RESUMING A SUSPENDED TASK 
 

 A suspended task can be resumed immediately by another task.  The statement to do this 
is defined below. 
 

task_name
RESUME 

task_attribute
⎧ ⎫
⎨ ⎬
⎩ ⎭
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12.4.4 TERMINATING A TASK 
 

 To terminate a task or a subordinate task from a controlling task, one uses the 
TERMINATE statement.  The format is as follows: 
 

THIS TASKTERMINATE task_name

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭  

 
 When a controlling task is terminated using the TERMINATE statement, all subordinate 
tasks are also terminated. 
 
 
12.4.5 STOP STATEMENT 
 

 The STOP statement allows the user to terminate that section of the simulation 
containing the STOP statement, either immediately or at a specified point in the future, after 
which time all scheduled processes will not be run.  Refer to Chapter 10 describing the sections 
of the Simulation Control Specification. 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

ode]priority_c PRIORITY [WITH  
nameattribute_

teralnumeric_li
 

IN

AT
  STOP

 
 
 The keyword STOP may be used alone, or one of the AT or IN phrases may be included 
to specify when the task is to end.  When such a phrase is used, the numeric literal or 
attribute_name should contain a value, which CLOCK_TIME (simulation clock) is expected to 
reach during the task.  Time units may optionally be specified here (refer to Appendix 3).  If the 
priority is not specified, it will automatically be set to 100 to allow the completion of all 
previously scheduled processes at that time. 
 
12.4.6 RUNNING A SCRIPT OR TASK 
 

 To run a script or task, one uses the RUN statement.  The format is as follows: 
 

RUN ‘[path | environment_variable] script_or_task_name’| 
 attribute_name [AND WAIT] 

 
 The script_or_task_name is the full name of the OS level script or binary executable task 
name.  path is the relative path or absolute path to the script or task.  The 
environment_variable  is the OS level environment_variable affecting the path.  The maximum 
length between the quotes is 256 bytes.   If the AND WAIT clause is used, the RUN statement 
will not return until the script or task completes execution. 
 

 With respect to tasks, the major difference between START and RUN is that a task 
executed by the RUN statement will not be in the same task family as the parent task.  This 
implies that the task executed by the RUN statement must share global intertask resources with 
the task containing the RUN statement and the task control statements that apply to a family 
(SUSPEND, RESUME, and TERMINATE) are not applicable. 
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12.5 I/O STATEMENTS 
 

 The full complement of Input/Output (I/O) and file handling statements are available in 
GSS.  The possible statement types are outlined below: 
 
  SEQUENTIAL  DIRECT  
ACCEPT READ   READ  OPEN  DYNAMIC FILE 
DISPLAY WRITE  WRITE CLOSE ASSIGNMENT 
PRINT 
TRACE 
 
  ACCEPT, DISPLAY, PRINT, and TRACE may be used in any process to read 
information from a keyboard and write information on a terminal screen or printer file, 
respectively.  Files are sequential or direct, and access data with read and write statements.  
OPEN and CLOSE statements are used to begin and end, respectively, using a file.  If data is 
formatted in ordered sequences of columns, either alphanumeric or numeric, it can be handled by 
conforming to the Standard File Interface (SFI) formats, and the user need not write any file 
access statements.  The possible I/O statements are described next. 
 
 
12.5.1 ACCEPT STATEMENT 
 

 The ACCEPT statement enables a process to receive direct input from a terminal 
keyboard or from special computer functions. 
 

DATE
ACCEPT attribute_name  FROM  DAY

TIME

⎡ ⎤
⎢ ⎥⎧ ⎫
⎢ ⎥⎪ ⎪⎪ ⎪
⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎩ ⎭
⎢ ⎥⎣ ⎦  

 
 If the optional FROM clause is omitted, the process will wait until an entry is received 
from the keyboard.  For this reason, the ACCEPT statement is normally preceded by a 
DISPLAY statement which puts a prompt or message on the screen to which the keyboard is 
attached.  The value entered at the keyboard will be placed directly in the named resource 
attribute. The value entered must be compatible with the attribute type (INTEGER, 
CHARACTER, STATUS, etc.).  The maximum size of an attribute in an ACCEPT statement is 
80 characters.  Optionally, the ACCEPT statement may be used to set a resource attribute value 
using one of the special functions DATE, DAY, or TIME as described below. 
 
ACCEPT Examples 
 
 ACCEPT STARTING VALUE 
 ACCEPT TODAYS DATE FROM DATE 
 
 



Software Theory             Page  12 -  47  

12.5.1.1 DATE Option 
 

 This option creates an eight-digit number representing the current date, and places it in 
the named attribute.  The attribute type must be INTEGER.  The first four digits represent the 
year, the next two represent the month and the last two give the day.  July 14, 1984, for example, 
would be 19840714. 
 
 
12.5.1.2 DAY Option 
 

 This option creates a five-digit number representing the current date, and places it in the 
named attribute.  The attribute type must be INTEGER.  The first two digits represent the year 
and the remaining three represent the day number within the year.  July 14, 1984, for example, 
would be 84196. 
 
 
12.5.1.3 TIME Option 
 

 This option creates an eight-digit number representing current real time.  (Note that this 
will, in general, be different from the simulated time value represented by CLOCK_TIME).  The 
type of the named attribute must be INTEGER.  The first two digits represent the hour (24-hour 
clock), the next two represent minutes, the next two represent seconds and the last two represent 
hundredths of a second.  Twenty-two minutes 10.3 seconds after 3:00p.m., for example, would 
be 15221030. 
 

 The accuracy of the time will depend on the time accuracy of the machine used (i.e., 
some machines may not have accuracy of hundredths of a second). 
 
 
12.5.2 DISPLAY STATEMENT 
 

 This statement causes an attribute value or nonnumeric literal to appear immediately on 
the terminal screen. 
 

attribute_name_1 attribute_name_nDISPLAY    ,... nonnumeric_literal_1 nonnumeric_literal_n

⎡ ⎤
⎢ ⎥⎧ ⎫ ⎧ ⎫

⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭
⎢ ⎥⎣ ⎦  

 
 As many attribute names or literals as required may be listed, separated by commas.  
When displayed, they will appear directly after each other on one line.  The quotation marks 
surrounding nonnumeric literals will not be displayed. 
 
DISPLAY examples 
 
 DISPLAY TOTAL COUNT 
 DISPLAY 'ENTER STARTING VALUE' 
 DISPLAY 'TOTALS WERE ', TOTAL SENT, ' ', TOTAL RECEIVED 
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12.5.3 PRINT STATEMENT 
 

 This statement causes an attribute value or nonnumeric literal to be output to the file 
specification_name.LIS once the task is complete.  The specification_name is the name of the 
task control specification used to run the task (refer to Chapter 10). 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

_literal_nnonnumeric

name_nattribute_
,...  

_literal_1nonnumeric

name_1attribute_
  E][START_PAG PRINT

 
 
 As many attribute names as required may be listed, separated by commas.  When printed, 
they will appear directly after each other on one line.  Each PRINT statement causes a new line 
to be started on the output file.  If the optional START_PAGE keyword is used a new page is 
started before printing the specified items. 
 
 
12.5.4 TRACE STATEMENT 
 

 This statement operates like a PRINT statement, placing specified resource attribute 
values on the special trace file 'specification-name.TRC'.  Unlike a PRINT statement, however, a 
TRACE statement may be selectively activated without changing the process in which it appears.  
This facility is particularly useful when detailed examination of the changing values of attributes 
may be required, for example when debugging. 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

_literal_nnonnumeric

name_nattribute_
,...  

_literal_1nonnumeric

name_1attribute_
  E][START_PAG TRACE

 
 
 To activate a TRACE statement, the task control specification must contain the keyword 
TRACE (see Section 13.1.5).  The code for these TRACE statements will only be incorporated 
with the prepared process when one of the TRACE options is selected when preparing the 
process.  One can turn the trace facilities ON and OFF during the course of a simulation by using 
the following statements in a process.  The TURN TRACE ON statement is required when 
tracing processes that are incorporated into an RTG task, such as a background overlay module, 
since the RTG task is not started from the control specification. 
 

⎡ ⎤
⎢ ⎥
⎣ ⎦

TURN TRACE ON

TURN TRACE OFF
 

 
 These statements facilitate producing short traces at specific times or about specific 
functions that would otherwise generate large trace outputs.  They are required when tracing 
graphics processes. 
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12.5.5  READ AND WRITE SEQUENTIAL FILE STATEMENTS 
 

 These statements enable sequential data records, structured by resources, to be read and 
written from/to an external file.  They may only be used in a process, which interfaces with that 
file.  Sequential data files may be used as input to a simulation run, or created as output from a 
simulation run.  The maximum record size is 32,000 bytes for any VSE sequential file.  To 
access a VSE file, the user must create a resource that corresponds to the record structure of the 
file. 
 

 File icons are used to connect an external resource to the desired file, whether it is used 
for input or output.  Examples of this are shown in Figure 12-4.  The external input file, 
INDEX_INPUT, will be connected to the resource, INDEX_INPUT_INTERFACE, and the 
external output file, INDEX_OUTPUT, will be connected to the resource, 
INDEX_OUTPUT_INTERFACE. 
 

DBASEMODULES  05/10/05

INDEX_INPUT_
MANAGER

INDEX_INPUT_
INTERFACE

INDEX_INPUT_MANAGER
INDEX_INPUT

INDEX_OUTPUT_
MANAGER

INDEX_OUTPUT_
INTERFACE

INDEX_OUTPUT_MANAGER
INDEX_OUTPUT

 
 

Figure 12-4.  Examples of external input and output files. 
 
 Data may be read using the keywords OPEN and READ, and written using the keywords 
OPEN and WRITE.   These files may contain the following types of records: 
 
 
FIXED Length Sequential 
 

 The FIXED length record format provides for sequential access to fixed length records 
created by previous simulation runs on the same platform.  It can also be used to transfer data 
across platforms, provided that the data is in readable or printable character form, or the 
platforms are compatible.  If these files contain integers, real, double precision real, etc. type 
attribute data, where the internal binary representation of these attributes typically falls outside 
the range allowed by the system editor or printer, then they would produce unpredictable results 
if edited, printed, or read on another platform. 
 
 
VARIABLE Length Sequential 
 

 The VARIABLE length record format provides for sequential access to variable length 
records created by previous simulations on the same platform.  Variable length records can be 
used to compress large databases.  This format can also be used to transfer data across platforms, 
provided that the data is in readable or printable character form, or the platforms are binary 
compatible.  If these files contain integers, real, double precision real, etc. type attribute data, 
where the internal binary representation of these attributes falls outside the range allowed by the 
system editor or printer, then they would produce unpredictable results if edited, printed, or read 
on another incompatible platform, unless the user knows the translation codes. 
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 Variable length files are of two types: 
 

• USER KNOWN - It is up to the user to read the correct number of bytes. 
 

• AUTOMATIC - The system records and reads the number of bytes automatically. 
 
 
TEXT Sequential 
 

 The TEXT format provides for sequential access to records on files created by the 
keyboard editors for that platform and operating system, or created by previous simulation runs 
using TEXT file format.  TEXT files must contain only printer recognizable characters or text 
type data, e.g. attributes of type character or decimal (as opposed to binary integer or real data).  
These files may contain records of variable length, separated by an end-of-record designator for 
the platform, typically a line feed character. 
 
 
12.5.5.1 WRITE Sequential File Statement 
 

 To WRITE to a Sequential File, one writes the resource connected to that file (only one 
can be connected).  This is done using the following WRITE statement. 
 

WRITE resource_name [[WITH] SIZE = size_attribute] [WITHOUT LINEFEED] 
 
 The named resource must have been specified as EXTERNAL in the resource list for the 
process containing this statement (refer to Section 3.8.2).  For sequential files (FIXED, 
VARIABLE, or TEXT), the WRITE statement copies the named resource into the next 
sequential record for the external file.  For FIXED length record files, the record size matches 
the resource size, and no delimiters exist between records in the file.  Neither the SIZE = option 
or the WITHOUT LINEFEED option apply.  Fixed length record files must be read using the 
same fixed length record size used when they were written, reference Section 12.5.5.2. 
 

 For VARIABLE length record files, the user must specify whether the external resource 
record length will be AUTOMATIC (A) or USER KNOWN (U) when read (refer to 
Section 4.1.3).   If the SIZE = size_attribute option is not used, the default SIZE will be the size 
of the resource, which is also the maximum record size.  Otherwise the record SIZE is 
determined by the size_attribute in the WRITE statement.  The maximum value of SIZE is 
limited to 32,000, the maximum record size in bytes.  When the AUTOMATIC option is used, 
the record SIZE is recorded in a special two byte field ahead of the physical record; this SIZE is 
then available upon reading a variable length record file, reference Section 12.5.5.2. The 
WITHOUT LINEFEED option does not apply to variable length records. 
 

 For TEXT files, both the SIZE = size_attribute option, and the WITHOUT LINEFEED 
option may be used.  If the WITHOUT LINEFEED option is not used, the record will be one 
byte greater than the specified SIZE or resource size, and will contain the "line feed" character 
recognized by the system editor and printer of the platform.  If the WITHOUT LINEFEED 
option is used, then no line feed character will be inserted after the record, and no delimiter will 
exist between it and the subsequent record. 
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 If the SIZE = size_attribute option is used, the record will be the length specified by the 
size_attribute.  If it is not used, then the record size defaults to the resource size. 
 
WRITE Sequential examples 
 
 WRITE OUTPUT MESSAGE 
 WRITE TRANSMISSION RECORD  WITH SIZE = MESSAGE_LENGTH 
 WRITE PRINTER RECORD  WITH SIZE = ESCAPE_SEQNCE_SIZE 
 WITHOUT LINEFEED 
 
 
12.5.5.2 READ Sequential File Statement 
 

 To READ to a Sequential File, one reads the resource connected to that file (only one can 
be connected).  This is done using the following READ statement. 
 

statement AT_END           

 
butesize_attri = SIZE [WITH]

SIZE = butesize_attri [WITH]
 ameresource_n READ ⎥

⎦

⎤
⎢
⎣

⎡

 
 
 The named resource must have been specified as EXTERNAL in the resource list for this 
process (refer to Section 3.8.2).  For sequential files (FIXED, VARIABLE - AUTOMATIC, 
VARIABLE - USER KNOWN, or TEXT), the READ statement copies the next sequential 
record from the external file into the named resource.  For FIXED length record files, the record 
size must match the resource size, and neither SIZE option applies. 
 

 For VARIABLE length record files, the user must specify whether the incoming record 
lengths will be AUTOMATIC or USER KNOWN.  If USER KNOWN, the SIZE = size_attribute 
must be used, else the default size will be the size of the resource, which cannot exceed the 
maximum record size of 32,000 bytes.  If AUTOMATIC is used, the record SIZE is 
automatically read from a two-byte field ahead of the physical record.  The user may use the 
size_attribute = SIZE  option to obtain the size of each record read.  If the record size is smaller 
than the external resource size, spaces will be inserted; if the record size is larger, it will be 
truncated. 
 

 For TEXT files, records are delimited by the recognized linefeed character of the file, and 
can be of variable length.  Use of the size_attribute = SIZE is optional, and is provided so the 
user can obtain the size of each record read.  If the record size is smaller than the external 
resource size, spaces will be inserted; if the record size is larger, it will be truncated. 
 

 The AT_END clause must be used to control what happens when the process attempts to 
read past the end of the external file.  Only the first simple statement following the AT_END 
keyword will be in the AT_END clause, and this cannot be a conditional statement. 
 

READ Sequential examples 
 
 READ EXTERNAL FILE 
  AT END  EXECUTE SYNTAX CHECK 
 
 READ EDITOR_FILE WITH RECORD_LENGTH = SIZE 
  AT_END  SET FILE_STATE TO END_OF_FILE 
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12.5.6  READ AND WRITE DIRECT ACCESS FILE STATEMENTS 
 

 These statements enable direct access data records, structured by resources, to be read 
and written from and to an external file.  They may only be used in a process, which interfaces 
with that file. 
 

 Direct access files are accessed as INPUT_OUTPUT, and records may be read and 
written in any desired order using a relative access key (refer to Sections 12.5.6.1 and 12.5.6.2).  
These files can only be accessed by GSS on the same platform and operating system on which 
they were originally created. 
 

 Before a direct access file can be written or read as INPUT_OUTPUT, it must first be 
created so that the relative record keys used by the record_id are known to the operating system.  
The procedure for creating a direct access file is described in Section 12.5.6.3. 
 
 
12.5.6.1 WRITE Direct File Statement 
 

 To WRITE to a Direct Access File, one writes the resource connected to that file (only 
one can be connected).  This is done using the following WRITE statement. 
 

WRITE  resource_name  RECORD  [TO]  record id 
 

  [IF] INVALID RECORD statement 
 
 For Direct Access files, the WRITE statement copies the named resource into the record 
specified by record_id; the fixed-length record size will match the resource size.  Record_id 
must be either type INTEGER, INDEX or INDEX_1 and defines the record number relative to 
the beginning of the file.  The INVALID_RECORD clause must be used to control what happens 
when the process attempts to WRITE to a record_id (key) that does not correspond to a record 
on the external file, reference Section 12.5.6.3.  Only the first statement following the 
INVALID_RECORD keyword will be in the INVALID_RECORD clause. 
 
WRITE Direct Access File example 
 
  WRITE NEEDLINE_DATA RECORD TO NEEDLINE_NUMBER 
   IF INVALID RECORD EXECUTE ERROR PROCEDURE 
 
 



Software Theory             Page  12 -  53  

12.5.6.2 READ Direct File Statement 
 

 To READ to a Direct Access File, one reads the resource connected to that file (only one 
can be connected).  This is done using the following READ statement. 
 

READ  resource_name   RECORD  [FROM]  record id 
 

 [IF] INVALID RECORD statement 
 
 For direct files, the READ statement copies the record specified by record_id into the 
named resource; the fixed-length record size must match the resource size.  Record_id must be 
either type INTEGER, INDEX or INDEX_1 and defines the record number relative to the 
beginning of the file.  The INVALID_RECORD clause must be used to control what happens 
when the process attempts to read using a record_id (key) that does not correspond to an existing 
record on the external file, reference Section 12.5.6.3.  Only the first statement following the 
INVALID_RECORD keyword will be in the INVALID_RECORD clause. 
 
READ Direct example 
 
  READ NEEDLINE_DATA RECORD FROM NEEDLINE_NUMBER 
   IF INVALID RECORD EXECUTE ERROR PROCEDURE 
 
 
12.5.6.3 CREATING a Direct Access File 
 

 Before a Direct Access File can be accessed, it must be created.  To do this, one must 
build a special create utility tailored to create a new file.  This utility must put the desired 
number of records onto the file.  If the file size is to be changed, then a new file must be created, 
and the old file contents copied into the new file.  With this in mind, one should allow for the 
maximum number of records anticipated when creating the file. 
 

 When creating a direct access file, it must be opened as OUTPUT, not INPUT_OUTPUT.  
The external resource describing the record on the file must have its record type declared as 
DIRECT.  To create the file, one simply writes records sequentially to the file using the WRITE 
statement below. 
 

WRITE  resource_name  RECORD 
 
 The size of the direct access file is determined by the number of records written.  If a 
direct access file is required that can store a maximum of 100,000 records, then the user must 
create this file by writing 100,000 records sequentially during the create process. 
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12.5.7  OPEN STATEMENT 
 

 Before an external file may be used by a process, it must be named in an OPEN 
statement.  This serves to open the appropriate external file. 
 

OPEN  

INPUT

OUTPUT

INPUT _ OUTPUT

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

 resource_name 

 
 For sequential files, the keyword OPEN is used with either the word INPUT or OUTPUT 
to indicate the usage of a resource within the process.  INPUT resources may subsequently be 
read, and OUTPUT resources may subsequently be written.  A sequential file may not be both 
read and written on the basis of one OPEN statement. 
 

 For direct access files, the keyword OPEN is used with the word INPUT_OUTPUT to 
indicate that relative type external resources may be either read or written directly, except when 
they are being created, in which case they must be opened as OUTPUT. 
 
OPEN examples 
 
 OPEN INPUT INPUT MESSAGE 
 

 OPEN OUTPUT TRANSMISSION 
 

 OPEN INPUT OUTPUT NEEDLINE FILE 
 
 
12.5.8  CLOSE STATEMENT 
 

 This statement terminates the effect of the most recent OPEN statement for a specific 
named resource.  Its effect is to close the external file. 
 

CLOSE  resource_name 
 
 No READ or WRITE statements may be used for this resource once the CLOSE 
statement is written.  However, the same resource may be accessed more than once in the same 
process, possibly with different purposes (INPUT or OUTPUT).  Each OPEN statement, 
however, must be paired with a CLOSE statement. 
 
CLOSE example 
 
 CLOSE NEEDLINE FILE 
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12.5.9 DYNAMIC FILE ASSIGNMENT 
 

 When running tasks that read and write various device resources, e.g., data files on disk 
or tape, communication channels, the keyboard and screen, it is necessary to describe the 
external device or file record formats as GSS EXTERNAL resources.  The names of these 
external resources are then used internally in READ and WRITE statements. 
 

 In an on-line interactive environment, it is desirable to make these file assignments 
dynamically, so that new files can be created and read while the task is running.  One may also 
want to access different files depending upon input to the simulation at the time.  To perform 
these functions, it is necessary to be able to make dynamic external resource assignments within 
a process, and to test the existence and contents of these resources.  The dynamic file assignment 
statement links the external resources and the external files during execution of the process by 
equating their names.  The format for this statement is as follows: 
 

  file_nameASSIGN    TO external_resource_name attribute_name

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭  

 
 In this statement, file_name must contain a nonnumeric literal, of up to 40 characters, that 
represents a fully qualified file_name, including a path_name/file_name within the context of the 
users directory and the operating system conventions.  If no path_name is specified, the users 
current directory is the default.  The file_name itself must satisfy the definition described under 
EXTERNAL RESOURCE. 
 
Example of assigning files to external devices 
 
 IF MY EXTERNAL FILE EXISTS 
  AND MY EXTERNAL FILE IS NOT EMPTY 
   ASSIGN MY EXTERNAL FILE TO EXTERNAL RESOURCE NAME. 
  . 
  . 
  . 
 OPEN INPUT EXTERNAL RESOURCE NAME 
 READ EXTERNAL RESOURCE NAME 
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12.6 COMMUNICATIONS CHANNEL STATEMENTS 
 
 The External TCP/IP Communications Channel Resource and Communications Channels 
are described in the GSS and VSE User’s Manuals.  This section describes the process 
statements associated with these Communications Channels.  Use of these process statements 
makes communications over a TCP/IP connection easy and straight-forward and avoids the 
complex, low-level details usually associated with using TCP/IP that are encountered in other 
languages. 
 
 
12.6.1  SEND STATEMENT 
 

 The SEND statement is used to send information over a TCP/IP Channel after it has been 
opened.  When the WITH SIZE clause is omitted, the resource size is used.  The ON_FAIL 
condition would be true if, for example, a client attempted to send, and the server had gone 
down.  In this case the GSS statement following ON_FAIL would be executed. 
 

SEND resource_name

numeric_literal
      [WITH SIZE ]

numeric_attribue

      [ON_FAIL  statement ]

⎧ ⎫
⎨ ⎬
⎩ ⎭

 
 
 
12.6.2  RECEIVE STATEMENT 
 

 The RECEIVE statement is used to receive data coming over the TCP/IP 
Communications Channel.  When the ON_INSUFFICIENT_DATA option is used, the receive is 
non-blocking; if used in conjunction with the WITH SIZE clause, attribute_name will return the 
number of characters received.  When the ON_INSUFFICIENT_DATA option is omitted, the 
receive is blocking and hangs until the requested amount of data is available. 
 

RECEIVE resource_name

numeric_literal
      [WITH SIZE ]

numeric_attribute

      [ON_INSUFFICIENT_DATA  statement ]

      [ON_FAIL  statement ]

⎧ ⎫
⎨ ⎬
⎩ ⎭

 
 
 The ON_FAIL option for RECEIVE is not implemented in the current release. 
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12.6.3 IF EXISTS STATEMENT  (Not implemented in the current release) 
 

 Since TCP Communication Channels require connections, they have to be opened before 
they can be used.  The IF EXISTS syntax tests whether or not a TCP connection has been 
established and is currently open for a given channel.   
 

EXISTS
IF resource_name  CHANNEL  

DOES NOT EXIST
⎧ ⎫
⎨ ⎬
⎩ ⎭  

 
 
12.6.4 CONNECT STATEMENT 
 

 Since TCP/IP Communication Channels require connections, they cannot be used before 
they are established.  The connect statement is used to setup these connections.  One form is 
used for Clients and another form is used for Servers.  On either form, when the TIME_OUT 
option is used, TCP opens will return after TIME_OUT seconds if unsuccessful and will set the 
ON_FAIL condition to true.  Otherwise, unsuccessful TCP opens will hang indefinitely. 
 

 If the server_name or ip address is not provided, the CLIENT channel will be connected 
to the server specified when the channel is created.  If the port_number is not provided, the 
channel will be connected to the port specified when the channel is created. 
 

CONNECT CLIENT  resource_name

server_name
       [TO SERVER  [TO] [PORT ip_port_number]]

ip_address

numeric_literal
       [TIME_OUT  ]

numeric_attribute

       [ON_FAIL  statement ]

where   serve

⎧ ⎫
⎨ ⎬
⎩ ⎭
⎧ ⎫
⎨ ⎬
⎩ ⎭

non_numeric_literal
r_name =     

non_numeric_attribute

non_numeric_literal
        ip_address  =     

non_numeric_attribute

numeric_literal
        ip_port_number =  

numeric_attribute

⎧ ⎫
⎨ ⎬
⎩ ⎭
⎧ ⎫
⎨ ⎬
⎩ ⎭
⎧ ⎫
⎨ ⎬
⎩ ⎭

 
 
 For the Client, server_name can take the form ‘MY_SERVER.COM’.  Use of this form 
requires that the platform running GSS have access to a Domain Name Server (DNS) to translate 
the supplied server_name to an IP address. 
 

 The server_name can be supplied as either a non_numeric_literal as in the example 
given, or by virtue of a reference to a non_numeric_attribute, e.g., SERVER_NAME.  The Client 
CONNECT statement can also accept a conventional IP address, e.g., 135.23.167.52, which can 
be supplied as a non_numeric_literal or as a non_numeric attribute, e.g., 
IP_ADDRESS_ATTRIBUTE.   
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 Also both Client and Server can take an optional IP Port number in either numeric literal 
form or by reference to a numeric attribute.  To connect the server to a port, the following format 
is available. 
 

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

CONNECT SERVER resource_name

      [TO PORT ip_port_number]

numeric_literal
      [TIME_OUT ]

numeric_attribute

      [ON_FAIL statement]

numeric_literal
where  ip_port_number=  

numeric_attribute  
 
 
12.6.5  CLOSE STATEMENT 
 

 When a TCP/IP channel is closed, the connection it represents is closed.  It can be 
reopened with the OPEN syntax. 
 

CLOSE  resource_name  
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12.7 SYSTEM LEVEL STATEMENTS 
 
 System Level statements are calls to the operating system (OS).  To make use of these 
statements, they must be recognized by the OS.  VPOS is designed to recognize these statements. 
 
 
12.7.1 EVENT SYNCHRONIZATION (WAIT UNTIL)  STATEMENT 
 

 As defined in Chapter 11 Section 11.4.3.6, EVENTS occur at the system level and are 
handled by the OS.  Events in one task or IND module can be used to change the state of another 
task or IND module such that the actions of both are synchronized.  Synchronization is 
accomplished by the WAIT UNTIL statement whose format is defined below. 
 

WAIT UNTIL event_name IS alias_name 
 
 The WAIT UNTIL synchronization statement causes a process in an IND Module or task 
to WAIT UNTIL a particular EVENT state has taken on a specified value.  To operate properly, 
the process containing the WAIT statement must be restarted by the OS in a manner that is 
synchronized with processes on different processors in the same task, or processes in other tasks.  
Thus the OS implementation must be designed to support an intricate and immediate succession 
of such statements. 
 

 The following is an example of the WAIT UNTIL statement. 
 
Example 
 

IF INPUT_EVENT IS STOP 
    WAIT UNTIL INPUT_EVENT IS GO . 

 

 The above statement implies that, when the INPUT_EVENT state is changed to GO by 
another process, the process in the WAIT state will continue immediately thereafter on a 
synchronized basis determined by the application system design. 
 
 
12.7.2  FREE MEMORY RESOURCE STATEMENT 
 

 The FREE resource_name MEMORY statement tells the OS that the named resource will 
no longer be used by the task.  This statement does not apply to IT or IP resources. 
 

FREE resource_name [MEMORY] 
 
 When this statement is executed, the OS frees the memory previously assigned to this 
resource, and it becomes immediately available for reassignment.  The following is an example 
of the FREE MEMORY statement. 
 
Example 
 

FREE SHARED_RESOURCE_5 MEMORY 
 



Software Theory             Page  12 -  60  

12.7.3 RELEASE OF AND ACCESS TO IP RESOURCES 
 

 These statements only apply to processes that write or read IP resources.  An IP resource 
must reside within an IND module, and may only be written by processes within that same IND 
module.  It may be read by multiple processes, including those outside the IND module in which 
it resides. 
 

 When a process writes to an IP resource, that resource is automatically released to those 
that read it immediately after the process that writes it has completed.  Processes that read an IP 
resource are automatically given access to it immediately before they start to run. 
 

 In some cases, a process that writes to an IP resource may run for a while after it puts 
data into the IP resource, e.g., when reading or writing files,.  In these cases, it may want to 
RELEASE the IP resource prior to its completion so that processes reading it from outside that 
IND module have access to the latest copy.  If it is updating the IP resource multiple times while 
it runs, taking time to perform other processing in between, it may want to RELEASE the 
resource multiple times while it is running, so that other processes can access the latest copies 
that are produced. 
 

 Conversely, processes that are reading IP resources that reside outside their IND module 
may be taking time to perform processing before accessing them, and therefore may need to 
ACCESS the latest copies while performing substantial processing in between.  In this manner, a 
process can ensure having ACCESS to the latest copy of an IP resource immediately before its 
use.  To support these functions, the following RELEASE and ACCESS statements are available 
to the corresponding writers and readers. 
 

RELEASE IP_resource_name 
ACCESS  IP_resource_name 

 
 The above synchronization actions are often used with the Event Synchronization 
statement (WAIT UNTIL).  The use of these statements is easily determined by application 
experts who understand the underlying need for synchronization at the application level. 
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13. TASK CONTROL SPECIFICATION 
 

 The content of the Control Specification is outlined in Figure 13-1 below. 
 

 
 

Figure 13-1.  Skeleton structure for a control specification. 
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 This skeleton structure shown in Figure 13-1 is provided automatically under the 
Architecture Subsystem.  Each section is described below.  Precede comments with ***. 
 
 
13.1 CONTROL SECTION 
 

 This section is used to specify top level controls for the run.  These controls are 
embodied in the following statements. 
 
 
13.1.1 TITLE, control_specification_name 
 

 This statement provides a long title for the run which will appear on all output.  The 
format is as shown above.  The control specification title may consist of any combination of 
VISISOFT characters, up to a maximum of 48.  Double quotes may not be used. 
 
 
13.1.2 RUN_TYPE 
 

 This statement determines whether multiple runs are to be invoked.  The keyword RUN 
must be used.  The statement format is:  
 

Format 
 

 

    n TIMES
RUN MULTIPLE_TIMES  

   OPTIMIZE

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 

 
where n is a positive integer.  If the keyword RUN is used by itself, VisiSoft assumes that only 
one run is required.  For n > 1, VisiSoft will execute as many runs as specified, reinitializing the 
run time clock (CLOCK_TIME) before beginning each run. 
 

 The multiple run option is set up so each run generates a different statistic.  This is done 
by providing a different random number seed at the beginning of each run.  To reset the seed so 
that each run starts with the same seed, insert the following statements when initializing each 
run: 
 

SEED                 CHAR 12 
MOVE SPACES TO SEED 
ANY_ATTRIBUTE = RANDOM(SEED) 

 

where ANY_ATTRIBUTE is any numeric attribute (e.g., DREAL) available to the process 
containing the statement.  RANDOM is the random number generator (defined as DREAL in 
VisiSoft), and SEED stores the random number generator seed for the next call.  One may reset 
the random number seed at any time during a run by moveing spaces to SEED.  One may also 
store multiple SEEDs to maintain different sequences of random numbers.  See Appendix 2 for 
more information. 
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 If the keywords RUN MULTIPLE TIMES are used then, at run time, VisiSoft will 
prompt for the number of runs before beginning the run.  This feature allows the number of runs 
to be easily varied without repreparing the control specification each time. 
 
 Both the current run number and the number of runs to be run may be accessed in a 
process by using the reserved words RUN_NUMBER and NUMBER_OF_ RUNS.  Process 
statements should not assign values to either of these reserved words.  These can be used in a 
conditional statement as follows. 
 
 IF RUN_NUMBER IS EQUAL TO NUMBER_OF_RUNS 
     EXECUTE COMPUTE_FINAL_TOTALS. 
 
 
13.1.3 OPTIMIZE 
 

 This statement is used in lieu of RUN when the optimization option is selected.  The user 
is referred to the VisiSoft Optimization User's Manual.  This facility contains an easy-to-use 
constrained nonlinear optimization system with excellent convergence properties.  It can be used 
to identify the optimal values for design parameters as well as the optimal parameters for fitting 
models to test data.  It also allows users to define tolerance ranges on any of the parameters so 
that constraints can be evaluated based on realistic worst case tolerance variations around the 
nominal or optimized values. 
 
 
13.1.4 SIM_REAL_RATIO = numeric_literal 
 

 The SIM_REAL_RATIO is used when a run runs faster than real-time.  This statement 
constrains the speed of the run when the SIM_REAL_RATIO provided by the user becomes 
larger then the actual ratio.  Based upon internal system comparisons over small time intervals, 
the run waits for the real-time clock to catch up.  The numeric_literal must be a positive number. 
 
 
13.1.5 TRACE [START_TIME = trace_start_time]   [STOP_TIME = trace_stop_time]  
 
 If it is desired to use the trace facility, the keyword TRACE must appear in a separate 
statement in the CONTROL SECTION.  When the control specification is selected for a run, 
VisiSoft will display the TRACE option box.  At that point it is possible to decline the TRACE 
option for a particular run without changing the control specification.  If the user selects the 
START_TIME, or STOP_TIME option, then these times will be invoked.  If either one of 
START_TIME or STOP_TIME is left out, the beginning or end of the run is substituted 
respectively.  If neither is present, the system will prompt for start time and stop time just prior 
to the run.  If the TRACE option is activated, all TRACE output will be stored in the "file 
specification-name.TRC" for access via the system editor. 
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13.1.6 DISABLE LIST FILE OUTPUTS 
 

 The DISABLE LIST FILE OUTPUTS option is used to disable the list file.  When this 
option is used, the file will not be opened.  If not disabled, the file specification-name.LIS will 
contain Run-time warning/error messages, boundary check messages and outputs generated by 
PRINT statements. 
 
 
13.1.7 DISABLE CONSOLE WINDOW 
 

 The DISABLE CONSOLE WINDOW is used to disable the console window.  When this 
option is used, the window will not be opened. 
 
 
13.1.8 TIME PROFILE 
 

 If it is desired to use the time profile facility, the keyword TIME PROFILE must appear 
as a separate statement in the CONTROL SECTION.  When the task control specification is 
selected for execution, the user will be prompted to determine if the profile option is to be 
activated.  At that point it is possible to decline the profile option for a particular run without 
changing the control specification.  If the profile option is activated, all profile output will be 
stored in the file "specification-name.PRF" for access via the system editor or query functions. 
 
 
13.2 LIBRARY SECTION 
 

 This section allows the user to specify the names of libraries to be used when linking a 
task that uses library modules.  Simply list the names of the files containing the libraries to be 
used, one per line.  The path can also be specified as  “ path / file_name ”.   The number of 
characters is limited to 256. 
 
 
13.3 PARALLEL SECTION 
 

 This section is used to specify top level controls for the run.  These controls are 
embodied in the following statements. 
 
 
13.3.1 NUMBER OF PROCESSORS 
 

 This statement allows the user to specify the number of processors to be used for the run.  
The format is as shown below.  The number of processors may be specified as an integer 
number. 
 

Format 
 

 

         n
NUMBER_OF_PROCESSORS =    

number_of_processors
⎧ ⎫
⎨ ⎬
⎩ ⎭
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13.3.2 IND MODULE ASSIGNMENTS 
 

 This statement allows the user to specify the IND Modules to be used in the run.  The 
format is as shown below.  Using this statement, a named ind_module may be placed on a 
specified processor number.  This statement is repeated to define the number of IND Modules to 
be used in the run. 
 

Format 
 

 

 ASSIGN IND_module_name [(instance_i [, i+N])] TO PROCESSOR[S]  j[, j+N] 
   [, WITH WINDOW [, WITH TITLE_REGION title_name]] 
   [, TRACE[start_time] [, stop_time]] 

 

 
 The top option provides for group assignments of IND module instances to processors.    
The following lines illustrate the assignment option with examples illustrated in Figure 13-2. 
 

• The first option is a single IND module to processor assignment.  As illustrated in the 
first examples, this gets cumbersome as the number of module instances becomes large. 

 

• The second option assigns instances i thru i + N to processors j thru j + N. 
 

• The third option assigns instances i  thru i + N  to processor  K;  
    instances j  thru j + M to processor  L; and 
    instances k thru k + P to processors q thru q + P. 

 

The box below contains an example of code: 
 

 

PARALLEL SECTION
    NUMBER_OF_PROCESSORS = 10
    ASSIGN IND_SCAN_PARTITION_X       TO PROCESSOR 1
    ASSIGN IND_SCAN_PARTITION_Y       TO PROCESSOR 2
    ASSIGN IND_SCAN_PARTITION_Z(1)    TO PROCESSOR 3
    ASSIGN IND_SCAN_PARTITION_Z(2, 8) TO PROCESSOR 4, 10

 
 

 

Figure 13-2.  Examples of IND module to processor assignments. 
 
 Also, WINDOWs may be opened separately for each processor, each with its own title. 
 

 Finally, TRACEs may be specified with start times and end times for each IND Module 
independently as described in Section 13.1.5 above. 
 
 
13.3.3 DELTA_TIME ASSIGNMENT 
 

 This statement allows the user to specify the Delta_Tmax_interval to be used by the Run-
Time System synchronizers to ensure synchronization with the specified interval for the run.  
The format is as shown below.  
 

Format 
 

 

DELTA_TIME = delta_t_max_interval 
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13.4 HLA SECTION 
 
 This section is used to specify the top level controls for a run which is participating as a 
federate in an HLA federation.  The format for these control statements is as follows: 
 

HLA SECTION 
FEDERATION federation_name 
[ FEDERATE  federate_name ] 
[ HLA_EVENT_HANDLER process_name ] 

 
 The “federation_name” specifies the federation to which the current VisiSoft run/federate 
will join. After the run/federate joins the federation, the run/federate will be identified by the 
“federate_name” in the federation name space. If “federate_name” is not specified in this 
section, run name will be used as federate name.  
 
 The HLA_EVENT_HANDLER clause identifies the process_name to be invoked 
automatically when an HLA PUBLISH event for one of the HLA resources in the VisiSoft run 
has occurred.  The process defined as process_name will automatically be invoked by the 
VisiSoft system only when an HLA resource is updated by the RTI/federation.  In this case, the 
HLA event handler process will be called before the next scheduled or called process is 
executed.  The updated HLA resource name is stored in the HLA_UPDATE_RESOURCE 
system attribute.  This attribute is useful when there are multiple HLA resources defined in a run 
because it will identify the specific resource updated for the current PUBLISH event. 
 
 
13.5 GRAPHICS SECTION 
 
 This section is used to invoke the VisiSoft Run-Time Graphics facilities.  Refer to the  
RTG Users Manual for an explanation of this section.` 
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13.6 SECTIONS FOR STARTING PROCESSES 
 
 When starting a run, independent modules are started when one or more of the processes 
in that module are started.  As illustrated in Figure 10.1, the DEFINITION, IDENTIFICATION, 
MODULE, and EVALUATION sections provide for starting processes at multiple points in a 
run.  The processes to be started are identified in the architectural drawing.  These sections in 
the CONTROL SPECIFICATION are used for documentation only.  These sections are invoked 
by the architecture to start processes and corresponding modules as follows: 

 

DEFINITION SECTION - In the case of multiple runs, processes started in this section 
are executed only once, immediately prior to the first run.   This section is used to start 
overall initialization and  set constants, items that need not be repeated each time another 
run begins.  The run-time clock, CLOCK_TIME, is initialized to zero at the start of the 
Definition Section. 
 

IDENTIFICATION SECTION - In the case of multiple runs, processes started in this 
section are executed at the start of each run.  This is the place to start initialization 
processes that zero counters and summary attributes to be output for each run.  Processes 
in this section can be used to set values depending on the results of a previous run.  This 
supports parametric or sensitivity analysis, and optimization.  The value of the clock at 
the beginning of this section will equal its value at the end of the Definition Section (and 
will be reset to this value in the case of multiple runs). 
 

MODULE SECTION -  Processes started in this section represent the main body of the 
run.   The value of the run-time clock at the beginning of this section will equal its value 
at the end of the previous section. 
 

EVALUATION SECTION - In the case of multiple runs, processes started in this section 
are used to evaluate results of each run once it is completed.  Typically these processes 
involve computation of performance measures or summary results such as averages from 
the run.  When using the VisiSoft Optimization option, this section can be used to start 
processes that evaluate constraints and optimization criteria, functions that can only be 
evaluated when a run has completed.  The value of the run-time clock at the beginning of 
this section will equal its value at the end of the MODULE section. 
 

 Processes started in any section may SCHEDULE or CALL other processes, and 
execution will continue, advancing the run-time clock if necessary, until no more processes are 
left to be executed, or until a STOP statement is reached (see Section 9.4.5).  The run will then 
advance to the next section which has designated started processes, or terminate. 
 

 As explained in the Definition, Identification, Module, and Evaluation sections below, 
the Module Section must be used to list the module names that contain processes to be started.  
Processes can be started in any section by designating these sections at the time of process 
creation or modification.  The contents of the Definition, Identification, and Evaluation sections 
are for documentation purposes only and are free format.  In the case of a module containing two 
or more processes that are started in different sections, the user may find it convenient to provide 
appropriate notes, listing processes that are started, in the appropriate sections. 
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13.7 DEFINITION SECTION 
 

 As explained in Section 13.6, this section is for documentation purposes only. 
 
 
13.8 IDENTIFICATION SECTION 

 

 As explained in Section 13.6, this section is for documentation purposes only. 
 
 
13.9   DATABASE INPUTS 

 

 This section may be used to reassign external files to an external resource, or to invoke 
the Standard File Interface (SFI) option for input data to a task.  SFI is a set of standards for 
interchanging data files that typically have a large number of samples, wherein each sample has 
a number of data elements (up to 24).  Samples may be ordered by time or frequency, or sample 
number, or some other user-selected identification (ID field).  To meet SFI interchange 
requirements, these files must have standard header and format information on two successive 
records with prescribed record formats.  The data must also follow the SFI record format 
described in Chapter 14. 

 

 The format for SFI database assignment statements is as follows: 
 
  ASSIGN SFI path/file_name TO process_name 

 

 Here process_name refers to a process written to accept input from an SFI file named 
file_name.  The database assignment statement should start in or beyond column 7. 

 

 Whenever an SFI input process is called or scheduled, the attributes named in this section 
will be updated automatically from the corresponding series fields on the SFI file. 

 

 Up to 40 SFI files may be referenced as input in a task control specification, with the 
limit that the total input and output files cannot exceed 80.  The SFI files must be created and 
data entered before beginning a VSE task. 
 
 NOT IN THIS RELEASE 
 

 The statement for reassigning external files to external resources in the database inputs 
section is as follows: 
 
  ASSIGN path/file_name TO external_resource_name 
 
 Here external-resource-name refers to an external resource already attached to a process 
written to accept input from the named file. 
 
Examples 
 

DATABASE INPUTS 
 

   ASSIGN SFI /usr/psi/NEEDLINE_FILE TO NEEDLINE INPUT 
   ASSIGN SFI ACTIVITY_DATA_FILE TO ACTIVITY INPUT 
   ASSIGN ACCOUNT_FILE TO EXTERNAL_ACCOUNT_RECORD 
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13.10   MODULE SECTION 
 

 This section applies when the Parallel Processor Section is not used.  The contents of the 
Module Section must be module names, one name per line.  Module name entries can be 
hierarchical or elementary, and will be resolved to the processes in elementary modules with 
their start flags set.  These processes will be started in those run sections that were designated at 
the time they were created. 
 
 The order in which processes are started within a run section is based on the order of 
their respective module names in the Module Section.  Since the submodules and processes of a 
module hierarchy have no particular order, the order of started processes within a module entry is 
undefined.  If this must be resolved to ensure run validity, one can  start a single process that 
starts the other processes, or  use the priority code associated with each started process. 
 
 In addition to module entries containing started processes, the Module Section can also 
be used to resolve Generic Names  Modules specified for purposes of resolving Generic Names 
may optionally contain started processes.  Resolution of references to process generic names can 
be accomplished by listing the modules containing those processes in this section. 
 
 A Module Section entry that - (1) has no matching module name in the user’s directory; 
or (2) matches that of a module with no process starting flags set and no generic name - will 
cause a severe error message to be issued, and the run will not be started. 
 
  In summary, module names are listed in the Module section to have their started 
processes included in a designated control section’s start list, and to resolve generic process 
names. 
 
 
13.11   DATABASE OUTPUTS 
 

 This section may be used to reassign external files to an external resource, or invoke the 
SFI option for output data from a task.  As explained in the prior section on database inputs, SFI 
is a set of standards for interchanging data files that typically have a large number of samples.  
To meet SFI interchange requirements, these files must have standard header and format 
information on two successive records with prescribed record formats.  The data must also 
follow the SFI record format. 
 

 The format for SFI database assignment statements is as follows: 
 

ASSIGN SFI path/file_name TO process_name 
 
 Here, process_name refers to a process written to produce output for an SFI file named 
file_name.  A process may provide output to exactly one SFI file, and an SFI file may only be 
linked to one process during a run.  The database assignment statement should start in or beyond 
the 7th column. 
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 Whenever an SFI output process is called, the values of the named attributes will be 
placed automatically in the corresponding data fields on the SFI file just before exit from the 
named process.  Up to 24 SFI files may be referenced as output in the task control specification. 
 
 Not In This Release 
 

 The statement for reassigning external files to external resources in the database outputs 
section is as follows: 
 

ASSIGN file_name TO external_resource_name 
 

 Here external_resource_name refers to an external resource to be attached to the named 
file "file_name" and written as output from the process.  
 
Examples 
 

DATABASE OUTPUTS 
 

   ASSIGN SFI NEEDLINE_FILE TO NEEDLINE INPUT 
   ASSIGN SFI ACTIVITY_DATA_FILE TO ACTIVITY INPUT 
   ASSIGN ACCOUNT_FILE TO EXTERNAL_ACCOUNT_RECORD 

 
 
13.12   EVALUATION SECTION 
 
 As explained in Section 13.6, this section is for documentation purposes only. 
 
 
 
13.13   END 
 

 This must always be the last line in a Control Specification. 
 
  The file specification_name.LIS will contain a list of the input and/or output SFI 
files/series and the associated processes/attributes.  In addition, the files specification_name.LIS 
will also contain a list of external resources and the associated external files. 
 
 If there are any diagnostic messages during the Task run because of conflicts etc., a 
message will be displayed on the screen for each occurrence and will also be echoed on the file 
specification_name.DIA for access via the system editor. 
 
 If any run-time errors occur during the task, they will be displayed on the screen and will 
also be echoed to the file, specification_name.DIA. 
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CHAPTER 14 
 

GENERATING A TAILORED RUN-TME SYSTEM 
 
 
 
THE IMPORTANCE OF MATCHING CAD TO PARALLEL PROCESSING 
 
 From prior chapters, it should be apparent that there are many difficult concepts to 
understand and problems to be solved to create a CAD system for parallel processors.  These 
difficult concepts and design approaches are aimed at making it easy for the end-user to create 
parallel processing architectures as well as provide significant improvements in speed.  One must 
separate these significant differences, i.e., the level of difficulty in development of the CAD 
system itself, versus the ease of use of the CAD system by subject area experts. 
 

 Having evolved a proven theoretical framework derived from many problem types over 
many years, we have been able to derive important concepts that greatly simplify the solutions.  
These next three chapters describe approaches required to complete the integration of an 
effective Software-Hardware Run-Time environment.  One is the need for a fully integrated 
approach as described in Chapter 8.  A major contributor to this approach is derived from a little 
known principle used in certain CAD systems. 
 
 
The Essence Of The Most Advanced CAD Systems 
 

 CAD systems originated in the early 1960s, developed first by computer circuit designers 
and followed by logic designers.  The earliest systems required textual definitions of the 
problem, including the ability to input large systems of equations.  Electronic circuit designers 
entered element-node connection lists which were used to automatically derive the circuit 
equations and corresponding matrix solutions. 
 

 As the need for circuit reliability and corresponding variational analysis grew, designers 
were faced with running large numbers of simulations.  As circuit sizes became large, speed of a 
single simulation became important.  This led to optimal sparse matrix techniques, of which the 
fastest by far was the symbolic solution.  Using this approach, standard matrix inversion 
techniques went by the wayside.  Instead, the minimum operation count solution was achieved 
using the “paper and pencil” method for solving matrix equations.  Looping was eliminated.  The 
only operations performed were those absolutely needed to get the solution.  This virtually 
eliminated independence in the equations.  Almost all equations depended upon those above.  
Inherent parallelism was virtually eliminated with this extremely fast approach. 
 

 Very few CAD packages used this relatively unknown solution.  Those that did, kept 
their approach under wraps and achieved speeds unmatched by competitors.  The secret to this 
approach is to maximize the percentage of the problem that can be solved in the development 
environment, automatically generating the code representing a very fast, symbolic solution.  This 
code was then compiled and linked with the rest of the run-time software.  The time to perform 
the automatic code generation step was eclipsed by the length of a simulation run. 
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 The Run-Time System (RTS) in VisiSoft follows this same principle.  Special code is 
generated in the development environment that takes full advantage of the critical architectural 
information necessary to produce highly effective run-time code that provides this information 
and facilities to VPOS.  This code is substantial and complex, with copies on each processor.  It 
is another example of using memory to gain speed.  However, the amount of memory used is 
small compared to what is available today, and likely insignificant relative to what will be 
available tomorrow.  This is another case of trading memory for speed. 
 
 
The VisiSoft CAD Approach 
 

 As illustrated in Figure 14-1, the concepts described above have been incorporated into 
the VisiSoft CAD system for building and running software applications on parallel processors.  
This system recognizes the need to automatically generate software tailored for the application, 
matching a particular software architecture to a physical hardware system. 
 

SOFTWARE-HARDWARE RUN-TIME ENVIRONMENT

RUN-TIME
SYSTEM (RTS)

HARDWARE
VISISOFT

PARALLEL
OPERATING

SYSTEM (VPOS)

RESULTS

VisiSoft CAD System 08/17/13

SOFTWARE
ARCHITECTURE

DEVELOPMENT
ENVIRONMENT
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1
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2

MODULE
M

MODULE
N

DESIGN

 
 

Figure 14-1.  The Software-Hardware Run-Time Environment 
 
 
 One of the most important concepts already brought forth is that of using the 
development environment to derive key information about the application that can be used 
during run-time.  Implementation of this concept is embodied in the development of a 
representative software architecture.  This requires producing an effective mapping of the 
inherent parallelism of the application system into a software architecture of IND Modules. 
 

 Given that an optimized architecture has been produced in the development environment, 
the pertinent information it contains must be made available to the run-time environment.  This 
requires that additional software be automatically generated in the development environment that 
is tailored to the particular application and hardware to create a very fast run-time environment.  
The software that is automatically created is the Run-Time System (RTS).  It contains the 
required information about the application that is needed by both the special operating system 
(VPOS) and the hardware environment to maximize speed. 
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RUN-TIME ENVIRONMENT FUNCTIONS 
 

 When generating a parallel processing simulation or software architecture using VisiSoft, 
the designer must be aware of special Run-Time System functions that are provided 
automatically as described below. 
 

• Processor Allocation - At the beginning of a simulation, IND modules must be 
assigned to a processor.  The VPOS Module Management subsystem must know what 
processors are available for allocation to a module, what modules and instances may be 
assigned to processors, and then control the assignment of all processes in a module 
(instance) to the allocated processor.  This information is provided by the RTS during 
initialization. 

 

• Thread Initiation - The Schedule statement causes a process to be entered into the 
schedule.  When popped off the schedule, that process initiates a thread.  If that process 
calls other processes that in turn call other processes, they are all part of that thread.  
Threads may run on a single or parallel processor where they may run concurrently 
when in IND modules on separate processors.  Threads may start other threads.  At the 
completion of a thread, the next process is popped from the schedule. 

 

• Multi-Processor Scheduling - Once modules are running on their assigned processors, 
threads can be scheduled to run on the same or different processors.  If the application 
has a reasonable degree of inherent parallelism, most of the threads scheduled to run 
will reside on the same processor (each processor has its own schedule).  Entries for 
processes scheduled to run on a different processor will be sent automatically to the 
scheduler residing on the assigned processor.  These entries contain the process name, 
schedule time and priority, and up to six instance pointer names. 

 

• Module Migration - If module migration is invoked, IND modules designated for 
migration may be moved during the course of the simulation. 

 
 
HANDLING SCHEDULES AND CALLS AT RUN-TIME 
 

 This section is concerned with procedures for assignment of processes to processors.  
Note that these procedures deal only with processes.  The assignment of resources to a particular 
level of memory hierarchy associated with a specified processor is addressed later.  The user 
functions for CALLS and SCHEDULES are defined in Chapter 12.  This section is concerned 
with how the Run-Time System (RTS) handles CALLS and SCHEDULES. 
 

 Figure 14-2 provides a top level view of key RTS functions for parallel processors.  The 
yellow box in each processor represents all of the modules, threads, processes, and resources that 
make up the application simulation or software.  The other boxes are part of the RTS (pink) or 
VPOS (maroon) that allocates and assigns processes to processors, and schedules threads to run 
on the various processors at the proper time.  The next sections provide an overview of the 
procedure for assigning threads to processors, accounting for initialization and termination. 
 

 We note that Figure 14-2 shows multiple graphical workstations attached to the parallel 
processor via shared memory.  This assumes that the workstations are tied into a server 
environment via graphics cards and are accessed via shared memory with the parallel processor. 
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Figure 14-2.  Top level GSS Run-Time System architecture for parallel processors. 
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OVERVIEW OF A SIMULATION/SOFTWARE RUN 
 

 When using parallel processors, it is convenient to separate initialization processes from 
those that do not participate in initialization.  There are two types of initialization: system 
initialization and user defined simulation (application software) initialization.  Simulation 
initialization may be run on a single processor.  These are different as described below. 
 
 
System Initialization 
 

 During system initialization, the RTS initializes itself to prepare to run a simulation (or 
software application).  The RTS then proceeds to initiate simulation initialization (software 
application). 
 
 
Simulation/Software Initialization 
 

 Application software initialization consists of two types.  First is initialization of resource 
attributes that have been given INITIAL_VALUES.  This is done when the module containing 
the resource is first assigned to a processor. 
 

 The second form of initialization is running initial threads that are designer specified as 
processes to be started in the DEFINITION, IDENTIFICATION, MODEL, or EVALUATION 
sections of the SIMULATION CONTROL SPECIFICATION.  These lead processes are flagged 
in the architecture of the simulation using the MODIFY PROCESS panel shown below.  These 
processes are then marked as START processes in the drawing of the architecture.  In addition to 
selecting the section in which a process is to be started, the designer can select a priority from 1 
to 99 so that processes may be started in a selected order within the specified section.  One may 
also select the time units for scheduling, the instance pointer names, and a generic name (refer to 
Chapter 12). 
 

 
 
 The Module Manager contained in VPOS takes the START process entries for the 
DEFINITION SECTION and sends them to the Scheduler (on P-1 in Figure 14-2) effectively 
scheduling these processes to run at time 0.  These threads initialize the simulation and are 
started once, even when the multiple simulation facility is used. 
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Initialization Of Multiple Simulation Runs 
 

 When the initialization threads specified in the DEFINITION SECTION are complete, 
the Module Manager takes the START process entries for the IDENTIFICATION SECTION 
and sends them to the corresponding Scheduler to be run at time 0 in priority order.  These 
threads are used to initialize each new simulation when multiple simulations are run, e.g., for 
Monte Carlo analysis.  When each simulation completes, if there are more to be run, the threads 
in the IDENTIFICATION SECTION will be scheduled again to initialize the next simulation 
run. 
 
 
MAIN SIMULATION (SOFTWARE) SYSTEM - MODEL (MODULE) SECTION 
 

 From here on in this chapter, simulation may imply software and model may imply 
module and vice versa.  When initialization is complete so that the main simulation can run, the 
Module Manager takes the START process entries for the MODEL SECTION and sends them to 
the Scheduler.  When all of the START processes have been scheduled, the Scheduler pops them 
off the Schedule to be run at the starting time in priority order.  This starts the (next) simulation 
running.  When a process is popped off the Schedule, it is given to the Module Manager.  If the 
process resides on that processor, it is started.  If it resides on another processor, the starting 
information is sent via the Synchronizer to the proper processor.  All Inter-Processor 
Communications are handled by the IPC subsystem. 
 
 
EVALUATION 
 

 After each simulation completes, the Module Manager takes the START process entries 
for the EVALUATION SECTION and sends them to the Scheduler.  The threads that are started 
in this section are used to evaluate the results of each simulation, comparing them to all of the 
prior results if desired by the designer.  These threads are all run on a single processor. 
 
 
MODULE MANAGER 
 

 The Module Manager handles IND modules that have not yet been run.  In the MODEL 
section, it must determine if the process starts a thread that may run concurrently as part of an 
IND module and if a processor has been allocated to that module or instance of a module.  It is 
responsible for ensuring that all conditions are met before those threads can start.  Conditions 
include the following: 
 

• The starting process for the next thread is popped off the schedule. 
 

• The IND module containing the selected thread must be assigned to a processor, so all 
processes and resources needed to support it are available on that processor. 

 

• All submodules invoked by a thread must be assigned to the processor containing that 
thread.  Communications with modules on another processor require standard interfaces 
to the IPC system. 
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CONTROLLING PARALLEL THREADS AT RUN-TIME 
 
 Figure 14-3 illustrates threads residing on multiple processors.  Although not shown, all 
processors contain a VPOS Module Manager and Scheduler, and an RTS IPC Manager and 
Synchronizer.  Some of these facilities were described in the prior section.  They control the user 
application processes that all run as threads in Figure 14-3.  The RTS and VPOS facilities that 
reside on each processor and control the application software also run as threads. 
 

ParallelProcArch  10/03/13

APPLICATION MODULES

MODULE_1

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY
PROCESS

THREAD_1_3
LEAD

PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

THREAD_1_2
LEAD

PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

THREAD_1_4
LEAD

PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY
PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY
PROCESS

LEAD
PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

THREAD_2_3
LEAD

PROCESS

CALLED
PROCESS

CALLED
PROCESS

CALLED
LIBRARY

PROCESS

THREAD_2_1 THREAD_2_2

THREAD_2_4

THREAD_3_1 THREAD_3_2 THREAD_4_2THREAD_4_1

THREAD_4_3THREAD_3_3 THREAD_4_4THREAD_3_4

MODULE_2

MODULE_3 MODULE_4

Processor-1

Processor-4Processor-3

Processor-2

THREAD_1_1

 
 

Figure 14-3.  Illustration of threads residing on parallel processors. 
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MODEL (MODULE) SECTION Run Time Operations 
 

 The MODEL SECTION of the CONTROL SPECIFICATION corresponds to all models 
contained in the simulation or task architecture, including the instances that contain threads that 
are run as a result of those that are started in this section.  When running on a parallel processor, 
the IND modules may be assigned to different processors to run concurrently.  As specified by 
the application system design, these modules contain threads where each corresponds to a lead 
process that is started with a SCHEDULE statement.  By virtue of the architectural design rules, 
all processes within an IND module must belong to one of the threads in that module.  Threads 
may be SCHEDULEd from anywhere in the simulation. 
 

 Threads may make CALLs to any process within the IND module in which they reside, 
or to UTILITY or LIBRARY modules that do not reside within that IND module, provided these 
UTILITY or LIBRARY modules are designated as reentrant (i.e., their operational outcomes 
rely only on resources shared with the calling process).  The RTS ensures that copies of all 
utilities and libraries called from an independent module reside on that module’s processor. 
 

 In large simulations using hundreds of processors, IP communications between different 
processors may incur significantly different memory boundary crossing delays.  The mapping of 
IND modules into processors will determine these delays and affect overall speed.  To maximize 
speed implies a physical assignment of IND modules to processors based upon a mapping of 
relative memory access delays between processors into connectivity between modules.  One may 
think of this in terms of mapping the IND module connectivity footprint into an optimized 
matching processor connectivity footprint.  Although one may consider an optimal mapping 
scheme, it may or may not provide substantial returns.  As indicated in the prior chapter, 
depending upon the application, the connectivity between modules may be highly nonstationary, 
possibly changing an optimized mapping to poor.  Migration benefits depend upon the time 
constants of such nonstationarities.  Hardware designers have made strides to minimize these 
delays. 
 

 The Module Manager must map the designated IND modules or module instances into a 
set of available processors as the simulation starts to run.  Since it controls which physical 
processors are allocated to IND modules, only it can optimize the allocation and assignment of 
processors to IND modules, including run-time module migration.  We note that migration must 
be done on an IND module basis. 
 
 
Module Manager - Model (Module) Section Functions 
 

 When an IND module is assigned to a processor, all processes and resources residing in 
that module must be loaded into the assigned processor, along with any utility or library modules 
required.  Once this load procedure is complete, the module ID and pertinent residence 
information are transmitted to the local Module Managers for their use when a thread within that 
module is popped off their schedule. 
 

 When a process schedules or calls other processes in another IND module that does not 
reside on that processor, it must be checked to determine if that IND module has been assigned 
to a processor.  If the module has been assigned, the process ID may be sent directly to the 
processor containing the module.  If not, that process ID must be sent to the VPOS Module 
Manager for assignment and subsequent scheduling of the process. 
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Module Manager Rules 
 

 The following is a summary of the rules that apply to any process taken from the 
schedule and sent to the Module Manager.  As used from here on, “module” may imply IND 
module instance. 
 

If the process is contained in an IND module that is not yet assigned to a processor, the 
module is checked to determine if a processor has been allocated to that module 
(instance). 

 

If not, a processor is allocated to the module. 
 

When a processor is allocated, then the IND module is assigned to the processor.  
This implies that all processes and resources residing in that IND module are 
loaded into the allocated processor, along with any utility or library modules 
required but not yet assigned to that processor. 

 

Once this load procedure is complete, the IND module ID and pertinent residence 
information are transmitted to all local Module Managers for their use when a thread 
within that module is popped off their schedule.  The module is then considered assigned. 

 

The schedule entry for that process is then sent to the Module Manager residing on the 
assigned processor for entry into the schedule. 

 

 
Local Module Manager Controllers 
 

 When a process is popped off a local schedule and it resides within a module assigned to 
that processor, it is run on that processor when it falls within the ΔTmax interval.  If it resides in 
a module that has been assigned to another processor, then the schedule entry for that process is 
sent to the process controller residing on the assigned processor for entry into its schedule.  If not 
assigned, it is sent to the Module Manager. 
 
 
RUN-TIME SYSTEM PROCESSES VERSUS USER PROCESSES 
 
Run-Time System (RTS) Processes 
 

 RTS processes work with VPOS to control the running of user processes and provide 
other functions to support simulations or software.  These exist on all of the processors shown in 
Figure 14-3. 
 
 



Software Theory              Page  14 -  10  

ENSURING CONSISTENCY AT RUN-TIME 
 

 In a single processor Von Neumann machine environment, processes cannot run 
concurrently - they must run sequentially.  Therefore two processes cannot use the same resource 
at the same time.  However, on a parallel processor, this case must be avoided.  In the CAD 
environment described here, when processes residing on different processors are scheduled to 
run at the same time, the architecture environment shares the required information with the RTS 
to ensure that if resources are shared, they are updated in a synchronized manner.  This generally 
implies that when processes run on a parallel processor, the results they produce are complete 
and consistent.  In other words, given the same initial conditions on the resources connected to a 
process, the process will produce the same results each time. 
 

 When running a simulation on a parallel processor, processes residing in independent 
modules may run in parallel on different processors.  When modules are running on the same 
processor, resources not shared with processes on another processor cannot be corrupted by 
unsynchronized updates.  This is because processes on the same processor are scheduled in the 
same manner as if they were in a single processor simulation.  However, processes running on 
different processors may be scheduled at the same or slightly different times - relative to each 
other - compared to when they are run on a single machine.  This is because of the desire to 
minimize run-time speed when using a parallel processor. 
 

 As described in Chapter 6, to achieve higher efficiencies from parallel processors, one 
can allow the simulation clocks on different processors to drift apart by ΔTmax, a parameter 
specified by the designer, without losing accuracy of simulation results.  It has been documented 
and substantiated by experiment [114], that efficiency may increase substantially with ΔTmax.  It 
is up to the designer to mitigate the data corruption that may occur in IP resources as ΔTmax 
increases from zero.  This requires modeling interfaces between units to accurately represent the 
protocols, considering the variations that can occur in real physical situations.  This is a 
necessary but not sufficient condition to ensure consistency. 
 

 To achieve higher efficiencies without losing accuracy, IP resources must adhere to a 
synchronization protocol.  This requirement is described below.  The IPC manager performs this 
function as part of the RTS. 
 

 There are two types of communications protocols needed to support fast processing of 
simulation modules at the interface between many processors.  These are the following: 
 

• Asynchronous - The latest copy of an IP resource (the one connected to the process 
that ran last) gets passed to the next process that needs it in another processor.  Data 
coherency is guaranteed (independent of time). 

 

• Synchronous   - Everyone gets the latest copy from a single source, a one to many 
interface.  This depends upon time synchronization required by models in the 
simulation (by design) to ensure data coherency. 

 

 The IPC protocol used in the RTS is the synchronous protocol because of the level of 
overhead involved in the asynchronous protocol.  In addition, when two-way communications 
are required between processes, separate IP resources provide for full duplex communications.  
In the case of multiple computers, matching IP resources must use the same protocol. 
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Synchronous Communications Protocol 
 

 When the Synchronous Communications Protocol is used, only one process has write 
privileges to a given IP resource.  In addition, copies are maintained at the receiving processes so 
that they are only updated before the receiving process is given control.  If the process that writes 
the resource runs while the receiving process is running, the IP resource on the receiving side 
remains untouched. 
 

 To facilitate the use of IP resources, special facilities have been built into the architecture 
environment, development monitor, process translator, control specification translator, and RTS.  
These facilities provide for automatic recognition and handling of IP resources.  They also 
provide for processing the control specification so that tables are built for the run-time 
environment that determines which processes share IP resources and what machines they should 
reside upon. 
 

 These facilities are designed to provide a clear speed advantage since (1) the CAD 
environment is tailored to a given platform; (2) the protocols used are generally transportable; 
and (3) speed is the predominate reason for using parallel processing.  This is not an area where 
speed need be sacrificed for simplicity of the software. 
 

 When using full-duplex communications protocols, coherency is maintained implicitly.  
What must be controlled is synchronization.  This is described in the following sections. 
 
 
INTERPROCESSOR SCHEDULING AND SYNCHRONIZATION 
 

 To gain a speed multiplier close to N when using N processors, one must obtain a high 
processor utilization efficiency.  Except for special problems, the processor utilization efficiency 
obtained today using current software techniques is typically around 10%.  This implies a speed 
multiplier of 10 when using 100 processors. 
 

 As described in Chapter 6, for a simulation to obtain a high parallel processor utilization 
efficiency, many threads must be running concurrently on different processors.  This is achieved 
when large IND modules are running concurrently on separate processors, with each module 
containing many threads.  With sufficient inherent parallelism, most of these threads are 
scheduled by other threads within the same IND module.  This implies that multiple threads are 
in the schedule on each processor, with most of them scheduled by other threads on the same 
processor. 
 

 By virtue of the independence properties of an IND module, these threads may run 
independently - with only a few sharing IP resources with the other processors, i.e., they are 
spatially independent with respect to the data.  However, when running a simulation, they are not 
temporally independent.  In this case, they must adhere to the simulation clock to run at their 
scheduled time. 
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SCHEDULING PROCESSES 
 

 Refer to Figure 14-4 for the following discussion.  When using discrete event simulation, 
processes must run in time order based upon the simulation clock.  When constrained to zero 
tolerance, i.e., ΔTmax = 0, the simulation clock may only advance when the next process in each 
of the schedules on all processors has a schedule time that is beyond the current clock time.  This 
will allow the simulation clock to advance to the smallest increment of time of all of the 
scheduled times. 
 

 Using the CAD system described here, modelers use the SCHEDULE statement to cause 
processes to be placed in the overall simulation schedule to be run at a specified time in the 
future.  Processes scheduled at the same time may be given a priority.  If no priority is assigned, 
it is implied that the order does not matter, i.e., a valid result will occur if ordered randomly.  We 
note that priorities are likely to be used only within an independent model (instance). 
 

 As described in Chapter 6, in simulations representing physical systems, valid results 
may occur even when processes scheduled at sufficiently small but different times are run out of 
order.  This is because all physical systems have some degree of randomness.  When comparing 
test data taken on physical systems, one can discover the value of ΔTmax that will not affect 
validity.  In a real system for example, if message A starts to come in before message B, but 
neither get processed until both are in, it does not matter which one comes in first.  Or, if ten 
messages must come in before something happens, which ones get in under the wire may not 
matter because, in the real world, the results are valid either way.  This is especially true when 
variations occur naturally, causing the finite distribution of the measurement vector. 
 

 This implies that, when a process is next in the schedule to be run, it must wait until the 
simulation clock advances to the schedule time of that process.  To ensure that processes on 
different processors run in a sufficiently accurate order, the simulation clock on each processor 
must be synchronized so that it does not advance beyond a pre-specified tolerance ΔTmax ahead 
of the clock on any other processor. 
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Figure 14-4.  Cross-schedules for a four processor case. 



Software Theory              Page  14 -  14  

Schedule Synchronization 
 

 When a scheduled process that is currently running on a given processor terminates, the 
next process is retrieved from the schedule.  In the single processor case, the clock can simply be 
advanced at this time, Tc, and the process invoked.  In the multi-processor case, if the clock 
advances beyond the Tc + ΔTmax interval, then it must wait until all processors have reached the 
same condition.  When this happens, a new Tc + ΔTmax interval is set, and the checks are made 
again.  Any processor with a process scheduled in the Tc + ΔTmax interval can proceed to invoke 
that process.  Others must wait for the proper interval. 
 

 When the simulation clock in any processor exceeds the Tc + ΔTmax interval, a 
notification is sent to the master synchronizer containing the processor/simulation ID.  In 
addition, all cross-schedule requests are sent to the master synchronizer before being sent to the 
processor containing the cross-scheduled process.  This latter information is used to update the 
status maintained in the master scheduler regarding the number of processes (if any) to schedule 
beyond the Tc+ ΔTmax interval.  For example, if processor A sends a signal to the master 
synchronizer that its simulation clock has exceeded the interval, but a cross-schedule is sent to 
that processor subsequently, it is not finished.  However, the order of presentation will ensure 
that the master simulation clock will advance beyond the Tc + ΔTmax interval only after the 
clock-time of the next process to be scheduled in every simulation is beyond the interval. 
 
 
The Effect Of Allowed Variation - ΔTmax - On Parallel Processing Efficiency 
 

 The objective of moving a single processor simulation to a parallel processor 
environment is to achieve run time multipliers as close as possible to N where N is the number of 
processors.  This is achieved by increasing the processor utilization efficiency, which can be 
defined as the ratio of the time it takes to run a simulation on a single processor to that on a 
parallel processor, divided by the number of processors. 
 

 As indicated above, one way to accomplish this is to allow the schedule clocks on 
different processors to vary within a selected ΔTmax.  Various experiments have been performed 
using this technique, see [114].  To obtain valid results, this must be done while maintaining 
validity of the outcomes of the simulation.  As shown from the theoretical curves in Figure 14-5, 
ΔTmax plays a major role in processing efficiency.  We stress that these curves assume that the 
simulation results remain valid.  As shown in the figure, processor utilization efficiency varies 
differently for different simulations (A and B) achieving different levels with different values of 
ΔTmax.  As shown in the next section, it also varies with hardware architectures. 
 

 The shapes of these curves have been substantiated by experiment, see [114].  However, 
they are dependent upon simulation validity as a function of ΔT. 
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Figure 14-5.  Parallel processor utilization efficiency as a function of ΔT. 
 
 
 
 
The Effect Of Hardware Architectures On Parallel Processing Efficiency 
 

   We now consider the effect of different parallel processing architectures on the above 
curves.  In this case only one of the curves for a given simulation architecture is selected while 
hardware architectures are varied.  The theoretical curves are shown in Figure 14-6 and 
approximate those measured in an experiment, see [114].  The major variation in architecture 
was the speed of communications between processors, where Ep2 was approximately 10 times 
faster than Ep1. 
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Figure 14-6.  Parallel processor utilization efficiency as a function of hardware architectures. 
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 Theoretically, differences in levels achieved may represent the different losses of 
efficiency incurred when: 
 

• Transferring shared data from one processor to another 
 

• Maintaining synchronization across processors 
 

• Scheduling processes on different processors 
 

• Idling due to imbalanced loading 
 
 Of the above bullets, the first three contribute latencies that reduce efficiency as they 
become a greater percentage of the overall processing time.  Again, we must state that the 
validity of the curves shown in Figure 14-6 are dependent upon the validity of the simulation 
results.  This dependency is addressed below. 
 
 
The Effect Of Variation In ΔT On Simulation Validity 
 

 As described in Chapter 6, and repeated in Figure 14-7, the maximum value of ΔT that 
still maintains temporal coherency or synchronization, ΔTmax, may be found for a given 
simulation.  A ΔTmax of zero may force the simulation to run with much reduced opportunity for 
increased processor efficiency.  In fact, it may run slower on a parallel processor than on a single 
processor.  As ΔTmax is increased, more processing can take place in parallel before the 
simulations have to perform a time resynchronization.  This increases efficiency. 
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Figure 14-7.  Cross-schedules for a four processor case. 
 

 
 As described in Chapter 6, an attempt to solving this problem was embedded in the Time 
Warp Operating System (TWOS), renamed SPEEDES, see Rieher [114].  This system allowed 
threads to run in advance of others (losing synchronization) with the idea that they could be 
“reprocessed” to resynchronize “out of sync” results.  In partially independent cases, 
unscrambling the resulting chaotic states is virtually hopeless, and validity of results is clearly 
lost.  The TWOS phenomenon was never clearly explained.  Based upon the above analysis, the 
problem appears quite obvious. 
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 For simulations of nonlinear systems, the variance of the distributions is typically 
unchanged until a break point, ΔTchaos, at which point results become chaotic.  If the systems 
being simulated have a synchronized component, i.e., events occur on a time synchronized basis, 
then this effect can be expected to occur as ΔT crosses the time synchronization point.  Judgment 
can be used to back off to a valid point.  In the communication system simulations used to test 
this approach, [114], the break point occurred at about 1 second.  Backing off to ΔTmax = 0.8 
seconds was sufficient to obtain results that were virtually identical to those on a single processor 
or with ΔTmax = 0.  If changes are made to a simulation, ΔTmax must be revalidated. 
 

 Simulations of Time Domain Multi-Access (TDMA) radios may place a more stringent 
requirement on ΔTmax.  For example, military networks use JTIDS terminals with a time slot 
of 7.8125 milliseconds.   If the modeler schedules events within a time slot, a ΔTmax of 7.8125 
milliseconds is likely to ensure validity of simulations that model message traffic to the time slot 
level.  Depending upon requirements on the simulation, modeling to the JTIDS frame level may 
relax this requirement to more than 10 milliseconds (a frame covers 12 milliseconds).  But the 
modeling approach itself may severely limit the validity of the simulation to investigate network 
performance when subject to rapid response requirements at the individual message level. 
 

 We note that validity as a function of ΔTmax is generally independent of the parallel 
processing environment.  However, the actual curve will encounter variations resulting from the 
effects of random ordering of processes, producing a distribution of results caused by these 
random variations.  This distribution should be within the simulation validity requirements. 
 
 
Variations In ΔT On Parallel Processing Efficiency - Design Considerations 
 

 Given that the model and run-time software architectural approach takes full advantage of 
the inherent parallelism of a system, we must ensure that if we select a hardware architecture, it 
will meet the time and validity constraints.  To illustrate the selection process, we use an 
example of run-time constraints where a 2 hour scenario must run in less than 6 minutes to 
achieve the desired goal.  This implies a simulation-time to real-time ratio of 20.  If the 
simulation runs 3 times slower than real time on a single processor, it must run with greater than 
60% efficiency using 100 processors to achieve a speed up factor of 60. 
 

 Figure 14-8 illustrates two different hardware architectures, Ep1 and Ep2, as candidates 
to achieve the goal.  In the case of Ep1, the efficiency remains at about 10% as we approach 
ΔTmax.  This illustrates the effect of latency on achieving a feasible solution, i.e., meeting the 
time and validity constraints.  Ep2 achieves 90% efficiency prior to reaching ΔTmax.  For this 
example, Ep2 clearly exceeds the speed constraint, allowing one to reduce the number of 
processors used. 
 

 At this point we must note that this comparison assumed that the resulting speed up factor 
was based upon the parallel processor simulation being virtually the same as that used on the 
single processor version.  When considering existing simulations built using current approaches, 
we must remember that they will likely run considerably slower just because of the language 
shortfalls - from a single processor standpoint - so that the speed multiplier may be much higher 
than illustrated in the Figure. 
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Figure 14-8.  Overall considerations in selecting ΔT. 

 
 
 
Synchronizer Design 
 

 When a process passes the interval test, i.e., it falls within the ΔTmax interval, it is 
checked to determine if it shares an IP resource.  If it does, then an IP resource synchronization 
check is made.  If that process shares an IP resource, then it automatically will have the latest 
copy of that resource.  This is just one of the benefits of this CAD approach 
 

 The Tc+ΔTmax limit is determined by the master synchronizer after receiving the next 
schedule time from each processor and determining the earliest.  After the current interval has 
completed, i.e., there are no more processes in any of the processors’ schedules whose schedule 
times fall within the current interval, then the master synchronizer notifies all of the local 
synchronizers of the new Tc value, signaling the start of a new interval.  The local synchronizers 
handle these decisions accounting for cross-processor schedules. 
 

 Rather than waiting until the interval is empty, each scheduler can provide the next-
scheduled process time to the local synchronizer to pass to the master synchronizer.  This 
information can be used to slide the Tc+ΔTmax interval forward to the next earliest 
synchronization time, Tc. 
 
 
Master And Local Synchronizers 
 

 Figure 14-4 shows the master and local synchronizers.  The master synchronizer tracks 
the earliest scheduled time of processes in the ΔTmax interval.  It determines when the clock can 
be set to the next synchronization interval, and handles cross-schedules going both ways on 
processor A.  The local synchronizers on the other processors report their earliest schedule time, 
to the master, and when they have reached the end of their ΔTmax intervals. 
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LANGUAGE TRANSLATOR INPUT 
 

 The control specification provides for a statement that specifies the ΔTmax interval.  The 
format for this statement is shown again below for convenience. 
 

Format 
 

 

DELTA_TIME = Δtmax_interval [time_units] 
 

 
 The time_units options are given in Appendix 4 of the GSS and VSE User’s Reference 
Manuals, [67] and [150].  They range from PICOSECONDS to DAYS.  If the time_units option 
is not used, time is assumed to be in seconds (the default).  If a DELTA_TIME statement does 
not appear in the list, it is assumed to be 0 (the default). 
 

 When the parallel processor option is specified in the control specification, a schedule 
statement is translated such that code is generated that invokes the Module Manager and 
Synchronizer to initiate a schedule request to the processor containing that process. 
 
 
DESIGNATING MODULES FOR ALLOCATION 
 

 It is the designer’s responsibility to designate those independent modules that can be 
assigned to different processors by the run-time monitor.  To do this, one must use the MODIFY 
MODULE panel and select Ind. Model as shown below. 
 

 

Model
Ind. Model
Utility
Library

 
 
 
Comparison To Current Approaches 
 

 Current approaches to parallel processing only generate the object modules for the source 
code written by the programmer.  They do not generate an RTS.  The RTS is a separate software 
subsystem that is based upon the architectural information generated by the designer.  This 
includes the facilities that provide the following: 
 

• Rapid synchronization of IND Modules that exchange information; 
 

• Inter-Processor Communications (IPC), a system that supports the IP Resources; 
 

• Information needed by VPOS to perform optimal allocation of hardware resources. 
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 Because current approaches do not generate an RTS in the development environment, 
existing systems provide little information to the OS, expecting it to figure out how to break up 
individual routines using methods of tiling.  Tiling essentially breaks out the code inside loops to 
place small amounts of instructions on separate processors.  Otherwise, these systems provide 
special instructions to the user for dealing with the run-time issues. 
 

 Another important ingredient of the RTS is thread synchronization.  By ensuring that 
threads reside within IND Modules, threads must run on a single processor, ensuring their 
temporal independence.  Threads may initiate other threads on any processor, but these are 
automatically synchronized by the RTS. 
 

 The combination of spatial independence, IP Resources and synchronization of threads 
ensures consistency of results across processors.  The need for cache coherency is eliminated, 
making chip space available for more memory - the major driver for increasing speed. 
 

 The authors are not aware of any other integrated approach that helps the user to map 
inherent parallelism into IND Modules using a graphical architectural framework.  We know of 
no systems providing information exchanges regarding the design of the architecture or 
generation of run-time code to take maximum advantage of the hardware environment.  In fact, 
we know of no systems that provide for software architecture. 
 

 We also note that the combination of the RTS and VPOS allows the end-user to vary the 
number of processors used simply by changing the Control Specification.  This makes it easy to 
compare running times on a single processor to those on different numbers of processors.  One 
can then plot a curve of different numbers of processors to determine the best hardware 
configuration for meeting the speed requirements of a given application. 
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CHAPTER 15 
 VPOS - A PARALLEL PROCESSOR OS 

 
 
 This chapter describes the top level design of the VisiSoft Parallel OS (VPOS).  We start 
by assuming that the Software Architecture and Run-Time System (RTS) shown in Figure 15-1 
have been produced using the VisiSoft approach described in prior chapters.  In the next chapter 
we will discuss the theoretical requirements for design of the hardware.  We make assumptions 
with regard to hardware design here with three qualifications.  First, we assume existing chip 
designs exist that are relatively simple and follow the typical processor architectures.  Second, 
we assume that VPOS can be tailored to different chip designs relatively easily.  Third, we 
assume that hardware architects will understand the theory presented here and will heed the 
suggestions made in the next chapter with regard to future parallel processor designs. 
 

SOFTWARE-HARDWARE RUN-TIME ENVIRONMENT

RUN-TIME
SYSTEM (RTS)

HARDWARE
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Figure 15-1.  The Software-Hardware Run-Time Environment 
 
 
Focus On Parallel Processors 
 

 VPOS is not intended to be a general purpose operating system.  It has been designed to 
operate on a shared memory basis with a server environment as described in Chapter 3, and 
illustrated in Figure 3-6.  This implies that information exchanges between the parallel 
processors, including those to the server, are done using shared internal memory - with no direct 
external device channels except for short distance communications.  When applications interface 
with external devices, e.g., keyboards, mice, screens, printers, graphics cards, disks, long 
distance communication channels, etc, these are through special interfaces with processors in the 
“server” environment.  Therefore, VPOS contains no device drivers and no secondary storage 
file management facilities.  Instead, its facilities are focused on optimal management of a 
specified subset of fast parallel processors assigned to a specified task. 
 

 In the case of a Personal Computer operating under a standard PC type OS, e.g., 
Windows, Linux, UNIX, or others (we use WINUX to designate these), the computer system 
takes on the type of hardware architecture similar to that represented in Figure 15-2.  Whereas 
Figure 3-6 shows the buses used for shared memory channels, that level of detail - although 
obviously necessary - is not represented in Figure 15-2.  We note that a WINUX type OS will 
control the processors (green) allocated to it, while VPOS controls the other processors (blue).  
We also note that a part of VPOS resides on each of these processors, while the top level subset 
of the VPOS system resides on a specified processor. 
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Figure 15-2.  A Parallel Personal Computer with WINUX and VPOS running concurrently. 
 
 
 In the case of the Parallel PC (PPC), one may use a total of 36 processors.  One or two of 
these processors may be used to house the Windows or Linux OS (shown as WINUX).  The 
WINUX OS interfaces with the external device drivers.  The remaining processors are used to 
support parallel processing of one or more tasks that must run fast.  Because of the speed 
multipliers achieved by the VisiSoft Run-Time System, it is likely that a task or simulation 
requiring 3000 processors on an HPC may be run at least as fast on a PPC with 36 processors. 
 

 As indicated in Chapter 14, VPOS allows the end-user to vary the number of processors 
used simply by changing the Control Specification.  This makes it easy to compare running times 
on a single processor to those on different numbers of processors.  One can then plot a curve to 
determine the best hardware configuration for meeting the speed requirements of a given 
application. 
 
 
OVERVIEW OF THE VPOS ARCHITECTURE 
 

 Being able to control the design of an operating system using engineering drawings is 
likely one of the best examples of the use of VisiSoft.  Although the device drivers make up a 
major part of most operating systems, they are inherently independent and are generally written 
by the device manufacturers to be incorporated into the OS.  The major parts of a multi-tasking 
virtual memory OS for a parallel processor are illustrated in the top level drawing of VPOS 
illustrated in Figure 15-3. 
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VPOS_DRAWING_05/12/14  
 

Figure 15-3.  A simplified overview of the VPOS architecture. 
 
 
 Although not described here, there are two ways to operate VPOS.  The one not 
discussed here provides a simplified installation on a PPC under the WINUX OS.  This 
installation does not use the full-up VPOS shown in Figure 15-3.  However, from a user 
standpoint, it appears substantially the same.  Depending upon the application, it may run slower 
than that described here because all of the facilities of VPOS shown in Figure 15-3 are not 
implemented in that version. 
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INITIATING PARALLEL PROCESSOR TASKS 
 

 When a parallel processor task is spawned by a server task, control is passed to the VPOS 
to initiate the task.  In the case of IND modules, the following is implied: 
 

• The parallel task has been designed with multiple IND modules that are capable of 
running concurrently on separate parallel processors. 

 

• Object code has been produced along with special facilities in the Run-Time 
System (RTS) to support automatic synchronization of threads and IP 
Communications (IPC) for IP Resources contained within IND modules that may run 
concurrently. 

 

• Each IND module is linked separately with special library modules that interface to 
the RTS and VPOS, as well as with the Utility and Library modules required by the 
application software in that IND module. 

 

• Before the spawned task is loaded, it must be allocated with the required number of 
processors. 

 

• IND modules must be assigned to separate processors to maximize PUE while 
meeting speed constraints.  These modules are loaded onto the assigned processors. 

 

• When IND modules are loaded onto their assigned processors, they are linked to the 
RTS and VPOS, and their resources are automatically initialized where applicable. 

 

 This requires special linking and loading facilities to support the RTS and VPOS.  These 
facilities must be compatible with the WINUX OS as well as VPOS. 
 
 
VPOS MANAGEMENT FACILITIES 
 

 The following sections provide an overview of the subsystems making up the VPOS 
management facilities. 
 
 
VPOS MANAGEMENT 
 

 This subsystem is responsible for loading the VPOS itself onto the parallel processors 
allocated to VPOS.  It interfaces with the spawning module on the WINUX OS to load the 
initiating part of VPOS onto the assigned VPOS processor.  It then loads the remaining part of 
VPOS onto that processor.  It also loads those portions of VPOS onto the other processors as 
necessary to support a specific task. 
 
 
TASK MANAGEMENT 
 

 This subsystem interfaces with the spawning task running under WINUX to initiate 
running an application task on one or more parallel processors under VPOS.  This includes 
setting up interfaces to the device handling facilities needed to support the parallel task. 
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MODULE MANAGEMENT 
 

 This subsystem manages the IND Modules that form a parallel processing task running 
under VPOS.  If the user has specified which modules are to run on what processors, then the 
subsystem allocates and assigns the desired processors to the task.  If processors are not assigned 
to modules by the user, this subsystem allocates and assigns available processors to the modules 
based on built-in optimization parameters.  It also initiates the initialization of modules.  If 
desired, module management can migrate modules to different processors while the task is 
running to minimize communications delays and unbalanced loading. 
 
 
SCHEDULE MANAGEMENT 
 

 When a task is running IND Modules on multiple processors, multiple threads may be 
scheduled to run at a future time or NOW, implying after the current thread completes on that 
processor.  To avoid bottlenecks, a scheduler exists on each processor.  Depending upon the 
number of processes that may be scheduled at a given instance in time, the schedulers must be 
able to support the maximum number. 
 

 Running processes may schedule threads in different IND Modules that are running on 
other processors.  This requires synchronization among the schedulers on these processors.  The 
synchronization system is produced by the development environment and becomes part of the 
RTS which interfaces with VPOS. 
 

 There are two levels of synchronization, one within the ΔTmax interval described in 
Chapter 6, and one outside.  When the schedule time of a thread falls within the interval, it must 
be synchronized to ensure that the interval will not end before it is run.  If it is scheduled outside 
the interval, then the level of synchronization must be handled before the start of the next 
interval. 
 
 
EVENT MANAGEMENT 
 

 There are two types of events that must be handled.  One is an externally generated event, 
e.g., coming from the Run-Time Graphics (RTG) interface or some other hardware request.  
These are generally considered Interrupts and are fielded by the Interrupt Handler.  The other 
type is initiated by an internal statement and is handled by the Event Handler.  Both types of 
events must be handled within a ΔT time step to ensure proper synchronization with external 
processes. 
 
 
RESOURCE MANAGEMENT 
 

 The resource manager is concerned with managing the use of machine (processor and 
memory) resources.  This is a careful management function in that only one process may control 
a resource at one time.  This implies that the assignment of control over these resources must be 
done in an explicit manner, with no question about who has control.  The major resources of 
interest are those of the processors and the memory.  The allocation and assignment of individual 
resources must be under the explicit control of the WINUX OS or the VPOS. 
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Processor Management 
 

 There are many functions of a parallel processing OS that are critical to achieving high 
processor efficiencies.  One of the most important is processor management.  Mapping IND 
Modules onto physical processors is affected by the following factors. 
 

• IND Modules that communicate most and significantly affect the total time to run are 
best mapped onto adjacent processors with minimal time delays. 

 

• IND Modules that do not communicate need not be close. 
 

• IND Modules that change their need to communicate are best remapped based upon 
their needs if the time-constants permit (the non-stationary case). 

 

 The above factors are determined by the Application Space Architecture (ASA).  To 
minimize the delay times between processor chips, boards, and trays, the hardware architecture 
must follow the ASA so that communications are always between adjacent units.  This requires 
special optimization techniques for spatial mapping of the ASA onto the hardware architecture, 
as well as optimized hardware designs. 
 
 
Memory Management 
 

 Effective mapping of software onto hardware implies mapping a software architecture 
into a hardware architecture.  Optimizing speed requires some knowledge of hardware 
architecture.  Mapping instruction and data spaces into physical memory is a prediction problem.  
Predictions are determined by conditioned probabilities.  Prediction accuracy depends upon the 
information used to represent the conditions.  The approach that has the most information and 
makes best use of it will produce the most accurate prediction. 
 

 Most Operating Systems provide a facility to do the software to hardware mapping 
automatically.  Typically they do not have sufficient information about a particular application to 
do this effectively, and waste time doing it wrong. 
 

 The mapping process can be done during as well as before run-time.  If the OS does not 
have the proper information during run-time, reallocation of resources can waste time instead of 
saving it.  With an software architecture optimized for mapping into hardware, and a run-time 
facility that provides that architectural information to a tailored OS, run-time movement can be 
minimized if not eliminated. 
 

 Mapping IND Modules onto processors requires mapping them into physical memory 
adjacent to the processors.  To accomplish this, memory mapping must include maps to 
processors as well as to real memory locations and identify memory shared between processors.  
It must determine the starting address of the first instruction for each processor.  A simple 
example of mapping estimates of delays between RAM on different boards is shown in 
Figure 15-4. 
 

 In Chapter 16, Table 16-1 illustrates the huge differences in memory boundary crossing 
delays.  These delays affect decisions by the operating system to move both instructions and data 
around to avoid these delays.  Much time is saved when these swapping and paging delays are 
minimized if not eliminated.  This leads to the different application types described below. 
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MemoryMap 01/03/11

MEMORY ACCESS DELAYS

 
 

Figure 15-4.  Illustration of a table of on board memory hierarchy delays. 
 
 
 If all of the code and data of an independent module fit into local chip memory (level 1 or 
level 2 cache), swapping and paging are unnecessary and speed is maximized.  This implies 
that (1) they fit; and (2) they are not going to move (stationary connectivity).  Alternatively, if 
they do not fit, but the statistics are still highly stationary, time spent swapping and paging will 
still be insignificant.  This affects the trade-offs between memory size and special hardware 
algorithms for swapping and paging that use chip space.  With enough memory in each of the 
areas in the memory hierarchy, swapping and paging time will be insignificant. 
 
 
Stationary Applications 
 

 Stationarity implies that the same modules communicate with each other throughout the 
run.  Given a mapping of software architecture onto a parallel processor hardware architecture 
that minimizes the memory boundary crossing delays, swapping and paging are unnecessary.  
Such a mapping is best left in tact, else time is wasted by the OS trying to find a better one. 
 

 Given that an optimal mapping is achieved, i.e., one that minimizes run-time, the OS 
must be notified not to change it.  Else, if the OS tries to improve the mapping, it may start a 
random walk trying to find a better mapping, losing the starting point along the way.  To benefit 
from good mappings, one must be able to flag the OS to leave the mapping stationary. 
 
 
Tests For Optimal Mappings 
 

 VPOS contains data collection facilities that produce measures of useful and idle time for 
every ΔTmax window.  VisiSoft also contains facilities that map these results graphically, on a 
deterministic or statistical basis.  As shown in Chapter 18, these measures may be used to vary 
the mapping of independent modules onto processors to minimize the number of processors used 
while meeting the run time constraints. 
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Stationarity May Depend Upon Scenarios 
 

 A particular software application may be stationary under one set of input scenarios and 
nonstationary under another set.  This is illustrated in Chapter18, where application platforms of 
a given type are mapped into IND modules.  Platforms of one type may communicate with 
platforms of a different type as well as with each other depending upon their connectivity. 
 

 In addition, platforms may move to different areas where they no longer communicate 
with those with whom they were previously connected.  Instead, they may now be connected to 
new platforms in the new area, and must be able to communicate with them.  Because the 
modules represent instances of the physical platforms, and because they change their 
connectivity, they are now sharing memory with different modules. 
 
 
Nonstationary Applications 
 

 To support scenarios that render architectures nonstationary, the architectures illustrated 
in Chapter18 may be redesigned.  This typically involves grouping previously independent 
modules into a higher level independent module and expanding the number of resulting modules.  
This creates an abstraction that requires the platform submodules within an independent module 
to take on properties of another platform within a distant independent module.  This requires 
moving the explicit data properties from one abstract module in a given IND module to another 
abstract module in a distant IND module. 
 

 The time constants between such changes are generally sufficiently large to limit the 
number of moves within the module design.  To do this effectively, these multiple moves must 
be made within the software design based on knowledge of the multiple subsets of data.  
However, this abstract approach makes the module design much more complex.  Although faster 
than the multiple OS level moves, they will take considerable time compared to a single IND 
module move. 
 

 When looking at the resulting expanded modules, one sees abstract copies of all of the 
submodules on each processor.  With sufficient memory, this is not a problem.  However, given 
the design of the IND modules, and the fact that VPOS knows the mapping of IND modules to 
the hardware architecture, it is relatively easy for VPOS to track transfers of memory among 
IND modules and remap the allocation of these modules to processors to minimize the memory 
boundary crossing delays.  These transfers can be minimized and done together.  Transferring an 
IND module to a different processor can be performed by VPOS in a few moves, so multiple 
modules may be moved to different processors very fast. 
 
 
COMMUNICATIONS MANAGEMENT 
 

 We are concerned withy two types of communications: those between tasks (Inter-Task) 
and those between processors (Inter-Processor).  Those between tasks may also be between 
different processors.  In a single task with IND Modules running on different processors, some of 
these IND Modules may also communicate with different tasks.  Setting up IT or IP resources is 
a simple mouse click in VisiSoft.  All of the facilities needed to support these resources are 
automatically generated as part of the RTS, making these facilities extremely easy to use. 
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VPOS - FOCUSED ON PARALLEL PROCESSING 
 
What VPOS Does Not Do 
 

 VPOS is aimed at optimizing and managing the hardware space for parallel processing.  
When using parallel processors to gain speed, it does not make sense to inject large time-
consuming tasks that bog down the parallel processor when they can be done outside the tightly 
coupled parallel processor boundary.  This seems obvious, but is not generally followed in 
current OS designs.  The only interfaces needed for a fast parallel processor environment are 
cache or other RAM.  Let the server side of the farm support everything else, e.g., the following:  
 

Keyboards DVDs 
Mice Hard Drives 
Screens Communication Channels 
Printers Memory Sticks, 
CDs etc. 

 
 Use of these devices from the parallel processor can generally be treated using shared 
memory with standard simplex or full duplex protocols.  There is no need for DMA channels, 
fast graphics cards, etc.  These functions take significant amounts of overhead, obstructing the 
ability to gain speed, and can be dealt with independently. 
 

 Current approaches to parallel processing are similar to Blind Man’s Bluff, leaving the 
ability to detect inherent parallelism to the operating system.  The classic approach uses Tiling to 
break up DO/FOR loops.  The classic example is matrix inversion.  But fast matrix inversion is 
best done using the symbolic solution approach; there is no looping, and no inherent parallelism.  
However, this requires detailed knowledge of the application, something held by only subject 
area experts.  Programmers generally do not have the requisite background to understand the 
application in depth, and particularly the real inherent parallelism. 
 
 
What VPOS Does 
 

 To achieve maximum useful processing overlap, VPOS minimizes the time spent waiting 
for data.  This is achieved using copies of memory and proper communications protocols.  To 
minimize memory boundary crossing delays, VPOS takes in the RTS architectural information to 
optimize the physical mapping of IND modules onto processors using knowledge of the 
architectural connectivity of IND modules.  These are just some of the features of VPOS. 
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CHAPTER 16 
IMPROVING PARALLEL PROCESSOR HARDWARE DESIGN 

 
 
 This chapter examines approaches to parallel processor hardware design that take 
advantage of the Application Space Architecture (ASA).  It is concerned specifically with the 
logical, electronic, and mechanical design of computers that can maximize the speed of 
applications using a large number of processors.  The design objective is to minimize the number 
of processors required to meet a specified application run time constraint by taking advantage of 
the ASA.  The applications of concern are those that require multipliers of N times single 
processor speeds where N may be multiple orders of magnitude.  Using the ASA approach, one 
can expect to take an application currently requiring many thousands of processors and reduce 
that number by 2 to 4 orders of magnitude. 
 

 This will require design of the application software in VisiSoft to take maximum 
advantage of the inherent parallelism in the system - putting that parallelism into IND Modules.  
Using the VisiSoft architecture to rebuild an existing application should be relatively easy.  More 
importantly, significant future expansion is greatly simplified.  Given that we meet these goals, 
the economic savings in terms of time, money, power, floor space, and air conditioning are 
generally immense compared to the application redesign investment. 
 

 As in Chapter 15, we assume that the Software Architecture and Run-Time System (RTS) 
shown in Figure 15-1 have been produced using the VisiSoft approach described in the previous 
chapters.  Second, we assume that VPOS can be tailored to different hardware designs relatively 
easily.  Third, we assume that chip designers will understand the theory presented here and will 
make suggestions on improving the approach with regard to future hardware designs. 
 

 Chapter 15 described how simulation can be used to optimize the various VPOS 
management algorithms with VisiSoft.  This is a highly nonlinear problem where improvements 
in the hardware allocation algorithms, using parameters or different schemes, are difficult to 
evaluate without simulations of representative applications.  In addition, VisiSoft has built-in 
nonlinear optimization facilities that have evolved over many years of solving similar problems.  
These same simulation and optimization facilities apply directly to the design of hardware 
architectures.  In particular, we are concerned with optimal use of chip space, design of the size 
and placement of memory hierarchies, and the use of direct memory transfers between adjacent 
boxes. 
 

 Part of the solution to this problem is provided by the VisiSoft optimization facility used 
to design the VPOS memory management algorithms.  For example, the VPOS design allows the 
memory management algorithms to use variable parameters to represent the delays of a given 
hardware design.  This can be used to produce parametric solutions that yield hardware design 
parameters.  One can then perform parametric analysis to determine the best tradeoffs when 
allocating chip space and designing the physical layout of boards, trays, boxes and racks. 
 

 Clearly there are different types of applications that must be addressed, and these will 
present different loads to the hardware design.  These different applications may be simulated in 
terms of the numbers and types of IND Modules they present to the system.  Examples of these 
differences are clearly observed when running simulations that illustrate differences in IND 
Modules that relate directly to Figures 6-2 through 6-6, reflecting the inherent parallelism in the 
applications and the PUE.  This is illustrated in experiments described in Chapter 18. 
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DEALING WITH PARALLEL PROCESSOR ARCHITECTURES 
 
 Computer hardware architecture was driven by clocked operation speed until the recent 
clock rate barrier was hit.  When computer clock rates were doubling about every 18 months, 
application software speeds increased at the same rate without any software changes.  Since the 
leveling off of clock rates, buying a new processor no longer achieves such speed improvements. 
 

 Parallel processors now dominate computer design.  Chip manufacturers cite the number 
of processors (cores) on a chip, implying that this effectively multiplies the speed of the 
computer.  An example was described in Chapter 3, and shown in Figure 3-3.  The problem is 
that very few representative applications measure speed on a scientific basis.  What is obvious is 
the need to uncover and sort out the facts. 
 

 One reason for the lack of measurements is the way software is built for single versus 
parallel processors.  Clearly application software must be tailored for parallel processors to reap 
the full benefits.  Even then, it is often tailored for a specific number of processors.  With current 
software technology, changing software is time-consuming and rewrites are costly - even for a 
single processor.  This inhibits comparison of single processor versus parallel processor speeds.  
For many applications, current software approaches make it difficult to compare speeds using 
different numbers of parallel processors. 
 

 Without measurements that generate good data, hardware designers have difficulty 
making design decisions.  Instead they are driven by people lacking in-depth experienced in both 
hardware and software.  Even the ideas are based on questionable requirements.  In addition, 
many HPC hardware designers are driven by buyers who are measuring how many processors 
may be strung together in a large parallel processor.  This implies that the more processors one 
connects, the more speed one can gain.  This can be deceiving from at least two standpoints.  
First, some new architectures are moving toward nano-processors, where each processor is less 
capable and has a much smaller amount of cache memory directly available to it.  Second is the 
drive to Exascale computing.  The idea is that speed is proportional to the number of processors 
or flops, e.g., in embarrassingly parallel applications.  Even at smaller levels, this has been 
shown to be false. 
 

 The following important observations are taken from: A Comparative Study of Parallel 
Sort Algorithms, by Davide Pasetto & Albert Akhriev, IBM Dublin Research Lab, Dublin, 
Ireland. 
 

Modern SMP architectures are evolving towards a common design: a number of cores 
connected to shared main memory via hierarchy of caches with increasing size and 
decreasing performance.  The difference in latency and bandwidth between the cache 
memory and the main memory can be so high that algorithms considered very efficient 
from a theoretical point of view could have poor performance in practice.  It is well 
known that an efficient implementation of any algorithm cannot ignore the underlying 
hardware architecture and this is even more important when designing a parallel 
implementation.  Therefore, some basic knowledge about cache / memory interaction 
should be embedded in the algorithm structure.  When the implementation is meant to run 
on a parallel system, the effects of cache coherence protocols make things even more 
complex: data structures and algorithms must be designed to avoid false sharing and 
unnecessary cache coherent operations. 
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 One may argue that these observations depend upon the application.  For example, 
certain “fine grain” applications (covered in a following section) are claimed to be well suited to 
nano-processors.  The prominent example of such an application is a one-direction passing of 
independent data streams through a sequence of processors, e.g., pipelined graphical processing.  
But for main stream applications, we know of no parallel processor experiments and documented 
results to refute the observations.  Most applications must deal with the physical realities of 
distance-to-memory or distance between processors. 
 

 One can show theoretically that speed may be increased by grouping the processing 
performed by many processors onto a single processor (an example is provided below).  When 
one compares all of the overhead functions and distance factors that result from using 3000 
processors instead of 30 in a single PC, it is clear that independent experiments and 
measurements are needed to support hardware design approaches.  It is time to rethink how 
software architectures, embodied in ASA, affect hardware architecture, and vice-versa. 
 
 
MEMORY BOUNDARY CROSSING DELAYS 
 

 To illustrate the effects of hardware architecture, Table 16-1 provides examples of 
possible ranges of time delays for memory segment transfers between different processors on a 
parallel computer.  It also provides associated ranges on memory sizes and numbers of 
processors.  The ranges are wide to allow for different designs and technologies.  Access times 
within a processor (level 1 cache) or chip (level 2 cache) may take 0.2 to 2 nanoseconds.  This 
may rise by a factor of 5 or more between chips on the same board (L3 cache).  When going 
between boards, this may rise by another factor of 5, depending on the design.  Similar increases 
in delay occur due to memory transfers between trays and racks.  It must be emphasized that the 
numbers in the table clearly depend upon design of the hardware architecture and the electronic 
circuitry used to implement that architecture.  We also note that these numbers have been 
improving with time and may continue to do so for the foreseeable future but the relative delays 
will likely remain. 
 

Table 16-1.  Processor and memory - sizes and delays. 
 

Position
Time Delays 
(Nanosecs) 

Memory 
Type

Memory Size 
(Bytes) 

Number of
Processors 

With Processors   0.2 - 2.0 L1       1 - 4 M 1
Within chips 1.0  - 10 L2     16 - 128 M  4 - 18
Within Boards  5.0 - 50 L3     48 - 1024 G 24 - 72
Within Trays    20 - 200 SSD       6 - 48 T 128 - 768
Within Racks    200 - 1000 SSD   300 - 2400 T  2,000 - 16,000
Among Racks  1000 - 5000 SSD       1 - 100 P 32,000 - 1,600,000
Memory Maps  07/25/15

DELAYS, MEMORY SIZE, & PROCESSOR COUNT

 
 
 It is important to note that we are measuring time delays (nanoseconds), not bit transfer 
rates or frequencies (Gigabytes/second).  Frequencies may remain constant over long distances. 
But in a computer, delays determine speed, and do not remain constant.  For various reasons, 
they tend to increase exponentially with distance, mainly due to circuit designs that are required 
to maintain a recognizable signal.  When going beyond a board, e.g., one with 32 processors, one 
is faced with delay multipliers on the order of 20 compared to level 1 cache.   
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 Figure 16-1 provides a simplified illustration of the range of differences in memory 
boundary crossing delays when transferring smaller blocks of memory.  To simplify the analysis, 
the memory access delay between a processor and its level 1 cache is set to 1.  Going to level 2 
and 3 cache increases the delay to 2 and 4.  Once one is off the board, going between boards, 
then trays, and then racks, delays start to climb, depending upon distance as well as the hardware 
itself.  The numbers in the chart are only intended to illustrate a hardware architectural delay 
footprint.  They can grow with distance between racks.  Clearly, one wants to remain as close to 
the diagonal as possible to achieve fast memory transfers.  Except for embarrassingly parallel 
applications, information must be shared between boards, trays, and racks.  The best software 
architecture minimizes off-diagonal memory sharing and transfers. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 2 2 2 4 4 4 4 4 8 16 16 16 16 16 16 16 16 16 32 32 32 32 64 64 64 64
2 2 1 2 2 4 4 4 4 4 8 16 16 16 16 16 16 16 16 16 32 32 32 32 64 64 64 64
3 2 2 1 2 4 4 4 4 4 8 16 16 16 16 16 16 16 16 16 32 32 32 32 64 64 64 64
4 2 2 2 1 4 4 4 4 4 8 16 16 16 16 16 16 16 16 16 32 32 32 32 64 64 64 64

4 4 4 4  4 4 4 4
5 4 4 4 4 4 1 2 2 2 8 16 16 16 16 16 16 16 16 16 32 32 32 32 32 32 32 32
6 4 4 4 4 4 2 1 2 2 8 16 16 16 16 16 16 16 16 16 32 32 32 32 32 32 32 32
7 4 4 4 4 4 2 2 1 2 8 16 16 16 16 16 16 16 16 16 32 32 32 32 32 32 32 32
8 4 4 4 4 4 2 2 2 1 8 16 16 16 16 16 16 16 16 16 32 32 32 32 32 32 32 32

8 8 8 8  8 8 8 8 8 8 8 8 8 8 8 8
9 16 16 16 16 16 16 16 16 8 1 2 2 2 4 4 4 4 4 16 32 32 32 32 32 32 32 32

10 16 16 16 16 16 16 16 16 8 2 1 2 2 4 4 4 4 4 16 32 32 32 32 32 32 32 32
11 16 16 16 16 16 16 16 16 8 2 2 1 2 4 4 4 4 4 16 32 32 32 32 32 32 32 32
12 16 16 16 16 16 16 16 16 8 2 2 2 1 4 4 4 4 4 16 32 32 32 32 32 32 32 32

4 4 4 4 4 4 4 4
13 16 16 16 16 16 16 16 16 8 4 4 4 4 4 1 2 2 2 16 32 32 32 32 32 32 32 32
14 16 16 16 16 16 16 16 16 8 4 4 4 4 4 2 1 2 2 16 32 32 32 32 32 32 32 32
15 16 16 16 16 16 16 16 16 8 4 4 4 4 4 2 2 1 2 16 32 32 32 32 32 32 32 32
16 16 16 16 16 16 16 16 16 8 4 4 4 4 4 2 2 2 1 16 32 32 32 32 32 32 32 32

16 16 16 16  16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  16 16 16 16
17 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 1 2 2 2 4 4 4 4 4
18 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 2 1 2 2 4 4 4 4 4
19 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 2 2 1 2 4 4 4 4 4
20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 2 2 2 1 4 4 4 4 4

4 4 4 4  4 4 4 4
21 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 4 4 4 4 4 1 2 2 2
22 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 4 4 4 4 4 2 1 2 2
23 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 4 4 4 4 4 2 2 1 2
24 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 4 4 4 4 4 2 2 2 1

8 8 8 8  8 8 8 8
25 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16
26 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16
27 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16
28 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16

29 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16
30 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16
31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 16 16 16 16 16 16 16 16 16

33 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
34 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
35 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
36 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

BOARD RACKCHIP

PROCESSOR

TRAY  
 

Figure 16-1.  A simplified illustration of memory boundary crossing delays. 
 
 From Figure 16-1, one sees that a good software architecture on a 32 processor PC board 
may exceed the speed of a computer using 10 or more times the number of processors.  This 
depends upon the application and the software spaces designed to support the algorithms for the 
application.  Clearly one must take careful measurements to make these comparisons. 
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MAPPING SOFTWARE ARCHITECTURES ONTO HARDWARE ARCHITECTURES 
 

 The architecture of a TELEPHONE_NETWORK Model is shown in Figure 16-2.  This 
architecture contains 4 IND modules and corresponding IP resources (blue borders).  Figure 16-3 
provides a connectivity matrix of the architecture that has already been diagonalized. 
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 In the matrix in Figure 16-3, SCENARIO_CONTROL, OFFICE, SWITCH, and 
INSTRUMENT, are IND modules and the IP resources shared between these modules are only 
read by processes outside the IND modules that write to them.  The Xs indicate shared resources 
that are both read and written by processes within the IND modules shown.  The Rs indicate IP 
resources that are only read by processes outside the IND modules.   
 

CONNECTIVITY_MATRIX  11/29/13

SC
EN

AR
IO

_C
O

N
TR

O
L

O
FF

IC
E_

FA
C

IL
IT

IE
S

SU
BS

C
R

IB
ER

_S
YS

M
BO

LS

PE
R

FO
R

M
AN

C
E_

M
EA

SU
R

ES

SU
BS

C
R

IB
ER

_A
TT

R
IB

U
TE

S

SU
BS

C
R

IB
ER

_P
BX

_I
N

TE
R

FA
C

E

PB
X_

S
U

B
SC

R
IB

ER
_I

N
TE

R
FA

C
E

PB
X_

FA
C

IL
IT

IE
S

PB
X_

S
YM

BO
LS

PB
X_

S
W

IT
C

H
_I

N
TE

R
FA

C
E

SW
IT

C
H

_R
ES

P
O

N
SE

SW
IT

C
H

_F
AC

IL
IT

IE
S

SW
IT

C
H

_S
YM

B
O

LS

G
R

AP
H

IC
S

_I
N

ST
R

U
M

EN
T

READ_SCENARIO_DATA

INITIALIZE_SCENARIO

INTERACTIVE_SCENARIO

GET_TRUNK_CAPACITY

BUILD_OFFICE

INSERT_SUBSCRIBER

PLACE_CALL

TERMINATE_CALL

COLOR_SUBSCRIBER

RECEIVE_PBX_RESPONSE

RECEIVE_SUBSCRIBER_INPUT

INSTALL_PBX

UPDATE_PBX

RECEIVE_SWITCH_RESPONSE

RECEIVE_PBX_SIGNAL

INSTALL_SWITCH_EQUIPMENT

COLOR_TRUNKS

COLOR_TERMINALS

CONNECT_CALL

DISCONNECT_CALL

UPDATE_PERFORMANCE_MEAS

INSERT_INSTRUMENT

X

X

X

X

X

X

X

X

X

R

X

X

X

X

X

X

X X

XX

X

X

X

X

X

X

X

X

X X

X

X

X X

X

X

X

X

X
X

X

X

PROCESSES

R
ES

O
U

R
C

ES

MODULES

X

X

X

X

X

R

R

R

R

R

OFFICE

SWITCH

INSTRUMENT

IND MODULES

SCENARIO_CONTROL

 
 

Figure 16-3.  Illustration of a diagonalized connectivity matrix. 
 
 
 Although this is a simple model, it illustrates the natural ability to create IND modules of 
physical systems.  This example shows how an ASA is used to map the inherent parallelism in an 
application into a software space that fits into the type of hardware architecture required for 
parallel processing. 
 

 Past experiments have shown that adding more processors can cause substantial 
reductions in PUE, and corresponding reductions in speed multipliers that one may expect from a 
large increase in the number of processors used for an application.  We will consider some of 
these applications using the ASA approach. 
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Fine Grain Model Software Architectures 
 

 Typical applications justifying large numbers of processors are the ‘fine grain’ problems 
of fluid dynamics or particle physics used to represent biological, chemical and meteorological 
type systems.  Chapter 9 presented different approaches to software architecture of fine-grain 
problems.  In these types of models, one is typically concerned with the dynamics of particles 
under the influence of one or more fields, e.g., gravitational, electro-magnetic, pressure and 
temperature.  These systems are typically represented by a large number of cells in a 3D space 
that are used to descretize the system of partial differential equations that represent the smoothed 
dynamics of the system elements. 
 

 A simplified example of the interfaces between such cells is shown in Figure 16-4.  When 
using 3D models, each cell has 6 interfaces, one in each of the positive and negative (X, Y, Z) 
directions.  In the case of container or surface boundaries, the number of faces of cells adjacent 
to the container is reduced. 
 

 
 

Figure 16-4.  Illustration of a cell that is connected through 6 faces in (X, Y, Z) space. 
 
 
 The amount of computation within a cell will depend upon the particular dynamics within 
that cell.  Computational imbalances among cells will reduce the PUE.  Depending on their 
distribution, these imbalances may be offset by grouping a large number of cells onto a single 
processor.  This grouping, often referred to as ‘tiling’, is described near the end of Chapter 9.  
Grouping multiple cells on a processor can also speed the overall process by increasing the 
amount of computation on each processor within each time interval while minimizing 
information exchanges at each processor interface. 
 

 Determining the best grouping is a software architectural issue that requires experimental 
evidence and comparison.  This can be accomplished using previously validated models in a 
simulation, where the architectures are easily varied.  In the end, one typically groups a large 
number of cells on each processor that interfaces with other processors to cut down on the 
memory boundary crossing delays. 
 
 
A Simplified Hardware Architecture Model 
 

 To understand the translation of software architecture into a parallel processor hardware 
architecture, we will use a conceptual model of the hardware space as shown in Figure 16-5.  To 
explain the important concepts behind the translation we start with a highly simplified hardware 
model using boxes to represent a single processor with information only shared directly between 
the 6 faces.  This eliminates the hierarchy of chips, boards and trays and the need to account for 
complex hardware communication facilities that provide for “direct” communications (memory 
transfers) between any two boxes.  The concepts are easily extended to more complex boxes. 
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CONCEPTUAL ARCHITECTURAL EXAMPLE:

A matrix of 27 major boxes, each containing a single processor.
If each processor contains 54X54X54 = 157,464 cells, one can model 4,251,528 cells.
A single resource is shared between the adjacent face of each major box.

DiscreteSpaceModels  09/09/15

 
 

Figure 16-5.  A 3D array of major boxes. 
 
 
 The boxes in Figure 16-5 represent hardware facilities where each box contains a single 
processor.  If within each box the number of cells on that processor is equal to NxNxN, where N 
represents the number of cells along each edge, then Figure 16-6 provides a plot of the interior 
and face cells for various values of N.  For example, if N = 54, yielding 54X54X54 = 157,464 
cells, and the ratio of interior cells to those on the faces is greater than 10:1.  This ratio is 
important since interior cells share data directly whereas those on a face must share data between 
boxes.  In this example, the total number of cells processed by the 27 boxes is 4,251,528 
 

 To analyze the memory boundary crossing delays one may encounter when dealing with 
a fine grain application, we will consider a simplified hardware architecture where memory is 
copied directly between the boxes via resources as shown in Figure 16-5.  To share data between 
boxes, resources must be copied at each interface.  We will assume that the time to copy a 
resource between boxes (processors in this case) is much larger than an internal memory access. 
 

 This architecture can be replaced by that shown in Figure 16-7, where the box in the 
center of Figure 16-5 has direct access to every other box.  We emphasize that these are simple 
generalizations to illustrate critical hardware considerations. 
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Figure 16-6.  Total cells as a function of edge cells. 
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Figure 16-7.  Passing information to surrounding boxes. 
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Modeling The Application 
 

 As indicated above, fine grain applications typically involve effects (e.g., gravitational 
forces) that affect cells that may be a distance of 10 cells away.  The actual effects are 
determined by the size of a cell, the masses in a cell, and the amount of influence that 
surrounding cells have relative to those that are distant.  These are typical modeling problems 
that require the knowledge of application experts.  The models must be built to accommodate the 
accuracy requirements of the application - independent of how they are implemented on a 
computer.  The accuracy is determined by the cell sizes, and how the effects of distance and 
other factors determine which cells affect the computation on the cell of interest. 
 

 In a typical force field, effects travel at the speed of light, implying that the effects of a 
change in mass in one cell will occur virtually instantaneously in cells that may be multiple hops 
away.  This implies that, when masses move in a given cell, they can affect the forces in a cell 
that is multiple hops away.  The mass changes occur within a ΔT time step, where ΔT is defined 
to be sufficiently small to accurately depict the physical changes in position.  At the end of that 
ΔT, the new positions must be invoked “instantaneously” in all affected cells.  Translating this to 
the solution of a set of partial differential equations, this implies that, as masses move within a 
time step, the new mass positions must be used in the next time step by those cells affected.   
This implies that a cell affected by the characteristics of cells 6 hops away must have access to 
those memory resources attached to the string of 6 cells.  Obviously this applies in all directions. 
 

 Stepping back for a look into real memory boundary crossing delays, if all the cells 
affecting the computation in a given cell are on the same processor, they are likely sharing the 
same L2 cache memory.  If all the cells are on different processors on the same chip, they are 
likely sharing the same L3 cache memory.  In the case we are currently considering, if the cell of 
interest is on the face of a box, then it must communicate with cells in an adjacent box.  Using 
current hardware designs, this memory boundary crossing delay is typically large compared to 
the others and must be dealt with accordingly.  This is due to the design of communications 
channels between boxes over large physical areas. 
 

 Going back to the single processor in a box, the solution to instantly sharing information 
between boxes lies in creating an application space that supports fast memory transfers when 
mapped into the hardware space.  Cells accessing data on cell faces that are 6 layers away, but 
within the same processor, can share one large resource (data structure) and its corresponding 
block of memory. 
 

 When cells must share data between processors (boxes), they must share information on 
cells up to 6 layers deep at the face of the block.  This can be done using large data structures 
(resources) at the shared faces between boxes as shown in Figure 16-5.  Given that this resource 
contains all of the information needed by those cells within 6 cells of the corresponding face on 
the adjacent processor, one need only copy this resource to the adjacent processor at the end of 
each time step.  This IP resource must contain all of the information needed to account for the 
effects of those cells within the affecting facial distance on the adjacent processor. 
 

 The information put into this adjacent cell block can contain predetermined values that 
apply to those cells affected in the other box, reducing the computation required in the affected 
cell.  Also, IP resources must be created to support cells on the four diagonal corners that are not 
directly adjacent, but must be passed to those four boxes by the adjacent box.  Obviously, IP 
resources are required for each direction from which the forces emanate. 
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Hardware Memory Design Considerations 
 

 Two points can be derived from the above observations and each of these leads to the 
desire for large amounts of fast memory next to each processor.  First, the number of cells along 
each edge must exceed the number of cells affected by a given cell in a each direction by an 
amount that sufficiently reduces the overall memory transfer and computation time.  This will 
also improve the ratio of internal cells to those cells affected by their nearness to a face. 
 

 If the number of edge cells in a processor is large, then the number of times that one must 
communicate between boxes is small relative to the overall computations.  From the curve in 
Figure 16-6, if the edge contains 54 cells, then there are 10 interior cells for every edge cell.  In 
addition, one must consider the number of cells in a given direction that contribute to the 
calculation of the cell of interest.  This must be tested to determine the actual outcomes because 
of the complexity of the operations leading to the resulting effects.  The major factor determining 
speed within the processor is the number of cache faults that occur when performing the 
calculations.  The amount of fast cache directly available to a processor will determine the 
number of cells that can be processed fast on that processor.  We cannot over emphasize the 
potential gains in speed achieved by increasing memory size as close to the processors as 
possible. 
 

 The second observation point is the time to transfer memory between boxes at a face.  
Given that the speed of applications of interest is enhanced when memory is only shared directly 
between the 6 faces of a box, then there is no need for a special communication interface that 
goes beyond the adjacent box.  This implies that one may use direct memory transfers between 
boxes using IP resources - just as between processors on different chips on the same board.  
These transfer mechanisms need not be identical in speed, but the logic and circuit designs 
should produce transfer times that are as close as possible.  The critical point is that memory 
transfers between adjacent boxes should be as fast as possible.  When application architectures 
are designed correctly for speed, including the use of complex hierarchical IP resources, fast 
memory transfers between adjacent boxes is sufficient.  Multiple hops can still be achieved with 
fast transfer times when the hop count is small.  This satisfies most all applications of interest, 
particularly since the 2 to 4 orders of magnitude of speed gained satisfies these applications 
within an array of boxes smaller than that illustrated in Figure 16-5. 
 

 Given that IP resources can be used between boxes with memory transfer rates that are 
much faster than when using communication protocols, and that a sufficiently large set of 
applications exist that benefits from this approach, then this hardware architecture should be very 
attractive from an economic standpoint.  This becomes more apparent when reflecting back to 
the case of multiple processors on a chip and multiple chips on a board.  Today’s boxes can hold 
72 processors instead of 1.  Most important is the fact that speed can be dramatically increased - 
by 2 to 4 order of magnitude - using the VisiSoft CAD approach.  This implies huge reductions 
in the number of processors required to service the vast majority of applications. 
 

 One must also consider the requirement for all boxes to transfer memory to all other 
boxes.  This brings in the need for communication protocols that move memory from anywhere 
to everywhere.  It is rare that simulations of physical systems have this requirement, including 
models of communication systems.  This is also true for real-time as well as other applications.  
Administrative functions that service the computer system will likely have such requirements, 
but these may be supported using the same approach, putting the protocols into software and 
treating these administrative functions as another application. 
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 Alternatively, separate communication hardware may be accommodated within each box, 
with messages and data routed between the boxes.  These administrative needs will likely not 
have the typical speed requirements of a large scale simulation.  Even if they do, the number of 
boxes required in a typical installation serving current application requirements will be 
significantly reduced compared to those using current software approaches. 
 
 
Effects on Parallel Processor Utilization Efficiencies (PUEs) 
 

   The effects of this approach on Processor Utilization Efficiencies (PUEs) is illustrated in 
the example shown in Table 16-2 and Figure 16-3 below, where 1,000,000 fine grain cells may 
be grouped onto much fewer processors.  Starting with a single cell per processor and moving up 
the logarithmic scale to 1,000,000 cells per processor, the table illustrates the potential for order-
of-magnitude increases in speed using VisiSoft.  With large numbers of processors, typical PUEs 
using current approaches are on the order of 7% - 10%.  But the Speed Multipliers (SMs) are 
based upon single processor speeds that may be 10 to 100 times slower than VisiSoft for the 
same application - on the same processor.  Thus the effective SM and PUE must be calculated 
based upon the VisiSoft single processor speed.  NOTE: This will drastically change the speed 
multipliers calculated by other organizations. 
 

Table 16-2.  Grouping fine grain cells onto fewer processors. 
 

CELLS PER
PROCESSOR

Number Of
Processors

Typical 
PUE

Typical Speed 
Multiplier †

VisiSoft
PUE

VisiSoft Speed 
Multiplier †

1 1,000,000 0.05 50,000.0 0.50 5,000,000
8 125,000 0.06 7,500.0 0.60 750,000

64 15,625 0.07 1,093.8 0.70 109,375
216 4,630 0.08 365.7 0.79 36,574
512 1,953 0.09 166.0 0.85 16,602

1,000 1,000 0.09 89.0 0.89 8,900
8,000 125 0.09 11.6 0.93 1,163

64,000 16 0.10 1.5 0.96 150
216,000 5 0.10 0.5 0.98 45
512,000 2 0.10 0.2 0.99 19

1,000,000 1 0.10 0.1 1.00 10  
†  Adjusted to use the fastest single processor speed. 

 
 
 With 1,000,000 processors, the VisiSoft PUE may be reduced to 50% due to the footprint 
of the machine.  But because VisiSoft single processor speeds are typically 2 orders of 
magnitude times faster than other languages, one can put 100 times the number of cells on a 
given processor.  Putting 216,000 cells (60X60X60) on a processor is easy using VisiSoft data 
structures.  One then achieves a speed multiplier of 45 using only 5 processors.   One would 
likely have to use more than 100 times that number of processors to achieve that speed using 
typical approaches.  As cells per processor increases, the requirement for more memory closer to 
the processor rises. 
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Figure 16-8.  Grouping fine grain cells onto fewer processors. 
 
 
 As illustrated in the table, the PUEs will rise as the footprint gets smaller.  Again, the 
smaller multiplier of 700 may likely be acceptable since the size of the computer is reduced by a 
factor of 27, substantially reducing the cost of equipment, maintenance, floor space, 
environmental equipment sizes, and power consumption.  By grouping 216,000 cells into a 
processor, both the speed multiplier and the number of processors is reduced by almost a factor 
of 3.  One can easily make the trade-off of speed versus cost in a reasonable range of the cell-
processor spaces.  By using less processors, the information exchange overhead between 
processors is obviously significantly reduced. 
 

 Using this approach, if the system is linear, each block of cells is doing a significant 
amount of work independent of the other blocks of cells.  If the system is nonlinear, then one can 
estimate the values for the nonlinear interfaces as a starting point and iterate if necessary using a 
fast converging linear segmentation algorithm that may be used for all of the affected cells 
within each ΔT.  In either case, the amount of computation within each processor will be large 
compared to the cross processing necessary to update and synchronize the interface processing. 
 

 Finally, one must be able to easily map blocks of cells onto the hardware architecture, to 
minimize the memory boundary crossing delays described in Table 16-1 and Figure 16-1.  This 
is a software architectural problem that must be solved to minimize the run times.  We note that 
problems such as this are easily simulated to obtain representative test data.  To obtain valid 
results, one must match the model parameters to live test data using parametric analysis, a 
standard technique for producing accurate models and simulation results. 
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Mapping Software Spaces Into Hardware Spaces 
 

 Mapping cell blocks in software (X,Y,Z) space  into hardware (X’,Y’,Z’) space is 
relatively easy when the application space is a rectangular tank.  So let’s consider mapping other 
spaces, e.g., (R, Θ, Φ) - or even sets of different connected spaces - into hardware (X’,Y’,Z’) 
space.  We start with a set of different connected spaces shown previously in the waveguide 
application in Figure 9-17 (copied below as Figure 16-9).  The wave guide presents an 
application space architecture that uses multiple complex connected spaces. 
 

IND_5

IND_2

IND_1

IND_3

IND_4

 
 

Figure 16-9.  Application Space Architecture 
 
 
 Given that the application is running on a single processor, the spatial mapping has 
already been completed, including design of the resources that connect the sections.  Thus the 
major effort must be on breaking these sections up to run on separate processors.  Although this 
looks difficult, it is easily mapped into an array of boxes as shown in Figure 16-10.  Given that 
the waves travel in a given manner within each space, with reflections occurring in each space, 
the hardware space simply follows the application space.  Each box represents one - or a part of 
one - of the application spaces. 
 

 
 

Figure 16-10.  Hardware Space Architecture. 
 
 
Global Planning 
 
 The space that dictates the operations of the next set of applications is a representation of 
the earth itself, see Figure 16-11.  Although not immediately apparent, Figure 16-5 provides the 
hardware space in which to map these global applications.  The earth’s surface maps close to a 
sphere with (R, Θ, Φ) coordinates.  For applications requiring more accuracy, such as those 
described below, Θ is the Latitude coordinate running from (-90° to +90°) corresponding to 
boxes running from bottom to top in the drawing.  Φ is the Longitude coordinate running from 
(-180° to +180°) corresponding to boxes running from left to right and around the back.  In 
addition, each box has an Altitude coordinate that is perpendicular to the surface of the earth.  
All points above the earth’s surface are described in terms of (LAT, LON, ALT).  
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Figure 16-11.  Connectivity between satellites, ships, aircraft, and ground vehicles. 
 
 
 Figure 16-11 illustrates a complex communications space around the globe.  To speed up 
the models on a single processor, the earth’s  (LAT, LON, ALT) coordinates are transformed 
into a large number of sets of  (X,Y,Z) coordinates mapped over the earth’s surface.  This 
eliminates sine and cosine calculations since waves travel through space in straight lines. 
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 Figure 16-11 illustrates satellites in the GPS constellation.  Depending upon the level of 
model detail, or the need for other spatial platforms, e.g., communication satellites, an additional 
layer of processors may be needed to represent platforms in the space layer.  This is supported by 
adding boxes around the center of the periphery as shown in Figure 16-12, yielding a total of 32 
boxes. 
 

 

DiscreteSpaceModels  09/23/15  
 

Figure 16-12.  Representing the earth’s surface and the space above it. 
 
 
 Figure 16-13 shows another application based on the earth’s surface and its surrounding 
layers.  It is the computation of signal power received on the surface of the earth from an antenna 
on or near the surface of the earth using transmitters in the HF frequency range.  These signals 
bounce off the ionosphere and may be received far from transmitters on the other side of the 
earth.  These receptions depend upon the position of the earth relative to the ionosphere which 
are functions of time and date.  These calculations use application spaces similar to those 
described above.  Consequently, they map conveniently into the hardware space similar to that 
shown in figure 16-5 or 16-12. 
 

 Whether working in terms of  (R, Θ, Φ) coordinates, (LAT, LON, ALT) coordinates or 
sets of  (X,Y,Z) coordinates, the mapping of all these application spaces into a hardware space 
similar to that shown in Figure 16-5 is easily accomplished.  More importantly, the model spaces 
are all designed for maximum speed of the transformations as well as the application algorithms. 
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Figure 16-13.  HF signal strength around the globe from antenna in Morroco. 
 
 
The Bottom Line 
 

 The combination of software and hardware architectures for the above applications can 
provide speeds that are likely impossible to achieve using any other technology today, forgetting 
the corresponding power consumption and cost of operations.  The discounted cost of this full up 
global analysis and planning facility will be less than $5M.  This implies it will likely be many 
times faster - at less than 1/100th of the operational costs and 1/20th of the initial cost - of any 
other approaches. 
 

 VSI’s wholly owned subsidiary, the Green Gene Machine Corp., is currently working 
with universities to prove these claims independently. 
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QUESTIONABLE HARDWARE APPROACHES 
 

 There are a number of questionable hardware design approaches that have come about to 
make up for the poor processor utilization efficiencies described in Chapters 6 and 8.  These 
approaches have been devised to make up for the poor software architectures that are typically 
used for parallel processors.  One of these techniques is hardware cache coherency.  With a 
simple architectural approach, VisiSoft memory consistency and synchronization is guaranteed 
while speed is enhanced.  Another questionable approach is providing memory transfers from all 
processors to all processors.  This invokes complex communications protocols implemented with 
special hardware.  This requirement is unnecessary for most - if not all - parallel processor 
applications know to the authors.  Both cache coherency and all to all communications are totally 
unnecessary using VisiSoft.  This precious chip space can be used for more memory close to the 
processors - increasing speed and reducing the footprint. 
 

 Other approaches look to build larger systems with increased numbers of processors, as if 
running time increases directly with more processors.  These systems use Gigabit LANs and 
switches that create communication delays.  The delays are caused by: 
 

• High Overhead 
 

• Huge Memory Boundary Crossing Delays 
 

• Nonlinear distance multipliers 
 

 These approaches work well if there is little or no communications between processors, 
essentially the embarrassingly parallel case.  Given a good application space architecture, all 
that communications software is virtually unused, except for administrative functions.  But in 
some organizations, the current race appears to be focused on how many processors one can 
string together in a single computer.  When one reads about the test runs on these machines, fair 
measures of speed multipliers and processor utilization efficiency are hard to find, see [8].  Yet 
these are the critical economic measures for comparing parallel processors. 
 
 
The Goal Of Hardware Approaches 
 

 The goal of hardware designers should be to optimize the economic case for the end 
users, i.e., minimizing the cost to map the inherent parallelism of applications onto a computer.  
This is depicted in Figure 8-3.  This chain starts with the development environment to create a 
software architecture that maps the inherent parallelism into IND modules, and provides the 
information required by the Run-Time System (RTS) to map those modules into an optimal 
hardware configuration.  As described above, memory is the key factor in obtaining speed for 
most types of problems.  This includes minimizing memory boundary crossing delays and 
overhead that can be exchanged for more memory close to the processors. 
 

 There are three significant factors affecting parallel processors speeds.  The first is using 
a fair basis to compare speed multipliers (e.g., using the fastest single processor speed).  The 
second  is mapping the inherent parallelism of an application into software spaces that simplify 
the algorithms so they run fast.  Third is the Processor Utilization Efficiency provided by the fit 
of software and hardware architectures.  The consequences of PUE are illustrated in 
Figure 16-14.  The product of these and other measurable effects determines the multiplier on 
speed of an application running on a parallel processor.  
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Figure 16-14.  The effect of parallel Processor Utilization Efficiency (PUE). 
 
 
 Figure 16-14 is an extension of Figure 8-3 based upon additional information.  Figure 8-3 
assumes that both the hardware and software design achieve a perfect translation of the inherent 
parallelism in the system.  This is virtually impossible except for embarrassingly parallel 
applications.  Figure 16-4 accounts for PUE which is treated as an additional factor affecting run-
time speed, one that is influenced by both the hardware and software design.  Given that the 
software design obtains a given translation of inherent parallelism for the RTS, one must be able 
to translate this via VPOS and the hardware into a final speed multiplier.  Here we are looking at 
the PUE as a second factor that determines the final speed multiplier.  This chart shows the 
effects of PUE given a software design that produces a given inherent parallelism.  None of these 
efficiencies is going to approach perfection.  But if the software design can produce PUEs 
greater than 90%, we are looking at multipliers of 8 to 9 on speed with a good mapping of the 
hardware onto the software. 
 

 With today’s approaches, one considers “good” multipliers to be on the order of 7% to 
10%.  Granted, most of the poor results have been caused by the software design.  But if a 
software design is produced that maps the inherent parallelism of an application into a software 
architecture that is highly effective, the hardware architecture will play a significant role in 
taking advantage of that software architecture to achieve substantially improved speed 
multipliers. 
 



Software Theory              Page  16 -  20  

OTHER HARDWARE DESIGN CONSIDERATIONS 
 

 As described in Chapter 2, one of the most important considerations in computer design 
is the separation of servers from parallel processors.  Server tasks can be divided into those that 
can be put on a parallel processor and those that are best running as a task on a single processor.  
A major factor in this division is the use of I/O devices and the design of DMA channels.  
Figure 3-6 illustrates a scenario where three parallel processing tasks are running concurrently on 
different sets of processors.  These tasks may be managed by different servers that interface with 
different I/O devices. 
 

 A typical server application requires a teleprocessing front-end accessing a large database 
on the back end.  The communications handlers and database handlers are best suited to the 
server environment.  However, with the abundance of memory available on a parallel processor, 
one can maintain the total database in fast memory.  Then most of the processing can be done on 
the parallel processor side.  The database may be split into segments based upon statistics that 
provide a uniform access distribution across segments.  Then separate processors may be 
allocated to each segment, providing fast turn-around times. 
 

 By creating independent modules during the architectural design, where threads are 
always independent between modules, and are sequential and cannot run concurrently within a 
module, thread synchronization is unnecessary.  Using hardware (chip space) and OS code 
(memory) for this function is unnecessary for typical parallel processor applications. 
 

 Similarly, since synchronization between resources on separate processors is handled 
automatically by the RTS and VPOS, there is no need for hardware cache coherency.  Using 
hardware (chip space) and OS code (memory) for this function reduces speed multipliers. 
 

 It is not clear how special hardware stacks save time.  Since recursion is not known to be 
used in private sector applications, and certainly not needed in any software or simulation system 
known to the authors over the last 55 years, it appears unnecessary for the applications of interest 
here.  It slows down computation while using precious chip space.  This investigation must 
include the tradeoff of microcode versus direct implementation using logical circuitry. 
 

 From the above, one sees that software development environments affect the design of 
both the run-time environment and the operating system.  Together, they both affect the design 
of the hardware.  Given the VisiSoft CAD facilities described here, the following hardware 
facilities can be eliminated from parallel processor chips using the approach proposed here. 
 

• DMA channel - I/O device interfaces 
 

• Cache coherency 
 

• Thread synchronization 
 

• Stack facilities 
 

• Special instruction swapping facilities 
 
 We note that these facilities can be replaced by more memory close to the processors, the 
major factor in achieving speed.  We also note that the number of parallel processors in 
Figure 3-6 may be small compared to some actual environments.  However, that configuration 
easily fits in a box the size of a PC. 
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SUMMARY 
 

 Translating an application with reasonable inherent parallelism into an effective parallel 
processing design is hardly different from solving complex problems in mathematical physics.  It 
is much akin to development of the Open-GL graphical pipeline.  It involves selecting and 
optimizing the best spaces to do the transformations, and organizing the transformations to gain 
speed.  The application area expert is best equipped to solve this problem provided, as in similar 
fields, the expert is supported with a CAD system.  The requirements for this CAD system start 
with the language that is used to describe complex spaces and transformations.  It must provide 
the ability to create the detailed architectures required to understand and solve these types of 
problems.  The Run-Time System must be optimized to take the architecture and work with 
VPOS to provide optimal mappings of the spaces and transformations into hardware 
architectures. 
 

 Given that these facilities can be used to provide highly effective solutions, they must 
reside on hardware that is designed to support them effectively.  This is best accomplished by 
reviewing the applications destined to use the hardware, and designing hardware architectures 
that support the spatial mapping of the application  
 

 Clearly parallel processing stresses the language requirements well beyond a single 
processor application.  Fortunately it forces the requirement for measuring the resulting designs 
by comparing speed.  This brings about the obvious need for a scientific approach to the design 
of the CAD system as well as the OS and the hardware.  All of these designs can be tested using 
simulation.  This type of testing is addressed in the next chapter. 
 

 The bottom line here is that I/O bound applications require the special design of 
processors tailored to the server environment.  In this environment, huge numbers of independent 
tasks are running concurrently on the server, many of which are running on the same processor.  
Since they are typically bound by substantial I/O operations, most of them are in a wait state 
while one is running.  In other words, multiple independent tasks can run on a single processor 
since most are waiting for information transfers from other devices. 
 

 Parallel processor applications require speed independent of I/O operations.  This does 
not imply that I/O is not used.  It implies that a huge number of modules must share information 
directly while they run concurrently.  Their I/O operations are infrequent, and can be supported 
by simplex channels (typically one-way output) that do not slow them down.  Simplex channels 
can also provide one-way input, where the processors handling these channels provide the data - 
as needed - to modules that grab that data on the fly.  This is where application area experts are 
required to design such architectures since only they know the constraints on the design and the 
corresponding approaches that can ensure maximum concurrency of operations. 
 

 To support these experts, they must be provided with a CAD environment to describe the 
facilities they need to ensure representing physical systems accurately.  When systems are 
modeled along physical lines, they are easy for application experts to understand and are known 
to naturally operate as fast as possible. 
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CHAPTER 17.  
 

SINGLE PROCESSOR TESTS & RESULTS 
 
 
OVERVIEW OF EXPERIMENTS 
 

 Thirty years of productivity experiments, surveys, and speed testing would take many 
books to describe.  In addition, surveys of people’s ideas about productivity can easily be biased, 
with the real biases being almost impossible to remove using pure text book approaches.  After 
one has heard the thoughts and witnessed the approaches of many people, the biases become 
large and obvious.  It also becomes clear that the distribution of biased interpretations of test 
results can have variances as wide as the test results themselves. 
 

 This can been seen from the view of Jerry Sitner, a highly experienced software manager 
who has compared the productivity of different software development approaches over a huge 
number of real projects over many years.  In his article “How much longer?” see [136], he 
compares his interpretation of IEEE standards for measuring productivity to his real world 
experience.  Yet a PhD candidate in computer science with virtually no real project experience 
may have a totally different interpretation of a productivity experiment based upon student 
preferences than Sitner.  When one is concerned with deriving test results that are on a sound 
economic and scientific basis, Sitner makes it clear that experiments can produce obvious results 
on real world software problems, particularly those that work with large databases. 
 

 Chapters 17 & 18 provide a few samples of the kinds of experiments and testing that have 
been performed by the authors.  The results are hard numbers of clearly defined speed measures 
based upon the clock.  The first experiment compares different approaches to writing code on a 
single processor, and the huge corresponding run time differences measured by the computer 
real-time clock.  A by-product of this experiment is a comparison of the effort required to write 
fast code in C-based languages versus VisiSoft.  We submit that it is hard to ignore the obvious 
differences in productivity (the coding differences get greater as the speed gets faster). 
 

 The second experiment, Chapter 18, compares results run on a parallel processor.  Here 
we use the Windows “oscilloscope” backed up by times off the real-time clock to interpret the 
results.  The purpose of this experiment is to compare measured data to the theoretical 
expectations of the RTS and VPOS designs.  Again, the comparisons are obvious. 
 

 The purpose of these chapters is twofold.  First is to demonstrate how experiments 
producing hard data can be used to put software theories on a sound experimental basis.  It is the 
firm opinion of the authors that, by using such methods, software technology can be put on the 
same scientific footing as physics.  Only then can the comments from engineers quoted in 
Chapter 1 be put to rest. 
 

 The second purpose is to show how simulation can be used to perform such experiments, 
just as is done in many engineering fields, e.g., electronic circuit design.  With the CAD system 
described here, one can run simulated loading on a real parallel processor as well as simulate a 
parallel processor environment on a single processor.  Anyone who has used CAD systems and 
simulations for design is well aware of the time savings - as well as many other benefits - of this 
approach, such as crafting models to sort out results from otherwise impossible experiments. 



Software Theory              Page 17 -  2  

A SET OF TESTS FOR A SINGLE PROCESSOR EXPERIMENT 
 
 The tests for this experiment are designed to use a large database to illustrate the huge 
time differences that may be derived from different software languages.  These tests show that 
the major factor affecting the simplification of transformations - and thus run-time speed - is 
design of the data space, a basic engineering principle.  These tests prove that the organization of 
the data space into deep hierarchies gains the speed.  As a by-product, it makes the design of the 
algorithms much easier to understand by a third party who may have to modify or reuse the code. 
 

 The single processor experiment is composed of a set of tests to read, transform, and 
write a large file containing triangles.  The triangles are used to depict mountainous terrain in a 
graphical background overlay for the interactive military planning application described in 
Chapter 2.  The software described below is taken from an advanced 3D graphical mapping 
system required for many new and future applications.  This experiment is easily reproduced in a 
university environment, so that graduate, post graduate, or science and engineering staff may use 
different approaches to building software for specified applications and compare the run times.  
This experiment uses five simple tests that require no understanding of the application. 
 

 This experiment provides an introduction to the problem of testing the speed of software 
applications and critical software design factors that can cause significant changes in application 
run times.  The experiment provides for reading and writing files of different sizes.  This allows 
one to tune the experiment to support the two primary functions: (1) Testing to ensure that the 
experiment is being performed properly; (2) Testing to make comparisons of running times. 
 

 In general, an experimenter may read and write the files in any manner desired, so that 
different approaches may be compared in terms of speed.  As a side benefit, one can get a feel 
for changes in productivity using different approaches.  This is particularly true when comparing 
different software languages used to support the tests. 
 
 
A Quick Look At The Underlying Application 
 

 It must be emphasized that an understanding of the application is not necessary to 
perform these experiments and make the speed comparisons.  This section is provided only to 
satisfy the curiosity of the experimenter.  It also provides an indication of the level of complexity 
of the application.  The 3D terrain shown in Figure 17-1 is generated using the set of independent 
software tasks shown in the block diagram in Figure 17-2.  It is important to note that this 3D 
terrain facility is but one of many background overlays in a complex military simulation 
involving hundreds of moving platforms. 
 

 To get a feel for the size of the mountains in Afghanistan and northwest Pakistan, the 
screen shot in Figure 17-1 covers an area about the size of Vermont and New Hampshire 
combined.  This area is close to the Himalayas and contains peaks above 28,000 feet. 
 

 The speed comparison test uses a modified version of one of task T4 in Figure 17-2.  
Task T4 is used to generate inner-products between the triangle normals and a light vector.  The 
speed test uses a very simple implementation that does not require an understanding of the 
application.  This experiment principally tests different ways to read and write the files. 
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Figure 17-1.  3D terrain in Afghanistan. 
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Figure 17-2.  Block diagram of the 3D terrain production facility. 
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Overview Of The File Read-Write Experiment 
 

 Figure 17-3 is a block diagram of the software addressed in the experiment.  The purpose 
is to create software for T3 and T4 that improves the speed of task, T4.  T3 reads a file of 
triangle vertices and produces the INPUT TEST FILE for T4. T4 reads the INPUT TEST FILE 
and generates the output file of 3D triangle vertices along with inner products.  The size of the 
input file may be varied to adjust the time to run the test.  For example, the file required to 
generate the terrain shown in Figure 1 is about 500 Megabytes.  This may be reduced by one or 
two orders of magnitude so that tests may be completed in a few minutes or seconds. 
 

3D TRIANGLE SPEED TEST  07/15/13

CONVERT
TRIANGLES

TO X,Y,Z

INPUT
TEST
FILE

GENERATE__
TRIANGLES

3-D TRIANGLES
WITH

INNER PRODUCTS
CONVERT

TRIANGLES
TO X,Y,Z

T3
GENERATE_

INNER_
PRODUCTS

T4

FIXED
INPUT
FILE

INTERACTIVE
ANALYSIS

 
 

Figure 17-3.  Block diagram of the 3D experiment. 
 

 
 The Fixed Input File contains two record types, G and T.  The layout of these records is 
provided in Figures 17-4a & 4b.  The experimenter must read this file in T3 and produce an 
Input Test File to Task T4.  The experiment requires designing the software and files in and out 
of T4 to minimize the time it takes T4 to read and write the files.  The T4 output file must 
contain the data in the two input records in Figure 17-4 while adding an INNER_PRODUCT 
field that is accurate to 3 decimal places, see for example INNER_PRODUCT_O in Figure 17-7(c). 
 

FIELD CONTENTS FIELD 
(Type Length) 

FIELD DESCRIPTION 

RECORD_TYPE CHARACTER        1 Type Of Record: G 
TRIANGLE_NUMBER DECIMAL INTEGER 10 Triangle Number 
LEVEL_NUMBER DECIMAL INTEGER  1 Level Number 
RIGHT_HAND_COLOR DECIMAL INTEGER  2 0 = No color 
RIGHT_HAND_REFLECTION DECIMAL INTEGER  1 0 = No color 
LEFT_HAND_COLOR DECIMAL INTEGER  2 0 = No color 
LEFT_HAND_REFLECTION DECIMAL INTEGER  1 0 = No color 
PAD CHARACTER       21 Spaces to match record size 

 

Figure 17-4a.  Structure of TRIANGLE INPUT RECORD 1 
 

 
FIELD CONTENTS FIELD 

(Type Length) 
FIELD DESCRIPTION 

RECORD_TYPE CHARACTER        1 Type Of Record: T 
TRIANGLE_NUMBER DECIMAL INTEGER 10 Triangle Number 
VERTEX_NUMBER DECIMAL INTEGER  1 Vertex Number (1, 2, or 3) 
X_COORDINATE DECIMAL INTEGER  9 Triangle Vertex Coordinate 
Y_COORDINATE DECIMAL INTEGER  9 Triangle Vertex Coordinate 
Z_COORDINATE DECIMAL INTEGER  9 Triangle Vertex Coordinate 

 

Figure 17-4b.  Structure of TRIANGLE INPUT RECORD 2 
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 A printout of a sample of these records for two triangles is shown in Figure 17-5. 
 

G00000000010000000                      
T00000000011000000000-00001000000016400 
T00000000012000000250-00001000000016404 
T00000000013000000125-00000875000016434 
G00000000020000000                      
T00000000021000000125-00000875000016434 
T00000000022000000250-00001000000016404 
T00000000023000000250-00000750000016480 

 
Figure 17-5.  Sample records for two triangles 

 
 
Information For Experimenters 
 

 All that is needed for this experiment is the Fixed Input File for Task T3 described in 
Figure 17-4.  This file is provided as an ASCII (text) file as described in the record layouts in 
Figure 17-4 and sample in Figure 17-5.  The size of the file is slightly more than 1 Gigabyte, but 
can be reduced for convenience of initial testing by the experimenter. 
 

 The accuracy of the terrain databases used to generate the triangle database is 100 meters.  
To be sure that the calculations do not reduce this accuracy, the numbers should all be 
represented with an accuracy of 10 meters.  Since the Earth’s radius is 6.378*10**6 meters, the 
numbers should be represented in fields larger than 638,000 meters.  REAL numbers are 
represented accurately just beyond 2*10**6, being well within the 10 meter accuracy 
requirement. 
 

 Given this file, the experimenter builds Task T3 to generate a file whose output format is 
up to the experimenter, and should be designed to help maximize the speed of Task T4.  Task T4 
must then be built to generate the 3D Triangle output file.  The format for this 3D Triangle 
output file is up to the experimenter, but must contain all of the data from the fixed input file and 
the value of the inner-product. 
 

   It is necessary that the input test file be read into an intermediary structure where all of 
the triangle coordinates are REAL, since they are needed to do the inner product calculations.  
However, the experimenter should not compute the inner product for this experiment, but simply 
put the value 0.75 into that field in the output file. 
 

   It is suggested that the experimenter prompt for the number of triangles to be read from 
the input test file and terminate the task after that number has been written to the file.  The 
prompting can begin before the time measurement starts. 
 

 The experimenter should measure the time it takes for each run, analyze the various times 
as different approaches are used, and draw conclusions about speed as a result of the changes. 
 
Note:    In the actual system, the inner product is calculated by determining the normal vector to 
the triangle, and then computing the inner product of that vector with the reflection vector (the 
negative of the light vector).  This inner product is used to determine the color of the triangle’s 
surface, yielding the 3D appearance shown in Figure 17-1.  This calculation is not part of this 
experiment. 
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TEST DESCRIPTIONS & RESULTS 
 

 The test description provided above does not specify approaches to read and write the 
file.  That has been left to the experimenter.  Below we offer five different approaches, describe 
the theoretical reasons for our expected differences in outcomes, and present the test results. 
 

 Noting the size of the triangle database used for each of these tests (5,000,000 triangles), 
the approach to reading and writing the files will determine the speed.  Our experience with large 
databases includes comparisons to competition in the time it takes to read huge files.  Many 
previous comparisons have resulted in differences of 1 to 2 orders of magnitude (and times 
measured in seconds as opposed to minutes or hours).  There are a number of factors that affect 
this.  Each of these is described in the following tests. 
 
 
Test 1 Description 
 

 The architecture for all of the tests are the same as that of TEST_1, shown in Figure 17-6.  
Test 1 uses the Fixed Input File/Record formats directly as specified in Figures 17-4 & 5.  The 
output file is essentially the same as the input file with the exception that it contains the inner-
product.  To describe the data structures in detail, we use the VisiSoft resource formats precisely 
as they were used in the tests.  Although these could be written in a C-based language format, 
they quickly become difficult to understand as the hierarchies in ensuing tests become more 
complex. 
 

TEST_1  06/06/15  
 

Figure 17-6.  Test-1- Input File Record Formats. 
 
 
 Test 1 moves the file input records to the data structures shown in Figure 17-7(a).  Note 
that the record can be moved into the resource structure.  Because of the REDEFINES clause, the 
RECORD_TYPE can be checked and the matching record format (G or T) can be used directly. 
 

 Having moved the record into the input resource, the fields are transferred, 
FIELD_BY_FIELD, to the intermediate format shown in Figure 17-7(b).  The DECIMAL fields 
are moved directly to the INTEGER fields with the exception that the intermediate triangle 
coordinates are put into REAL numbers as would be needed for computing the inner-product. 
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G_RECORD 
    1  RECORD_TYPE                         CHAR  1 
    1  TRIANGLE_NUMBER_G                   DECIMAL 9(10) 
    1  LEVEL_NUMBER                        DECIMAL 9 
    1  RIGHT_HAND_COLOR                    DECIMAL 99 
    1  RIGHT_HAND_REFLECTION               DECIMAL 9 
    1  LEFT_HAND_COLOR                     DECIMAL 99 
    1  LEFT_HAND_REFLECTION                DECIMAL 9 
    1  PADDING                             CHAR 21 
 
T_RECORD  REDEFINES G_RECORD 
    1  RECORD_TYPE                         CHAR  1 
    1  TRIANGLE_NUMBER                     DECIMAL 9(10) 
    1  VERTEX_NUMBER                       DECIMAL 9 
    1  X_COORDINATE                        DECIMAL 9(9) 
    1  Y_COORDINATE                        DECIMAL 9(9) 
    1  Z_COORDINATE                        DECIMAL 9(9) 
 

 
Figure 17-7(a).  Test-1- Input File Record Formats. 

 
 

 

TRIANGLE_RECORD 
    1  TRIANGLE_NUM                       INTEGER 
    1  LEVEL_NUMBER                       INTEGER 
    1  RIGHT_COLOR                        INTEGER 
    1  RIGHT_REFLEC                       INTEGER 
    1  LEFT_COLOR                         INTEGER 
    1  LEFT_REFLEC                        INTEGER 
    1  TRIANGLE_DATA 
       2  VERTEX_1 
          3  X_COORD_1                    REAL 
          3  Y_COORD_1                    REAL 
          3  Z_COORD_1                    REAL 
       2  VERTEX_2 
          3  X_COORD_2                    REAL 
          3  Y_COORD_2                    REAL 
          3  Z_COORD_2                    REAL 
       2  VERTEX_3 
          3  X_COORD_3                    REAL 
          3  Y_COORD_3                    REAL 
          3  Z_COORD_3                    REAL 
 

 
Figure 17-7(b).  Test-1- Intermediate Data Structure Format. 

 
 
 Given that the inner-product could now be computed (it is not), the intermediate format is 
then converted back, FIELD_BY_FIELD, to the ASCII format shown in Figure 17-7(c) to write 
the records onto the new output file.   In this test, we have produced the same output format as 
the input, with the exception of the INNER_PRODUCT.  This “basic” approach gets changed in 
the following tests to improve speed. 
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G_RECORD_O 
    1  RECORD_TYPE                         CHAR  1 
    1  TRIANGLE_NUMBER_O                   DECIMAL 9(10) 
    1  LEVEL_NUMBER_O                      DECIMAL 9 
    1  RIGHT_HAND_COLOR_O                  DECIMAL 99 
    1  RIGHT_HAND_REFLECTION_O             DECIMAL 9 
    1  LEFT_HAND_COLOR_O                   DECIMAL 99 
    1  LEFT_HAND_REFLECTION_O              DECIMAL 9 
    1  INNER_PRODUCT_O                     DECIMAL .999 
    1  PADDING_O                           CHAR 17 
 
T_RECORD_O  REDEFINES G_RECORD_O 
    1  RECORD_TYPE                         CHAR  1 
    1  TRIANGLE_NUMBER_TO                  DECIMAL 9(10) 
    1  VERTEX_NUMBER_O                     DECIMAL 9 
    1  X_COORDINATE_O                      DECIMAL 9(9) 
    1  Y_COORDINATE_O                      DECIMAL 9(9) 
    1  Z_COORDINATE_O                      DECIMAL 9(9) 
 

 
Figure 17-7(c).  Test-1- Output File Record Formats. 

 
 
 
Test 2 Description 
 

 This test uses the Fixed Input File format specified in Figure 17-8(a), still an ASCII 
format, but instead of four separate records, a single record is used to represent the triangle 
information. Although the record size is larger, only one record is read instead of 4.  We note the 
increased complexity of the hierarchy.  Yet, when one compares Figure 17-8(a) to Figure 17-
7(a), it is much easier to see the information on each triangle and its vertices along with the other 
graphical information.  The hierarchy makes it more understandable. 
 

 

TRIANGLE_RECORD_IN 
    1  TRIANGLE_NUMBER_I                      DECIMAL 9(10) 
    1  LEVEL_NUMBER_I                         DECIMAL 9     
    1  RIGHT_HAND_COLOR_I                     DECIMAL 99    
    1  RIGHT_HAND_REFLECTION_I                DECIMAL 9     
    1  LEFT_HAND_COLOR_I                      DECIMAL 99    
    1  LEFT_HAND_REFLECTION_I                 DECIMAL 9     
    1  TRIANGLE_DATA 
       2  VERTEX_1 
           3  X_COORD_1                       DECIMAL 9(9) 
           3  Y_COORD_1                       DECIMAL 9(9) 
           3  Z_COORD_1                       DECIMAL 9(9) 
       2  VERTEX_2 
           3  X_COORD_2                       DECIMAL 9(9) 
           3  Y_COORD_2                       DECIMAL 9(9) 
           3  Z_COORD_2                       DECIMAL 9(9) 
       2  VERTEX_3 
           3  X_COORD_3                       DECIMAL 9(9) 
           3  Y_COORD_3                       DECIMAL 9(9) 
           3  Z_COORD_3                       DECIMAL 9(9) 
 

 
Figure 17-8(a).  Test-2- Input File Record Formats. 
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 Having moved the record into the input resource, the fields are again transferred to the 
intermediate format shown in Figure 17-8(b).  The DECIMAL fields are moved one-by-one to 
the INTEGER fields or to REAL numbers of the triangle coordinates for computing the inner-
product. 
 

 

TRIANGLE 
    1  TRIANGLE_NUMBER_M                INTEGER 
    1  LEVEL_NUMBER_M                   INDEX     
    1  RIGHT_HAND_COLOR_M               INDEX_1   
    1  RIGHT_HAND_REFLECTION_M          INDEX     
    1  LEFT_HAND_COLOR_M                INDEX_1   
    1  LEFT_HAND_REFLECTION_M           INDEX     
    1  TRIANGLE_M 
       2  VERTEX_NUM_M1 
          3  X_COORD_M1                  REAL 
          3  Y_COORD_M1                  REAL  
          3  Z_COORD_M1                  REAL  
       2  VERTEX_NUM_M2 
          3  X_COORD_M2                  REAL  
          3  Y_COORD_M2                  REAL  
          3  Z_COORD_M2                  REAL  
       2  VERTEX_NUM_M3  
          3  X_COORD_M3                  REAL  
          3  Y_COORD_M3                  REAL  
          3  Z_COORD_M3                  REAL  
 

 
Figure 17-8(b).  Test-2- Intermediate Data Structure Format. 

 
 
 Without actually computing the inner-product, the intermediate format is then converted 
back to the ASCII format shown in Figure 17-8(c) to write the records onto the new output file.    
 

 

TRIANGLE_RECORD_IN                                
    1  TRIANGLE_NUMBER_O                      DECIMAL 9(10) 
    1  LEVEL_NUMBER_O                         DECIMAL 9     
    1  RIGHT_HAND_COLOR_O                     DECIMAL 99    
    1  RIGHT_HAND_REFLECTION_O                DECIMAL 9     
    1  LEFT_HAND_COLOR_O                      DECIMAL 99    
    1  LEFT_HAND_REFLECTION_O                 DECIMAL 9     
    1  INNER_PRODUCT_O                        DECIMAL .999 
    1  TRIANGLE_DATA      
       2  VERTEX_NUM_1                     
           3  X_COORD_O1                      DECIMAL 9(9) 
           3  Y_COORD_O1                      DECIMAL 9(9)  
           3  Z_COORD_O1                      DECIMAL 9(9)  
       2  VERTEX_NUM_2                         
           3  X_COORD_O2                      DECIMAL 9(9) 
           3  Y_COORD_O2                      DECIMAL 9(9) 
           3  Z_COORD_O2                      DECIMAL 9(9) 
       2  VERTEX_NUM_3                         
           3  X_COORD_O3                      DECIMAL 9(9) 
           3  Y_COORD_O3                      DECIMAL 9(9) 
           3  Z_COORD_O3                      DECIMAL 9(9) 
 

 
Figure 17-8(c).  Test-2- Output File Record Formats. 
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Test 3 Description 
 

 This test uses a binary file format instead of ASCII, as shown in Figure 17-9(a).  Using a 
binary file containing integers for T4 will cut the file size by more than half.  In addition, there is 
no translation from ASCII numbers to binary in going to the intermediate format shown in 
Figure 17-9(b).  Because of the different field types, they still must be moved individually. 
 

 

TRIANGLE_RECORD_IN 
    1  TRIANGLE_NUMBER_I                       INTEGER 
    1  LEVEL_NUMBER_I                          INTEGER 
    1  RIGHT_HAND_COLOR_I                      INTEGER 
    1  RIGHT_HAND_REFLECTION_I                 INTEGER 
    1  LEFT_HAND_COLOR_I                       INTEGER 
    1  LEFT_HAND_REFLECTION_I                  INTEGER 
    1  TRIANGLE_DATA 
       2  VERTEX_NUM_1 
           3  X_COORD_1                        INTEGER 
           3  Y_COORD_1                        INTEGER 
           3  Z_COORD_1                        INTEGER 
       2  VERTEX_NUM_2 
           3  X_COORD_2                        INTEGER 
           3  Y_COORD_2                        INTEGER 
           3  Z_COORD_2                        INTEGER 
       2  VERTEX_NUM_3 
           3  X_COORD_3                        INTEGER 
           3  Y_COORD_3                        INTEGER 
           3  Z_COORD_3                        INTEGER 
 

 
Figure 17-9(a).  Test-3- Input File Record Formats. 

 
 

 

TRIANGLE 
    1  TRIANGLE_NUMBER_M                INTEGER 
    1  LEVEL_NUMBER_M                   INDEX   
    1  RIGHT_HAND_COLOR_M               INDEX_1 
    1  RIGHT_HAND_REFLECTION_M          INDEX   
    1  LEFT_HAND_COLOR_M                INDEX_1 
    1  LEFT_HAND_REFLECTION_M           INDEX   
    1  TRIANGLE_M 
       2  VERTEX_NUM_M1 
          3  X_COORD_M1                  REAL 
          3  Y_COORD_M1                  REAL  
          3  Z_COORD_M1                  REAL  
       2  VERTEX_NUM_M2 
          3  X_COORD_M2                  REAL  
          3  Y_COORD_M2                  REAL  
          3  Z_COORD_M2                  REAL  
       2  VERTEX_NUM_M3 
          3  X_COORD_M3                  REAL  
          3  Y_COORD_M3                  REAL  
          3  Z_COORD_M3                  REAL  
 

 
Figure 17-9(b).  Test-3- Intermediate Data Structure Format. 

 
 



Software Theory              Page 17 -  11  

 Given that the inner-product would be computed, the intermediate format is then 
converted back to the binary format shown in Figure 17-9(c), with the addition of the inner-
product field. and the records written onto the new output file Figure 17-9(c).   In this test, we 
have introduced binary file formats to improve speed. 
 

 

TRIANGLE_RECORD_OUT                                
    1  TRIANGLE_NUMBER_O                       INTEGER   
    1  LEVEL_NUMBER_O                          INTEGER     
    1  RIGHT_HAND_COLOR_O                      INTEGER    
    1  RIGHT_HAND_REFLECTION_O                 INTEGER     
    1  LEFT_HAND_COLOR_O                       INTEGER    
    1  LEFT_HAND_REFLECTION_O                  INTEGER     
    1  INNER_PRODUCT_O                         REAL     
    1  TRIANGLE_DATA      
       2  VERTEX_1                     
           3  X_COORD_O1                       INTEGER 
           3  Y_COORD_O1                       INTEGER  
           3  Z_COORD_O1                       INTEGER  
       2  VERTEX_2                          
           3  X_COORD_O2                       INTEGER 
           3  Y_COORD_O2                       INTEGER 
           3  Z_COORD_O2                       INTEGER 
       2  VERTEX_3                          
           3  X_COORD_O3                       INTEGER 
           3  Y_COORD_O3                       INTEGER 
           3  Z_COORD_O3                       INTEGER 
 

 
Figure 17-9(c).  Test-3- Output File Record Formats. 
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Test 4 Description 
 

 Test 4 is similar to Test 3, except this test blocks the file, putting 800 records into a 
block.  This eliminates the need to read each record from disk.  It also increases the level of the 
hierarchy.  But the blocked records are easy to denote.  After reading a block, the records are 
moved individually to the intermediate format. 
 

 

TRIANGLE_BLOCK_OUT 
    1  TRIANGLE_RECORD   QUANTITY(800) 
       2  TRIANGLE_NUMBER_I                      INTEGER  
       2  LEVEL_NUMBER_I                         INTEGER  
       2  RIGHT_HAND_COLOR_I                     INTEGER  
       2  RIGHT_HAND_REFLECTION_I                INTEGER  
       2  LEFT_HAND_COLOR_I                      INTEGER  
       2  LEFT_HAND_REFLECTION_I                 INTEGER  
       2  TRIANGLE_DATA 
          3  VERTEX_NUM_1 
             4  X_COORD_1                        INTEGER 
             4  Y_COORD_1                        INTEGER 
             4  Z_COORD_1                        INTEGER 
          3  VERTEX_NUM_2 
             4  X_COORD_2                        INTEGER 
             4  Y_COORD_2                        INTEGER 
             4  Z_COORD_2                        INTEGER 
          3  VERTEX_NUM_3 
             4  X_COORD_3                        INTEGER 
             4  Y_COORD_3                        INTEGER 
             4  Z_COORD_3                        INTEGER 
 

 
Figure 17-10(a).  Test-4- Input File Record Formats. 

 
 

 

TRIANGLE 
    1  TRIANGLE_NUMBER_M                INTEGER 
    1  LEVEL_NUMBER_M                   INDEX   
    1  RIGHT_HAND_COLOR_M               INDEX_1 
    1  RIGHT_HAND_REFLECTION_M          INDEX   
    1  LEFT_HAND_COLOR_M                INDEX_1 
    1  LEFT_HAND_REFLECTION_M           INDEX   
    1  TRIANGLE_M 
       2  VERTEX_NUM_M1 
          3  X_COORD_M1                  REAL 
          3  Y_COORD_M1                  REAL  
          3  Z_COORD_M1                  REAL  
       2  VERTEX_NUM_M2 
          3  X_COORD_M2                  REAL  
          3  Y_COORD_M2                  REAL  
          3  Z_COORD_M2                  REAL  
       2  VERTEX_NUM_M3 
          3  X_COORD_M3                  REAL  
          3  Y_COORD_M3                  REAL  
          3  Z_COORD_M3                  REAL  
 

 
Figure 17-10(b).  Test-4- Intermediate Data Structure Format. 
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 Assuming that the inner-product was computed, the intermediate format is then converted 
back to the binary format shown in Figure 17-10(c) to write the 800 record blocks onto the new 
output file.   Again, in this test, we have produced the same output format as the input, with the 
exception of the INNER_PRODUCT. 
 

 

TRIANGLE_BLOCK_OUT 
    1  TRIANGLE_RECORD   QUANTITY(800) 
       2  INNER_PRODUCT                             REAL 
       2  REST_OF_RECORD 
          3  TRIANGLE_NUMBER_O                      INTEGER   
          3  LEVEL_NUMBER_O                         INTEGER     
          3  RIGHT_HAND_COLOR_O                     INTEGER    
          3  RIGHT_HAND_REFLECTION_O                INTEGER     
          3  LEFT_HAND_COLOR_O                      INTEGER    
          3  LEFT_HAND_REFLECTION_O                 INTEGER     
          3  TRIANGLE_DATA      
             4  VERTEX_1                     
                5  X_COORD_O1                       INTEGER 
                5  Y_COORD_O1                       INTEGER  
                5  Z_COORD_O1                       INTEGER  
             4  VERTEX_2                          
                5  X_COORD_O2                       INTEGER 
                5  Y_COORD_O2                       INTEGER 
                5  Z_COORD_O2                       INTEGER 
             4  VERTEX_3                          
                5  X_COORD_O3                       INTEGER 
                5  Y_COORD_O3                       INTEGER 
                5  Z_COORD_O3                       INTEGER 
 

 
Figure 17-10(c).  Test-4- Output File Record Formats. 
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Test 5 Description 
 

 This test is similar to Test 4 using blocked files.  However, it uses REAL numbers on the 
file instead of integers.  This eliminates the need to perform number conversions from INTEGER 
to REAL, allowing group moves of the binary numbers.  Given that the file contains REAL 
numbers, the entire triangle can be moved since the fields all match..  This cuts the movement of 
numbers by a factor of 9.  In addition, the other triangle graphical attributes are designated 
precisely, where INDEX is a 2-byte integer, and INDEX_1 is a 1-byte integer. 
 

 

TRIANGLE_BLOCK_IN 
    1  TRIANGLE_RECORD_I   QUANTITY(800) 
       2  TRIANGLE_NUMBER_I                      INTEGER 
       2  LEVEL_NUMBER_I                         INDEX   
       2  RIGHT_HAND_COLOR_I                     INDEX   
       2  RIGHT_HAND_REFLECTION_I                INDEX_1 
       2  LEFT_HAND_COLOR_I                      INDEX   
       2  LEFT_HAND_REFLECTION_I                 INDEX_1 
       2  TRIANGLE_DATA 
          3  VERTEX_NUM_1 
             4  X_COORD_1                        REAL 
             4  Y_COORD_1                        REAL 
             4  Z_COORD_1                        REAL 
          3  VERTEX_NUM_2 
             4  X_COORD_2                        REAL 
             4  Y_COORD_2                        REAL 
             4  Z_COORD_2                        REAL 
          3  VERTEX_NUM_3 
             4  X_COORD_3                        REAL 
             4  Y_COORD_3                        REAL 
             4  Z_COORD_3                        REAL 
 

 
Figure 17-11(a).  Test-5- Input File Record Formats. 

 
 

 

TRIANGLE 
    1  TRIANGLE_NUMBER_M                INTEGER 
    1  LEVEL_NUMBER_M                   INDEX   
    1  RIGHT_HAND_COLOR_M               INDEX   
    1  RIGHT_HAND_REFLECTION_M          INDEX_1 
    1  LEFT_HAND_COLOR_M                INDEX   
    1  LEFT_HAND_REFLECTION_M           INDEX_1 
    1  TRIANGLE_M 
       2  VERTEX_NUM_M1 
          3  X_COORD_M1                  REAL  
          3  Y_COORD_M1                  REAL  
          3  Z_COORD_M1                  REAL  
       2  VERTEX_NUM_M2 
          3  X_COORD_M2                  REAL  
          3  Y_COORD_M2                  REAL  
          3  Z_COORD_M2                  REAL  
       2  VERTEX_NUM_M3 
          3  X_COORD_M3                  REAL  
          3  Y_COORD_M3                  REAL  
          3  Z_COORD_M3                  REAL  
 

 
Figure 17-11(b).  Test-5- Intermediate Data Structure Format. 
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 Again, assuming that the inner-product was computed, the intermediate format is then 
moved back to the binary format shown in Figure 17-10(c) to write the 800 record blocks onto 
the new output file.   Again, in this test, we have produced the same output format as the input, 
with the exception of the INNER_PRODUCT.  However, records may be moved with a single 
instruction fetch, since the rest of the hierarchies match. 
 

 

TRIANGLE_BLOCK_OUT 
    1  TRIANGLE_RECORD   QUANTITY(800) 
       2  INNER_PRODUCT                             REAL 
       2  REST_OF_RECORD 
          3  TRIANGLE_NUMBER_O                      INTEGER   
          3  LEVEL_NUMBER_O                         INDEX       
          3  RIGHT_HAND_COLOR_O                     INDEX      
          3  RIGHT_HAND_REFLECTION_O                INDEX_1     
          3  LEFT_HAND_COLOR_O                      INDEX      
          3  LEFT_HAND_REFLECTION_O                 INDEX_1     
          3  TRIANGLE_DATA      
             4  VERTEX_1                     
                5  X_COORD_O1                       REAL 
                5  Y_COORD_O1                       REAL  
                5  Z_COORD_O1                       REAL  
             4  VERTEX_2                          
                5  X_COORD_O2                       REAL 
                5  Y_COORD_O2                       REAL 
                5  Z_COORD_O2                       REAL 
             4  VERTEX_3                          
                5  X_COORD_O3                       REAL 
                5  Y_COORD_O3                       REAL 
                5  Z_COORD_O3                       REAL 
 

 
Figure 17-11(c).  Test-5- Output File Record Formats. 

 
 
 
SUMMARY OF TEST RESULTS 
 
 The test results of the five approaches are shown in Table 17-1. 
 

Table 17-1.  Results of File Format Tests (Seconds) 
 

Test #  # of Triangles Time 1 Time 2 Time 3 Average Time 
1 1,000,000 74.25 76.03 78.44 76.24 
2 1,000,000 50.68 52.31 51.91 51.63 
3 1,000,000 6.88 6.61 5.35 6.28 
4 1,000,000 1.75 1.76 2.3 1.94 
5 1,000,000 0.70 0.75 0.78 0.74 

 
 
 The difference in times from the first test to the last is a factor of 103.  Simply put, the 5th 
approach is over 100 times faster than the 1st approach.  A plot of the results is shown in 
Figure 17-12. 
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Figure 17-12.  Plot of test results. 
 
 
Validation Of Results 
 

 To ensure that the output file contained the correct information, separate tasks were built 
for tests 3, 4, and 5 to create a print file with a readable format.  This allowed for review of the 
resulting binary files to ensure that the data was correct. 
 
 
Analysis Of Results 
 

 Clearly, the design of the data structures within the records as well as the intermediary 
resource is critical to run-time speed.  The factors addressed in the tests are the following: 
 

• Hierarchical Structures - As the hierarchical structures became deeper in each test 
case above, the movement of data was reduced and speed improved.  At the same 
time, as deeper hierarchies were introduced, the VisiSoft code became much more 
simple and easily understood.  This is because the data is better organized. 

 

• Matching Structures - The use of matching data structures allows one to perform 
group moves.  This is most easily accomplished using hierarchical structures. 

 

• Data Types - The selection of data types, e.g., ASCII (Text) numbers versus binary 
numbers directly affects the need to perform transformations to match the internal 
binary coding. 

 

• File Formats - The increased hierarchy and file formatting directly affects the speed 
with which files may be read, as well as the need to perform transformations to match 
the internal binary coding. 

 

• Record Blocking - The use of hierarchical record blocking directly affects the speed 
of reading large files.  When records are blocked, large numbers may be read with a 
single read statement.  Internal use of record counters is fast. 
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Speed Test Results Are Independent Of Architecture 
 

 It is apparent from the above tests that the architecture had no effect on speed (the 
architecture is identical for every test).  The deciding factor was the ease with which one can 
build hierarchical structures with data type definitions that are easily understood - clearly a 
function of the language.  The main result of these tests is that it is the language that determined 
run-time speed, being the major factor affecting the understandability of how to achieve the huge 
improvements speed. 
 

 We must emphasize that we have Grace Hopper to thank for the types of data structures 
contained in VisiSoft.  Although there are more facilities in VisiSoft that make it easier to use 
than COBOL or CMS-2, the basic concepts came from her insights into language design.  We 
know of no one who has come close to her knowledge in this area.  These concepts apply 
directly to the instruction code (VisiSoft Processes) where the hierarchical facilities simplify the 
understanding of extremely complex algorithms - so they are easily understood by a subject area 
expert.  Looking back, it was the data processing departments in large corporations that were 
under the gun to process large transaction and customer account files under tight deadlines.  The 
scientific community is scarcely ever under that gun. 
 
 
EXPERIMENTATION IS KEY TO UNDERSTANDING DIFFERENCES 
 

 Experimenters reading this chapter are encouraged to rewrite the above tests in C-based 
languages.  Again, higher speeds can be achieved using hierarchical data structures.  However, 
understandability of these structures quickly becomes difficult as the layers in the hierarchy are 
increased.  Worse is the level of complexity of the resulting instruction code that uses these 
structures.  Because of the increased organization of the data using the language facilities in 
VisiSoft, understandability is clearly increased with algorithm simplification - along with speed. 
 

 Obviously one is going to get different speeds from these tests when running them on 
different computers.  However, it is the relative (normalized) speed differences that are of 
interest when trying to draw conclusions on how to make software run faster. 
 

 Although the tests described above were limited to reading and writing large files, similar 
tests can be run to determine the effects on internal processing.  These can be done for data 
scanning and manipulation, or mathematical algorithms.  To get sufficiently valid results, one 
typically has to run large sequences of cases so that reasonable times are used for comparison.  
Certain of the authors have performed such tests.  They confirm the results described above with 
regard to hierarchical data structures.  This is particularly true when dealing with complex 
databases where the hierarchical structures can be quite large.  Readers are encouraged to 
conduct such tests on their own to draw and evaluate their own conclusions. 
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CHAPTER 18.  
 

PARALLEL PROCESSOR TESTS & RESULTS 
 
 
 

OVERVIEW OF EXPERIMENTS 
 

 This chapter provides more samples of the kinds of experiments and testing that have 
been performed by the authors.   It contains a comparison of results run on a parallel processor.  
The Windows “oscilloscope” is used in the first experiment, backed up in the second experiment 
by times off the real-time clock to interpret the results.  The purpose of these experiments is to 
compare measured data to the theoretical expectations of the authors’ designs.  As in the prior 
chapter, the comparisons are obvious. 
 
 
A SET OF PARALLEL PROCESSOR EXPERIMENTS 
 

 The first simulation was built to test the initial version of the Run-Time System (RTS) 
and the VisiSoft Parallel Operating System (VPOS).  The architecture for this simulation is 
shown in Figure 18-1.  Note that this simulation has six Independent (IND) modules that are 
capable of running either as a single simulation on one processor, or as a parallel processor 
simulation on VSI’s Parallel PC, AKA the PPC. 
 

 
 

Figure 18-1 – Architecture of Simulation running on the PPC 
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 Key elements of this test simulation are the following: 
 

1. It replicates a typical large scale simulation with a reasonably high degree of inherent 
parallelism.  As such, the IND modules communicate among each other at critical 
points in time, and their simulation clocks must remain synchronized within a 
predefined ΔTmax time of each other.  If this were not the case, they could be 
classified as embarrassingly parallel vs. inherently parallel. 

 

2. In the example presented here, each IND module runs for 20 seconds of simulated 
time and the processes within each IND Module reschedule themselves once per 
second.  In addition, at various times they cross schedule processes in other IND 
modules.  This represents the real-world case, e.g., in communications networks, 
whereby most of the processing occurs within an IND module, but it must exchange 
information with other IND modules for its own processing.  The frequency and 
quantity of information transfers can be varied while the simulation is running. 

 

3. Each time a Process runs, it calls a subsystem representing a real-world load, which 
can be varied.  In this way, one can study the overhead of cross schedules, 
communications, and synchronization among processors to remain within the ΔTmax 
time constraint. 

 

4. When run as a single simulation, the same number of schedules is made, the same 
subsystem processing load is used, and since all 6 IND modules are running on a 
single processor, cross schedules revert to normal schedules.  This provides for the 
exact same model processing load whether run as a single simulation or on the PPC.  
Because the PPC incurs the parallel processor overhead components as noted above, 
this facility provides for an analysis of processing efficiency and scalability. 

 

5. When run on the PPC, IND modules are assigned to Processors 1-6, the master VPOS 
is assigned to Processor 7, and Processor 8 is left for Run-Time Graphics.  When 
running on a single processor, there is no attempt to assign the processor. 

 
 
 
TEST RESULTS 
 
Single Simulation Test Results 
 

 The single simulation was run multiple times, with an average running time of 108.4 
seconds.  Looking ahead to the PPC runs below, one could infer that if the PPC were perfectly 
scalable, the simulation should run in 18.07 (108.4/6) seconds on the PPC.  The Windows 
Performance graph from one of these sample runs is shown in Figure 18-2, where an interesting 
outcome is consistently observed.  For the single processor run shown, the simulation begins on 
Processor 2 (P2).   Then at a point part way thru the simulation, Win-7 apparently decides to 
move the simulation to P1, only to immediately return it to P2.  Then it is moved to P5 and P7, 
and finally back to P2 where it started.  We note that in this test there is no attempt by VPOS to 
assign the simulation to a specific processor. 
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Parallel Processor (PPC) Test 1 Results 
 

 A sample result from a set of PPC runs is shown in Figure 18-3.  In these runs, the 
ΔTmax interval was set outside the total run time of the simulation, allowing a closer look at the 
potential performance of a dedicated (minimal Windows contention) VPOS environment.  Using 
a perfectly balanced 6-processor model load, the actual run-time result was 16.17 seconds.  This 
result is interesting compared with the perfectly scaled projection of 18.07 seconds from the 
single processor simulation above. 
 

 Whereas the IND modules and VPOS Master Synchronizer are specifically assigned to 
processors as explained above, there was no attempt to corral the background Windows 
processes (in excess of 40) onto a single processor.  This could explain the lag on P2 in Figure 
18-2.  A detailed design to eliminate this unwarranted overhead has already been produced for 
VPOS. 
 
 
Parallel Processor (PPC) Test 2 Results 
 

 In the test shown in Figures 18-4, the Delta Time Interval was set to 8.  This means that 
all six processors must synchronize with each other every 8 seconds, i.e., at simulation times 8, 
16, 24, etc.  The first processor to arrive at a “synch point” must wait the longest for the last 
processor to arrive.  This can clearly be seen in Figure 18-4.  All the processors among the first 
six except for P2 had some dip in cpu usage as they entered idle states of various duration 
waiting for P2 to arrive.  P2 had no reason to go idle because, as soon as it arrived at the sync 
point, processing into the next Delta Time interval (sim time 8+ thru 16) resumed on all 
processors.  It should be noted that these graphs correlate directly with the actual run times of 
each processor.  They also correlate to the theoretical examples described in Chapter 6, and 
particularly the example shown in Figure 6-2. 
 

 The test results taken from one of the six processors show that the actual processing time 
was 18.39 seconds compared to the perfectly scaled projection of 18.07 seconds from the single 
processor simulation, above.  The idle times shown in Figure 18-4 suggest that this difference is 
due to most of the background Windows processes being assigned to the lagging processor.  
When the simulation model load is identical across all processors (as is the case with these tests), 
the multiprocessor overhead is expected to be negligible.  For real-world simulations, the 
normalized difference between single and PPC runs will be mostly due to model load imbalance. 
 
 
Parallel Processor (PPC) Observations 
 

 We note that the VPOS implementation is being done in two stages.  The tests described 
above were done on an 8 processor PC with the initial version of VPOS that allows the WINUX 
OS to still have some control of the processors.  The next version of VPOS will remove this 
control, fielding hardware events and totally managing memory.  For various reasons, we expect 
the new version of VPOS to run faster as well as remove the idiosyncrasies observed in these 
tests. 
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A MILITARY OPERATIONS PLANNING APPLICATION 
 

 Figure 18-5 provides an accurate representation of the Global Positioning System (GPS).  
As these satellites move in orbits around the globe, the ability to be connected to a particular 
satellite from a spot on the earth changes with Time Of Day (TOD). 
 

 

 
 

Figure 18-5.  GPS satellite constellation with connectivity to air, sea, and ground platforms . 
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 GPS is just one of many systems modeled in this planning application.  To maintain 
accuracy of position, a sufficient number of satellites (typically 5 - 7) must be connected via RF 
signal.  Planning military operations involves coordination of many systems.  Some of these are 
described below to provide a feel for the processing problem, and the amount of software 
required to model these systems with sufficient accuracy.  The simulation architecture follows 
the physical organization of these systems since that provides maximum use of inherent 
parallelism as well as the best correlation with actual operations. 
 
 

Planning Dynamic Operations 
 

 Figure 18-6 provides an illustration of dynamic operations to be analyzed.  One must be 
able to represent the movement and equipment operations of hundreds of platforms, interacting 
according to a plan, but being susceptible to potentially significant changes based upon the 
actions of other entities in the operation.  To be valid, these actions and reactions must be based 
upon detailed models of the elements and sub-elements of the entities. 
 

 
 

Figure 18-6.  Example of dynamic operations to be analyzed. 
 
 In addition to the requirement for simulations to run very fast, there are requirements on 
the speed with which one can modify the scenarios, and the speed with which one can perform 
analysis.  In both cases, the use of 3D interactive graphics is crucial to meeting these needs.  
Different simulations are used for planning and analysis so that users can interact with the 
running simulations.  When performing multiple simulation runs for parametric analysis, the 
graphical outputs are still available and are designed to not slow down the simulations. 
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Model Architectures 
 

 Figure 18-7 provides a breakout of the types of models that must reside within this type 
of simulation to support various analyses.  The basic IND modules in this simulation are 
Platform models, including ground, sea, air and space.  All of these platform models contain 
various Equipment models, e.g., computers, radios, sensors, weapons, etc.  Platforms interact via 
different environments using different equipment, e.g., sensors, radios, etc. 
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Figure 18-7.  Overall architecture of the models. 
 
 
 Underlying this modeling facility is the software architecture technology that has evolved 
as a CAD facility for simulation since 1982.  This CAD facility was designed to support the 
rapid development of models and simulations by subject area experts without help from 
programmers.  The technology behind this facility has dramatically increased productivity, 
including ease of reuse and modification of models.  This facility provides for selecting specific 
types of models by clicking on check boxes in a user-friendly panel.  As an example, these 
include electro-magnetic wave models that account for 3D terrain, foliage, and suburban 
buildings. 
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Overall Simulation Architecture 
 
 The simulation architecture allows analysts to select those platforms to be incorporated 
into a simulation, as well as the equipment on each platform for rapid creation of complex 
scenarios.  Figure 18-8 provides an illustration of a single processor simulation containing 
different platforms, each carrying different equipment.  The simulation architecture provides for 
automatically integrating different equipment into specified platforms, and platforms into 
specified mission environments.  Missions are defined by mission threads, including the 
movement of all platforms as well as sensor sightings and targeting events.  Events are defined 
by decision tables in C2 models as well as messages, and all may be defined by input files 
including the movement paths to be used by each platform. 
 
 Although this architecture may be built on a single processor, it contains IP resources that 
interface between platforms.  IP resources may be used on a single processor as well as a parallel 
processor, automatically taking on a different protocol when operating on a parallel processor. 
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Figure 18-8.  Overall simulation architecture. 
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Complex Scenario Creation & Modification 
 

 Figure 18-9 illustrates a graphical interface facility for interactively creating paths for air, 
sea, and ground platforms.  Once these paths are created in terms of pathpoints, more detailed 
waypoints and movepoints are generated automatically.  This illustrates the level of complexity 
of the models used in this simulation. 
 

 
 

Figure 18-9.  Illustration of the complexity of scenarios. 
 
 
 Figure 18-10 illustrates the connectivity between an air platform and platforms on the 
ground.  Green lines indicate sufficient connectivity to receive messages, while red indicates lack 
of connectivity.  These calculations depend upon large terrain databases.  This screen shot is 
taken from a scenario in North-West Afghanistan. 
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Figure 18-10.  Illustration of propagation modeling to determine connectivity. 
 
 
 
GLOBAL_PLANNER EXPERIMENT 
 
 This experiment uses the GLOBAL_PLANNER simulation which contains a sampling of 
models from many military simulations previously developed.  The architecture for this 
simulation has been designed to take advantage of a parallel processor.  A simplified version is 
shown in Figure 18-11.  As in all simulations developed for parallel processors using this CAD 
system, it may be run on any number of processors with the exception that if the number of 
processors exceeds the number of IND modules + 2, they will not be used.  It can be run on a 
single processor to allow single processor speed testing and comparison of results on multiple 
processors. 
 

 The version of GLOBAL_PLANNER used for testing has 10 IND modules of which 6 
are shown in Figure 18-11.  The first module, IND_MAIN supports model initialization, file 
inputs, and run-time outputs, including 3D Open-GL graphics.  This module interfaces with 
processors in the server environment to handle file I/O and graphical interfaces.  The second IND 
module, IND_SATELLITE, provides the GPS satellite constellation and communications to the 
other platforms on separate IND modules.  The remaining modules contain air and sea platforms 
that provide tactical aircraft and ships that interact with the GPS satellites as well as each other.  
Each of these modules provides multiple platforms on multiple paths.  Since VPOS and RTG 
require their own processors, a total of twelve processors are used to run this simulation. 
 

 The arched light green lines in Figure 18-11 indicate CALL statements in processes that 
invoke other processes within the same IND module.  The arched red lines indicate statements in 
processes in one IND module that cross SCHEDULE processes within different IND modules.  
Showing these lines is an option in VisiSoft.  As described in Section 12.3.4, the SCHEDULE 
statement is used to start threads which may reside in another IND module. 
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Figure 18-11.  GLOBAL_PLANNER - a parallel processor simulation. 
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EXPERIMENT DESIGN FACTORS 
 

 The principle concern in this experiment is to produce sufficient data regarding the 
effects of specific application software design parameters on parallel processor speed.  These 
include using different numbers of processors and different scenario segments.  All of the 
possible factors affecting the evaluation of parallel processor speeds would take much more 
space than allotted here.  Because of limited space in this theory book, the factors analyzed here 
are considered to be important relative to what is currently available.  Much more is available to 
the interested reader and we look forward to reviewing the details of various experiments by 
those who desire to do so.  Important variational factors observed in this experiment are 
described below. 
 
 
Single Processor Versus Parallel Processor Speeds 
 

 The most important observations addressed here are the Parallel Processor Speed 
Multipliers (SMs) and Processor Utilization Efficiencies (PUEs) obtained when varying specific 
factors affecting speed on a single processor versus a parallel processor.  The observations used 
to determine the effects on the application of interest are considered important for comparison.  
The application itself has been selected to demonstrate what may be available in a variety of end-
user systems. 
 
 
Variation Of Number Of Processors 
 

 One of the major concerns in this experiment is estimating what can be accomplished 
with a Parallel PC (PPC).  Although it is known that a 32 processor PPC will be available 
shortly, the tests presented here have been limited to a 16 processor PPC.  In fact, the 
experiments described here have generally not exceeded 12 processors.  By staying within the 32 
processor framework, some of the delay factors, e.g., processor footprint described in 
Chapter 17, are eliminated.  Variations in results when placing 3 or 4 IND modules on a 
processor appear sufficient to verify the conclusions about this factor. 
 
 
Clocking Sample Times 
 

 The initial approach to obtaining run-time differences used the Win 7 OS to sample the 
real-time clock.  Although the real-time clock may be very accurate, the sampling approach used 
by the OS appears to be on a 15.5 millisecond “heartbeat” boundary, dramatically reducing the 
accuracy required for these experiments.  The effects of this heartbeat were to render the 
sampling times obviously erroneous.  To rectify this situation, a VPOS Timer was built that runs 
on a separate processor, producing sample times (relative to a start time) that are accurate to 
within 10 nanoseconds, more than a factor of 106 improvement in accuracy. 
 

 Timer sampling is used many times during the course of a run to obtain multiple speed 
measures during different phases of the scenario.  This also allows the scenario to be changed 
interactively as one observes the real-time outputs of the timer samples. 
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Capture Of Run-Time Samples 
 

 To compare speeds, a run-time time sample period must be selected that covers sufficient 
operations to produce a set of valid set of samples for run-time comparisons.  For example, the 
run-time period selected here coincides with a complete orbit of a satellite.  Using the GPS 
orbits, each orbit is completed in 12 hours or 720 minutes.  Based upon various scenario 
changes, this appears to be a sufficiently long time to obtain valid statistics for each run-time 
sample.  Figure 18-12 provides an illustration of the time samples taken from the OS clock by 
the heartbeat sampler, and the corresponding erroneous time differences produced. 
 

 

12/28/13 GENERAL SIMULATION SYSTEM    GLOBAL_PLANNER  
GLOBAL PLANNING TOOL                
 
          1 SIMULATION(S) REQUIRED  
 
 
START_TIME =  .5027453E+000         
END_TIME   =  .5031946E+000         
***  TOTAL_TIME =  .4492968E+002  (SECS) **** 
 
START_TIME =  .5031946E+000         
END_TIME   =  .5037394E+000         
***  TOTAL_TIME =  .5448046E+002  (SECS) **** 
 
START_TIME =  .5079707E+000         
END_TIME   =  .5085610E+000         
***  TOTAL_TIME =  .5903125E+002  (SECS) **** 
 
START_TIME =  .5085610E+000         
END_TIME   =  .5090307E+000         
***  TOTAL_TIME =  .4696875E+002  (SECS) **** 
 
START_TIME =  .5090307E+000         
END_TIME   =  .5094800E+000         
***  TOTAL_TIME =  .4492968E+002  (SECS) **** 
 
START_TIME =  .5094800E+000         
 . 
 . 
 . 
 

 
Figure 18-12.  Erroneous heartbeat sampled clock outputs. 

 

 
 To solve this problem, the VPOS Timer is sampled at the start and end of the measured 
period, and the difference is computed to determine the time it took to complete an orbit.  Since 
the orbits are changing, one must take multiple samples to observe differences in time results to 
see if particular orbits are causing significant changes. 
 

 The START_TIME and END_TIME time samples are now taken from the VPOS Timer.  
Since 7 decimal places are used, time samples are provided down to micro seconds.  Real-time 
measures to hundredths of seconds are sufficiently accurate for the single orbit measure. 
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Capture Of Interval Samples 
 

 When using parallel processors, one must ensure that results are complete and consistent 
with those on a single processor.  This is accomplished through synchronization of IP resources 
within a predetermined DELTA_T interval.  The approach for establishing the size of the 
synchronization interval to meet the accuracy constraints is described in Chapter 14.  The 
interval size selected for these experiments is 4 minutes producing over 180 intervals in a single 
orbit.  This is easily changed in the Control Specification.  We note that no differences between 
single processor and parallel processor results (other than speed) were observed in these 
experiments.  This is due to the relatively stationary nature of the scenario. 
 

 Given the DELTA_T interval, VPOS provides facilities for capturing the Start-Time and 
End-Time for each IND module on each processor within each interval.  These facilities generate 
a file for post-processing the sample data.  The post processing facilities include the ability to 
generate graphical plots of the sample results for each processor within each interval from a 
specified starting interval to a specified ending interval within an overall run-time sample.  These 
plots are shown for each test below. 
 
 
Variation Of Scenarios 
 

 The scenarios tested here use ten IND modules representing 9 different platform modules 
and an I/O module.  As described below, each platform module has multiple instances of that 
platform type.  Heavily loaded IND modules are compared to lightly loaded modules by 
changing the number of platform instances within a module and the number of cross connectivity 
calculations that result.  This causes the times to increase nonlinearly as shown below.  Balanced 
versus unbalanced loading of different IND Modules are compared using similar changes in 
loading on an individual module basis.  As the scenarios become more heavily loaded, one may 
expect the time to run a simulation to rise by a factor of 3 to 10. 
 

 From the tests described below, it is expected that single processor times for a heavily 
loaded scenario would be improved upon sufficiently using a 16 processor PPC so as to take less 
time than the lightly loaded scenario on a single processor PC.  We must emphasize that the 
single processor simulation times described here are typically more than 2 to 10 times faster 
using the VisiSoft CAD approach when compared to other approaches currently available.  From 
previous tests, it is expected that heavily loaded single processor times would be improved upon 
sufficiently using this CAD system so as to take less time than lightly loaded scenarios using 
another software environment. 
 
 
Parameter Variations 
 

 Mean values and variances were computed for each time measurement using a sufficient 
number of samples based upon the mean and variance.  The standard deviation was typically less 
than a small fraction of the mean value.  These small deviations imply a very narrow distribution 
of the varied results, leading one to expect predictable outcomes with a small number of samples.  
This is due to the somewhat stationary nature of the IND modules and the number of platforms 
within each, contributing to a stable average. 
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GLOBAL_PLANNER_21 EXPERIMENT 
 
Scenario Loading 
 

 Table 18-1 indicates the parameters that were considered in loading tests, and the 
corresponding mean times taken for a full satellite orbit for the single processor cases. 
 

Table 18-1.  Single processor speeds based upon unbalanced loading. 
 

UNBALANCED LOADING LIGHT MEDIUM LARGE

PARAMETER Platforms Platforms Platforms

Satelliltes 24 24 24

F15s 4 8 16

F18s 4 8 12

A10s 2 2 12

SHIPs 6 17 24

Single Processor Orbit Time† 0.760 2.76 9.80
†Mean Time (Seconds)

 
 
 Because run-times in the above scenarios are somewhat small, it was decided to increase 
the size of the largest scenario.  As indicated above, this causes the times to increase nonlinearly. 
 
 
A More Heavily Loaded Scenario 
 

 Table 18-2 indicates the parameters that were used to produce a more heavily loaded 
scenario test, and the corresponding average time taken for a full satellite orbit for the single 
processor case.  This loading provided a more substantial test, increasing the useful running 
times of the single processor tests.  The simulation for this scenario is shown in Figure 18-15. 
 

Table 18-2.  Parallel processor speeds based upon balanced loading. 
 

PARAMETER Platforms
Satelliltes 24

F15s 14
F16s 14
F18s 14
F22s 14
A10s 14
UAVs 16
E3As 7

SHIPs 36
TOTAL 153

Single Processor Orbit Time† 24.15

†Mean Time (Seconds)

                 LARGEST LOADING
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GLOBAL_PLANNER  05/14/14  
 
 

Figure 18-13.  GLOBAL_PLANNER 21 - an expanded parallel processor simulation. 
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 The scenario shown in the Table 18-2 was used in the tests described below.  The 
expanded GLOBAL_PLANNER_21 simulation used a total of 153 platforms in 10 IND modules 
as shown in the above table and figure.  Runs were made using a single processor, as well as 
using 2, 5, 7 and 10 processors in parallel.  The tests described below are for the 2, 5, and 10 
processor cases, followed by another 7 processor case with the UAV platforms divided into two 
separate IND modules.  This last case shows the ability to divide IND modules to cut their times 
in half.  This may use more processors to gain speed, or to provide a better use of existing 
processors. 
 
 
Elimination Of Cross-Schedules During Initialization 
 

 We note that the architecture in Figure 18-11 showed Cross-Schedules used to start 
threads for initialization.  This introduced a slight difficulty when moving IND modules to 
different processors, since the initiation of databases depended on start times and thus where they 
resided.  With a minor redesign, all IND modules are now initialized independently.  This 
independence allows modules to be moved to any processors without concern for cross-
schedules.  This architectural approach has worked in all cases to date, eliminating changes to 
relocated IND modules, another simplification provided by the property of independence. 
 
 
GLOBAL_PLANNER TEST RESULTS 
 
GLOBAL_PLANNER_21 - 2 Processor Case 
 

 GLOBAL_PLANNER_21 experiments started using 2 processors to house all of the 10 
IND modules.  Using 2 processors, the orbit time was about 12 seconds.  Compared to a single 
processor time of 24.15 seconds, this produced a Speed Multiplier (SM) of about 2.0.  Using the 
measures of useful times from the test run data portrayed in Figure 18-14, the corresponding 
PUE averaged more than 99%.  Multiplying the lowest value of the calculated PUE times the 
number of processors yielded an SM of 1.99. 
 

 Figure 18-14 shows the times and charts for GLOBAL_PLANNER_21 runs with 10 IND 
modules on 2 processors.  The Mean Orbit Time is about 12 seconds and the PUE is 99%. 
 
 
GLOBAL_PLANNER_21 - 10 Processor Case 
 

 GLOBAL_PLANNER_21 testing followed with the use of 10 processors to house each 
of the 10 IND modules on a separate processor for “maximum” speed.  This resulted in an orbit 
time of 4.19 seconds.  Compared to a single processor time of 24.15 seconds, this produced an 
SM of 5.764.  Using the measures of useful times from the test run data portrayed in 
Figure 18-15, the corresponding PUE ranged from about 60% to about 65%.  Multiplying the 
lowest value of the calculated PUE times the number of processors yielded an SM of 6.0. 
 

 Figure 18-15 shows the times and charts for PAR_21 runs using 10 processors to house 
the 10 IND modules.  The first module was used only for initialization and that time was 
insignificant, so the first processor is not shown on the chart.  The Mean Orbit Time is 4.19 
seconds and the PUE varies between 60% to 65%. 
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Figure 18-14.  Snapshot of PUE for 2 processor case. 
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Figure 18-15.  Snapshot of PUE for 10 processor case (9 processors shown). 
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GLOBAL_PLANNER_21 - 7 Processor Case 
 

 With 7 processors shown in Figure 18-16, the orbit time was also 4.19 seconds, matching 
the 10 processor case.  This is because the UAV platform still took the longest time with the 
occasional exception when the F18 ran longer.  Compared to a single processor time of 24.15 
seconds, this produced an SM of 5.764 and corresponding PUE of about 92%. 
 
 
GLOBAL_PLANNER_21 - 9 Processor Case 
 

 Now consider that the time constraint is to close to 2 seconds.  This implies cutting the 
run time in half while running on a 16 processor PC.  Looking at the charts for the 7 and 10 
processor cases, it appears that the time could be cut in half by splitting each of the large IND 
modules into two.  In addition, the SAT module may be placed on a single processor while the 
E3A and SHIP modules occupy a single processor with the initialization module. 
 

 Figure 18-17 illustrates the approach to dividing largest IND module into two IND 
modules to provide a more efficient use of processors while at the same time gaining close to a 
factor of 2 in speed.  In this experiment, the largest IND module, the UAV, was split into two 
IND modules to illustrate the results.  In this particular test, the original UAV module took 
approximately 26.0 milliseconds (msecs) to run.  In the split case, the longest running time of the 
split modules took approximately 12.3 msecs.  Based upon this result, one can expect the split 
modules to run in approximately half the time. 
 

 The remaining 5 large IND modules can also be split in the same manner to cut the 
overall run time in half.  We note that, using this graphical approach, the splitting of modules can 
be tested easily and results plotted to determine the best fits.  In addition, when there are a 
number of modules that are split, the statistical results of their individual variations will 
generally become more stationary. 
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Figure 18-16.  Snapshot of PUE for 7 processor case. 
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Figure 18-17.  Snapshot of PUE for 9 processor case. 
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GLOBAL_PLANNER_28 - 14 Processor Case 
 

 To cut the orbit time of 4.19 seconds approximately in half, one must double the speed 
over the 7 processor case shown in Figure 18-16.  Because of the high PUE achieved in the 7 
processor case, this requires using at least twice as many processors.  Assuming the desired 
constraint can be met using 14 processors, the architecture for this approach is shown in 
Figure 18-18.  In order to split the additional 5 large running time platforms (Figure 17) onto two 
separate processors, a total of 16 IND modules is required.  With the two small modules running 
on the same processor as IND_MAIN, a total of 14 processors is required.  The resulting times 
are shown in Figure 18-19.  Using this architecture, the mean orbit time was cut from 4.19 
seconds to 2.31 seconds, satisfying the speed constraint.  The resulting SM over the single 
processor time was 10.45, yielding a PUE of 75%, a reasonable result. 
 

 
 

Figure 18-18.  GLOBAL_PLANNER 28 - 16 IND modules running on 14 processors. 
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Figure 18-19.  Snapshot of PUE for the 14 processor case. 
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OBSERVATIONS RESULTING FROM THE EXPERIMENTS 
 

 This section offers observations on some of the more critical aspects of implementation 
of parallel processor simulations and software using the VisiSoft CAD system.  It also describes 
techniques that were used to ensure the validity of results.  We note that simulation presents 
additional complexities due to the simulation clock being separate from the real-time clock.  
Simulations of real-time systems - as required for high-speed platforms in the military planning 
example used here - are quite complex. 
 
 
THE PROPERTY OF INDEPENDENCE 
 

 Of the theoretical factors affecting the ability to deal with complex software, nothing is 
more important than the property of independence.  The ability to build, test, support and expand 
complex systems requires that they be decomposed into independent parts.  From previous 
chapters, two parts are independent if a change in either part does not affect the other part.  For 
example, with a minor change in architecture, the problem of moving and grouping IND modules 
on different processors without code changes resulted from the independence gained when cross-
schedules were removed. 
 

 When two parts are interfaced, the property of independence implies that changes to one 
part must not affect the behavior at the interface to the other part.  This leads to the 
decomposition of a part into subparts that do not interface, and thus the concept of modularity.  
The GLOBAL_ PLANNER is an example of parallel processing software that is decomposed 
into IND modules where the interfaces are limited to IP resources.  As illustrated in the above 
experiments, this allows application designers to provide for worst case scenarios while 
balancing loads to minimize the number of processors used, as well as reduce run times. 
 

 To maintain independence of two modules that must communicate implies implementing 
temporally independent interfaces using synchronized simplex channels.  As in any large 
complex communication system, this is best implemented using a single channel in each 
direction that the modules must communicate (a maximum of two).  This implies using a single 
shared resource in each direction.  When implementing such channels between complex modules 
that share a significant amount of data, the resources become large and complex.  Without the 
ability to organize these resources into deep hierarchies, the understandability of the algorithms 
in the process becomes difficult to understand.  Just as many difficult problems would not be 
solved without the language of differential equations, the underlying VisiSoft resource and 
process languages are the keys to achieving the independence necessary for the parallel 
processor solution. 
 
 
MODULARITY 
 

 Decomposition of complex systems into modules is key to achieving the property of 
independence.  With the proper decomposition, most parts can be designed to be independent so 
that a change in one part has a minimal, if any, effect on other parts.  Complex hardware 
systems, e.g., computers, automobiles, airplanes, etc., must be designed to maximize reliability 
along with functionality while minimizing time and cost of development and support.  These 
complex systems are excellent examples of specialized engineering approaches that result in 
modular decompositions that achieve these goals. 
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MODULE HERARCHIES 
 

 As systems become more complex, they must be decomposed further to simplify the 
elementary levels.  If elements are too big and complex, they become difficult to design, test, 
support and enhance.  Breaking down complexity into hierarchies of simple parts is key to 
overcoming these barriers.  The use of hierarchies yields ease of identification, understanding 
and control over the details of a highly complex module. 
 

 In the case of software, it is up to the architect to decompose a system into a hierarchy of 
modules that takes maximum advantage of the spatial and temporal independence properties of a 
system.  Designing the IND modules and IP resources that provide the interfaces is clearly an 
architectural skill that requires an understanding of the system being built. 
 
 
GRAPHICAL DEPICTION OF BEHAVIOR 
 

 When testing complex software systems, visualization of system behavior is critical to 
discerning correct operation.  Graphical depiction of the operational movements of elements of 
the GLOBAL_PLANNER simulation makes this point obvious.  Simply watching a visual 
scenario unfold replaces the need to scan reams of printed output, while providing immediate 
recognition of faulty operations.  In this environment, a picture is clearly worth a thousand 
words.  This is another area where accurate graphical representation of a physical system is 
required. 
 

 In some applications, one must be creative when producing graphical images that depict 
operational outcomes.  That is not the case with the military application provided here.  The main 
challenge in these applications is the accuracy with which the graphics depicts the interrelated 
physical operations as they unfold.  This facility has taken years to develop, but has paid off with 
the results of high prediction accuracy when planning complex operations. 
 
 
DRAWING MULTIPLE CONNECTED PLATFORMS 
 

 When moving and drawing multiple platforms to evaluate connectivity, with multiple 
types of connect lines between them, one must synchronize the databases required to do the 
draws.  This typically involves arriving at a point where all databases are updated so that one can 
proceed to do the interconnected draws.  Since it is also faster to do all of the draws at once, it is 
best to do them at the very beginning of an interval. 
 
 
PARALLEL PROCESSOR TIMING AND SYNCHRONIZATION 
 

 When scheduling processes, especially across IND modules, the actual (real-time) 
scheduled times are generally skewed within a DELTA_T synchronization interval.  Even within 
a module, a schedule from outside may come in to be placed before the current (last scheduled) 
time on that processor, and must be brought forward to the current time within the interval.  
Depending upon what was previously scheduled, it may be put close to (or at) the end of the 
interval.  Designs of interacting modules must take these possibilities into account. 
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 In the case of simulation, it is the synchronization that must be designed to accurately 
represent real systems.  As an example, good communication system designs ensure that 
variations in message arrival times will not cause a failure.  This provides for distributions that 
represent the allowed intervals in the real system and correspond to the DELTA_T intervals used 
here. 
 

 When wanting to get into the next Delta_T interval, one need only add the Delta_T time 
to the existing time (SCHEDULE ... IN DELTA_T) --- provided that the existing time is beyond 
the starting boundary in the current interval by a finite amount.  This facility is important during 
initialization, where one set of databases must exist prior to creating another set. 
 
 
INITIALIZATION 
 

 When performing initialization with the current process at time = 0, incrementing by 
DELTA_T puts the local clock at the end of the interval boundary, not in the next time interval.  
Also, after scheduling in DELTA_T + ε to ensure getting to the next interval, one must be 
careful not to use this same statement successively unless one wants to move steadily ahead in 
the following set of intervals.  From there on, one need only move by DELTA_T to get to the 
same spot in the next interval.  This is true for single as well as parallel processor systems. 
 

 When designing modules for initialization, it helps to lay out a diagram of when different 
processes in different IND_MODULES are to be scheduled in terms of who must follow whom.  
For example, the initial schedules may be in times that are within a DELTA_T interval.  After 
initialization, they may always be scheduled in the next DELTA_T in the future so they are 
placed at the same relative time point within the next interval.  Since they are in the next interval, 
which has not yet been started, they may be placed at the time scheduled in the current interval 
(in the module where scheduled) plus DELTA_T, and placed at that time in the next interval 
(possibly in another module).  This is also true for single as well as parallel processor systems. 
 
 
Initial STARTS And SCHEDULEs 
 

 When the GLOBAL_PLANNER was run with the large scenario, it appeared to run OK.  
However, when the small and medium scenarios were run, it was determined that the schedules 
from the top level IND modules could be placed ahead of those that were started with the 
START function.  Given this potential problem, the PRIORITY code was used.  It became a 
matter of setting the priorities to ensure that the schedules were ordered properly. 
 

 To solve this problem, the higher level IND modules that invoke those at the middle level 
were given the lowest START priorities.  Since the SCHEDULE statements implied the NOW 
option, and the middle level modules were started at the same time, the middle level modules 
were given a higher starting priority.  Similarly, the bottom level modules that were scheduled by 
the middle level modules were given the highest priority. 
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 This approach implies making proper use of the PRIORITY codes both for STARTs as 
well as SCHEDULEs as defined below. 
 

• The NOW function is imposed implicitly when no time option is used. 
 

• Processes scheduled with the NOW option include the PRIORITY code as well as the 
current time of the process doing the scheduling. 

 

• When processes are STARTed, the corresponding SCHEDULE statements are entered 
into the schedule at time 0 before any cross schedules occur with the selected START 
priorities. 

 

• The PRIORITY codes are invoked when placing cross SCHEDULES in the schedule 
queue. 

 

 
 
ELIMINATING CROSS-SCHEDULES 
 

 The final solution to the problem of synchronization between IND modules was to 
eliminate all of the cross-SCHEDULEs, including those used during initialization.  This required 
having all schedules internal to each IND module.  This, in turn, required sharing those data 
bases within the other IND modules that affected the internal operations of a given module.  This 
solution was quite simple to implement, easy to understand, and reliable.  Simplicity of the 
implementation is the result of the language, particularly the EVENT synchronization statements 
(i.e.,  the set, condition, and wait-until statements) and the IP_RESOURCE synchronization 
statements (i.e.,  the release and access statements). 
 
 
SYNCHRONIZATION OF SHARED INTER-PROCESSOR DATABASES  
 

 One can start updating databases based upon when they are to be used.  For example, 
databases can be updated so they are all ready at the beginning of the next interval and not 
changed while being used.  This implies determining when IP resources are to be updated and 
when the IND modules sharing them are to be invoked to read them. 
 

 Depending upon their design, database updates could get out of sync during an interval.  
If they are all updated and made available at or before the end of the current interval, then they 
all can be read and used reliably at the beginning of the next interval.  For example, one may 
choose a time into the start of the next interval (e.g., 0.01*DELTA_T from the beginning of the 
interval) within which IP resources can be used reliably by all IND modules without being 
changed.  After that time, IP resources may be updated by any of the IND modules. 
 

   Again, simplicity of such implementations is the result of the language.  Without the 
EVENT synchronization statements and the IP_RESOURCE synchronization statements, 
implementation of IND module synchronization would be quite difficult.  More important is the 
requirement to understand the underlying application.  Without detailed knowledge of the system 
being built, huge amounts of time are easily wasted.  This has been particularly obvious in 
simulation, leading to the development of CAD systems for use by subject area experts. 
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COMBINING AND SPLITTING IND MODULES 
 

 As illustrated in the above experiments, it is easy to combine multiple IND modules onto 
a single processor, especially when there are no cross-SCHEDULES.  This helps to reduce the 
number of processors without increasing the run time.  It is also relatively easy to split large 
modules into separate IND modules to cut the running times of the most heavily loaded modules.  
Clearly this depends upon the module architecture, something that must be considered when 
producing the original design. 
 
 
REVIEWING SPEED RESULTS 
 

 From the above snapshots of the charts produced by this CAD system, it is apparent that 
these facilities are designed to easily support minimization of the number of processors used to 
meet a speed constraint.  The data is automatically collected behind the scenes with virtually no 
overhead.  This data is then used to produce sorted files that are input to the visualization task.  
When this task is run, one uses the visualized output to scan and compare results.  This allows 
many runs to be observed and compared in a matter of minutes. 
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CHAPTER 19 
 

OPTIMIZING DESIGNS FOR PARALLEL PROCESSING 
 
 
 
SUMMARY OF IMPORTANT CONSIDERATIONS 
 

 From the earliest days of computers, parallel processors have been sought to gain speed.  
The underlying motivation is that time is a precious resource for people who are using computers 
to achieve important goals.  When run-times can be cut by one or more orders of magnitude, or 
in many cases just by whole numbers, goals are met that otherwise could not be achieved. 
 

 Today, software developers who have counted on increasing clock rates to achieve speed 
are being forced to use parallel processors - often against their desire.  As described in Chapter 1, 
this has created the need for a major change in the way software is designed.  Programmers can 
no longer sit back and watch hardware designers double their application speeds with increased 
clock rates every 18 months.  They are also learning that current software approaches do not 
work in this new environment.  The purpose of this chapter is to understand why parallel 
processor speed results vary so widely, and how to take advantage of approaches that maximize 
return on investment. 
 

 As defined in prior chapters, the parallel processor Speed Multiplier (SM) is a measure of 
the time it takes to run an application on a single processor divided by the time taken on a 
parallel processor.  When using this measure to compare different hardware or software 
approaches, one must use the same frame of reference for comparison, i.e., the fastest single 
processor speed achieved for an application - independent of the hardware.  Else, the speed 
multipliers will not fairly represent the potential economics of comparing parallel processor 
approaches. 
 

 Processor Utilization Efficiency (PUE) is a measure of the Speed Multiplier achieved on 
a parallel processor divided by the number of processors used.  Alternatively, SM is equal to the 
product of the PUE times the number of processors used.  From a software design standpoint, 
PUE is the most critical factor determining the speed with which an application runs on a parallel 
processor.  Again, PUE must be calculated fairly using the same (fastest) single processor speed 
to compute the SM for an application. 
 

 In a real economic-oriented environment, buyers evaluate approaches based upon the cost 
to meet their requirements.  Given that the requirements are well met by competing systems, they 
look to minimize their cost.  Translating this to parallel processing, given that competing 
approaches meet the speed constraint, cost to build and operate a system becomes the major 
factor.  This translates into facilities acquisition and operational costs as well as application 
system development and support costs. 
 

 When using VisiSoft, one must think in terms of minimizing the number of processors 
while meeting the speed constraints.  This generally implies optimization of Processor 
Utilization Efficiency (PUE).  This chapter points out the theoretical potential of the property of 
independence for mapping the inherent parallelism in an application system into a software 
architecture that achieves desired speed multipliers while minimizing the number of processors. 
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ANALYSIS AND COMPARISON OF FACTORS AFFECTING SPEED 
 

 Figure 19-1 illustrates the wide range of outcomes that have been produced from 
different software application designs when using parallel processors.  Chapter 8 outlined a 
number of factors contributing to the speed differences illustrated in the figure.  We now analyze 
these factors from a more advanced perspective.  When faced with the design of software 
architectures for parallel processors, the effects of the factors described below must be 
understood.  Of foremost importance is the goal or set of objectives one wants to achieve. 
 

 In some environments, maximizing the number of processors one can string together 
appears to be a major driving force.  But in practical business environments, the time and cost to 
produce a solution weighs heavily on the approach.  We are focused on those practical 
environments where the time and cost of both development and on-going operations presents 
constraints on the approach.  This includes the cost to change or upgrade a system as well as the 
cost of its on-going operational use.  The bottom line is that the factors affecting Return On 
Investment are critical when evaluating approaches to using parallel processors. 
 

 Looking at the top curve in Figure 19-1, one may immediately question how a parallel 
processor speed multiplier can be greater than 100% of the number of processors.  This gets back 
to Bailey’s paper “Twelve Ways To Fool The Masses When Giving Performance Results On 
Parallel Computers,” [8].  If A can run 10 times faster than B on a single processor, what does A 
compare to?  B may be running the single processor version intentionally slow to provide a very 
optimistic parallel processor outlook. 
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Figure 19-1.  Parallel processor speed multipliers for different application designs. 
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Using Single Processor Speed Multipliers For Fair Comparison 
 

 Parallel processor speed multipliers may be viewed simply as the ratio of the time it takes 
to run an application on a single processor divided by that on a parallel processor.  This implies 
that approaches are compared in a fair manner, not one of those described by Bailey, [8].  As 
shown in Chapter 17, single processor times can vary dramatically based upon the software 
design as well as the hardware.  When reviewing two software approaches, if each is running on 
different hardware and one machine is clearly faster, one cannot obtain a fair comparison.  
Similarly, when comparing hardware designs, one must use the same software approach.  Our 
interest here is comparing different software approaches on a fair basis. 
 

 If one software approach is obviously much faster than another - on the same single 
processor, then the parallel processor speed multipliers can be expected to be much faster for that 
approach.  To produce a fair measure of their speed multiplier, one must use an accepted single 
processor time (e.g., one produced by the fastest approach) divided by that of one’s own 
approach on the parallel processor.  For example, speeds achieved on a single processor using 
VisiSoft are typically much faster than those using current “advanced” software development 
environments on the same machine.  Based upon many comparisons, the range is from 2 to more 
than 10.  This is a major factor when determining parallel processor speed multipliers.  When 
compared to other approaches using the same single processor time achieved by the other 
approaches, it results in the blue VisiSoft curve in Figure 19-1.  When compared against its own 
fast single processor approach, it will lie somewhere below the 100% curve. 
 
 
Inherent Parallelism In The Application 
 

 Clearly the nature of the application will have a major effect on potential speed 
multipliers.  This is because of the inherent parallelism in the application itself.  An application 
with very little inherent parallelism will produce small speed multipliers with any approach. 
 

 Alternatively, embarrassingly parallel applications represented by totally independent 
tasks running concurrently should produce speed multipliers of N, where N is equal to the 
number of independent tasks running on N processors.  But here again, when comparing 
different approaches, the actual running times will depend upon the single processor speeds, so 
each must use the fastest (or at least the same) single processor speed to produce a fair 
comparison of speed multipliers.  As stated above, since embarrassingly parallel applications can 
be run effectively as separate tasks, they are simple to implement and not of interest here. 
 
 
Effects Of Software Architecture 
 

 Using VisiSoft, one can design software architectures that produce an optimized mapping 
of the inherent parallelism of a system into independent modules while automatically ensuring 
their synchronization.  But even then, one must compare the outcomes of different approaches. 
 

 Figure 19-2 illustrates the possible results from software designs that are all optimized for 
a given number of processors.  By this we mean that the speed multiplier is maximized for the 
number of processors where, in this case, the processor count ranges from 1 to 128. 
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Figure 19-2.  Speed multipliers as a function of number of processors. 
 
 
 There are multiple factors affecting the curve of results in the above figure.  The first is 
that in region A the single processor speed multiplier is at least twice that of the other design 
used for comparison.  In the single processor speed tests in Chapter 17comparing VisiSoft to 
other languages, the single processor speed multiplier actually ranged from 1 to 2 orders of 
magnitude faster.  The additional phenomena are best explained in terms of IND modules. 
 

 If the inherent parallelism in a system is represented by 48 IND modules, then one can 
expect to obtain reasonable speed gains as the number of processors is increased to 48.  If the 
loads carried by IND modules are the same, then speed increases linearly as in the A area.  When 
loads carried by each IND module are different, with the largest being assigned to separate 
processors first, increases in the speed multiplier will fall off with the load as in the B area. 
 

 As the number of processors exceeds 48, one may start to look for inherent parallelism 
within an IND module.  Depending upon the actual loading doing useful processing, smaller 
increases may be gained and then peak moving into the C area.  As the number of processors 
exceeds 72, moving into the D area, the best design is that which minimizes the fall-off of the 
speed multiplier.  In other words, adding more processors slows things down.  This is because 
the inherent parallelism in the system has been wrung out relative to the overhead encountered. 
 

 One may question designs that exceed the C area, but this phenomenon has been reported 
numerous times, e.g., in Proceedings of the Society for Computer Simulation.  A point is reached 
where adding more processors actually reduces speed, requiring more time to complete a run.  
The critical result is that one must optimize the design based upon the inherent parallelism in the 
system, accounting for constraints on time and cost for development and operations. 
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 The C area is further exacerbated by systems requiring large numbers of processors, 
where the memory boundary crossing delays take a significant toll on the speed multipliers.  
When a system is spread across multiple trays in a large parallel processor, communications 
between trays becomes a significant delay factor.  When faced with multiple racks of computers, 
this problem is much further compounded.  Such systems are most effective when applied to 
very special applications, ones that are typically embarrassingly parallel. 
 
 
Designing For Worst-Case Application Scenarios 
 

   Given that the software has been well designed for a given application, one may be 
faced with different scenarios.  This is particularly true in transaction processing systems 
containing a back-end database, where the number of transactions per minute will depend upon 
the time of day.  This effect is also true in simulation.  Chapter 9 showed the architecture for the 
global planner simulation, where large numbers of satellites communicate with large numbers of 
airborne platforms.  This is expanded in Chapter 18.  In these simulations, the scenario can have 
a major impact on the speed multiplier, because it determines the amount of loading on each of 
the IND modules.  With good IND module architectures, the multipliers go up as the modules are 
more heavily loaded. 
 

 Additionally, the multiplier grows higher as the loads are balanced.  This is because 
modules with light loads will be waiting on idle processors for those with heavy loads.  Load 
balancing becomes a design trade-off.  Typically one must design for worst-case conditions.  For 
example, if the loads can be balanced across IND modules, then a balanced design can provide 
optimal support for worst-case conditions.  If the modules are inherently unbalanced, then one 
may consider placing multiple IND modules on a single processor to balance the load and 
minimize the number of processors used. 
 
 
MEASURING PROCESSOR UTILIZATION EFFICIENCY 
 

 As described above, and particularly in Chapter 6, Processor Utilization Efficiency (PUE) 
determines the return on investment obtained when adding more processors.  This is estimated to 
range from 40% to 95% when using an optimized number of processors.  This number must be 
compared to the typical 10% obtained when trying to use a large numbers of processors with the 
hope of increasing speed. 
 

 VisiSoft IND modules are generally large and remain on a specified processor, 
minimizing if not eliminating swapping and paging and therefore increasing processor utilization 
efficiency.  However, as processor loads become unbalanced, processor utilization efficiency 
will fall and one must carefully consider the application level design constraints and function to 
be optimized. 
 

 This problem is illustrated in Figure 19-3 where processor loading is shown in the green 
area with unused processor time shown in pink and blue.  Figure 19-4 illustrates a reduction in 
time (about half) using an improved architecture.  By grouping lightly loaded modules, the 
number of processors used, M, may also be less than N in Figure 19-3.  We note that VisiSoft 
provides direct measurements of the loading as shown in Figures 18-16 and 18-19.  These are 
from the experiments supporting the balancing theory illustrated in Figures 19-3 and 19-4. 
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Figure 19-3.  Unbalanced processor loading. 
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Figure 19-4.  A more balanced processor loading. 
 
 
ACHIEVING OPTIMAL RESOURCE SOLUTIONS 
 

 Looking at the above figures, design of parallel processor software becomes a typical 
nonlinear programming problem where one may vary parameters and assess the results to 
determine what is best for a given set of requirements for a given application.  These criteria 
must include the cost of resources used (number of processors, electric power, air conditioning, 
floor space, etc.) as well as time to complete a run.  They must be mapped into an optimization 
criteria, and a set of constraints. 
 

 In typical applications, the run time constraint may be most important, i.e., it is a hard 
constraint that must be met or the application will be considered a losing proposition.  When the 
problem is posed with a run-time constraint, then one looks to minimize cost to meet the 
constraint.  This typically involves minimizing the number of processors while ensuring the time 
constraint is met. 



Software Theory                Page  19 - 7  

 

 Alternatively, one may switch these criteria, making the number of processors available 
the hard constraint and minimizing the run time.  When concerned with economics, the solution 
will likely be quite different.  We will address the economic problem. 
 
 
Meeting Run-Time Constraints While Minimizing Processor Count 
 

 When looking at Figure 19-3, one must consider the unbalanced loading from two 
standpoints. 
 

• Can modules on the heavily loaded processors be split to run on separate processors? 
 

• Can modules on the lightly loaded processors be grouped to run on a single processor? 
 

 In the example illustrated in Figure 19-4, the architecture of the IND modules on the 
heavily loaded processors were redesigned to take advantage of their inherent parallelism.  It is 
important to note that, if sufficient inherent parallelism does not exist, this may not be possible. 
 

 As noted above, the number of processors (M) in Figure 19-4 may be less than that (N) 
used in Figure 19-3 - while cutting the run time in half.  This can occur if the number of lightly 
loaded modules is large compared to the heavily loaded modules, and they can be grouped 
architecturally without changing the results.  Clearly their grouping is also restricted by the time 
constraint. 
 
 
IND Module Architecture - The Critical Component 
 

 Achieving speed constraints while minimizing the number of processors clearly depends 
upon the architecture of the IND modules.  Their design must take maximum advantage of the 
inherent parallelism of the system.  This is akin to hardware design wherein module 
independence is key.  Simulations of physical systems are best developed around the design or 
physical properties of the system itself, since that usually maps into the best representation of 
inherent parallelism as well as independence.  IND module architectures clearly depend upon the 
design of the data space, and of course the separation principle which provides for modularity 
itself. 
 
 
Synchronization of IND Modules 
 

 As stated in Chapter 18, simplicity of IND module implementation is the result of the 
Resource,  Process, and Control Specification languages, and particularly the ability to create 
large complex IP resources.  In addition, without the EVENT synchronization statements and the 
IP_RESOURCE synchronization statements, implementation of IND module synchronization 
would be quite difficult.  Finally the ability to quickly change assignments of IND modules to 
processors makes testing and reorganization simple, leading to fast minimization of the 
processors required to meet the application speed constraints. 
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OTHER FACTORS AFFECTING SPEED 
 
The Effect Of Operating Systems On Parallel Processing 
 

 As indicated in prior chapters, this is the difference between a Windows OS, Linux OS, 
or a specially designed OS that attempts to allocate processors automatically - versus VPOS.  
Depending on the application, OS design and hardware design, a parallel processor application 
running under VPOS may be 2 to 10 times faster than one running under Linux or Windows.  
This is because the important information about the parallelism designed into the software 
architecture is passed on to the tailored Run-Time System (RTS).  The RTS interfaces with 
VPOS in a manner that makes maximum use of the information to allocate physical processors at 
run time. 
 
 
Better Use Of Chip Space 
 

 VisiSoft IND module design eliminates the use of threads across IND modules.  
Communication between IND modules on separate processors uses the run-time IP 
Communications (IPC) manager eliminating concerns for synchronization.  Sharing memory 
with a server eliminates the need for DMA channel interfaces to external devices.  Stack 
facilities and complex instruction caching are also eliminated.  All of these architectural 
improvements serve to simplify parallel processor chip design allowing for more memory close 
to the processors, further reducing swapping and paging. 
 
 
Distance Factor 
 

 All of the above factors serve to increase the speed of a system using less processors.  If 
the number of processors is cut by a factor of 8, one may discover additional speed-up factors 
of 2 or more just due to a reduction in time delays caused by the distances between processors 
and memory.  These time delays increase nonlinearly as the footprint of a system becomes 
larger.  As shown in Chapter 6, one can expect the speed of a 32 processor PC to match that of a 
250 processor HPC.  Such high speed multipliers are helped by the reduced distance between 
processors and memory.  Coupled with the other factors, they can yield comparative speed 
multipliers with a substantial reduction in number of processors. 
 
 
SOME SAMPLE APPLICATIONS 
 

 The examples in experiments described in the prior chapter were simulations.  This was 
done because synchronization with the simulation clock is critical to obtaining accurate 
prediction of outcomes of the systems being analyzed.  In these cases, synchronization within the 
DELTA-T interval was necessary to accurately represent the unfolding of events in different 
IND modules running on separate processors. 
 

 Software applications must follow similar design requirements, and are likely to be easier 
to produce when following the approach described here.  Some of these concepts are apparent 
from the applications described below. 
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GLOBAL_PLANNER EXAMPLE 
 

 The GLOBAL_PLANNER simulation shown in Figure 19-5 illustrates this concept.  The 
green lines in the figure define direct CALLs between processes within an IND module.  The red 
lines define Cross-SCHEDULEs by processes in one IND module to those in another. 
 

GLOBAL_PLANNER  02/16/14  
 

Figure 19-5.  GLOBAL_PLANNER Simulation Architecture. 
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 The Cross-SCHEDULEs in the GLOBAL_PLANNER are only used for initialization.  
This is because the architecture is designed to limit I/O device interfaces to a separate IND 
module so that I/O interrupts and device handling does not occur on the set of tightly coupled 
parallel processors.  A general form of parallel processor architecture that supports this type of 
IND module is illustrated in Figure 19-6.  This architecture supports removal of the General 
Purpose OS (GPOS) time - spent managing devices - from the parallel processor domain 
managed by VisiSoft Parallel OS (VPOS).  As a result, IND_MAIN is placed on a separate 
server processor that puts and gets information on the I/O devices, while sharing memory 
directly with the parallel processors. 
 

GENERAL FORM OF A PARALLEL PROCESSOR FACILITY

SERVERs

SERVER OS-1 SERVER OS-4SERVER OS-2 SERVER OS-3

PARALLEL_PROCESSORS

RUN-TIME
MASTER_1

RUN-TIME
MASTER_2

RUN-TIME
MASTER_3

Parallel_Processor_Drawings  02/25/14  
 

Figure 19-6.  Tightly coupled parallel processors sharing memory with servers. 
 
 
 Once the other IND modules are initialized, they run independently.  We note that they 
are started independently by START codes in the architecture.  This implies that there are no 
instructions in an IND module that affect another IND module.  This begs the question: Can this 
be done for all architectures, including those handling the I/O devices, without affecting 
synchronization? 
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Architectural Trade-Offs - A Statistical Measure Of PUE 
 

 Referring to the measures of Processor Utilization Efficiency (PUE) in Chapter 6, and 
particularly Figure 6-3, that figure illustrated the distribution of Processor Utilization (PU) for 
each processor where the green area represents useful processor time.  Flipping the axes in 
Figure 6-3 so that the X axis is now vertical in Figure 19-7 below, and the processor number, N, 
is now along the new X axis, we can make a comparison of two such plots. 
 

Processor NNa
PU Distribution  04/20/14

PUa

PUb

100

Nb

PUEa PUEb

 
 

Figure 19-7.  Comparison of Processor Utilization Efficiencies (Areas under the curves). 
 
 
 Looking at Figure 19-7, PUa and PUb represent the percent processor utilization for a 
particular processor, N.   The areas under the two curves represent the PUE for two software 
architectures, a and b, and the number of processors each uses to meet the time constraint.  PUEa 
is equal to the area under the light green curve divided by the rectangular area defined by last 
processor number Na.  PUEb is measured similarly, using Nb processors.  Clearly PUEb is well 
under 50% whereas PUEa is greater than 50%.  From the figure, architecture a uses almost half 
the number of processors, Na, as architecture b, Nb, to achieve the same speed. 
 

 For this comparison we assume that the amount of useful time spent on each processor 
(height of the vertical strips, PU, for each processor), produces the equivalent amount of work 
within the same time frame on each processor.  Thus, if the area under the curve for each 
configuration (PUEa and PUEb) is the same, then the amount of time taken to complete a run is 
the same.  The validity of this assumption depends upon a number of factors, e.g., the placement 
of IND modules relative to the memory they access.  With sufficient memory next to each 
processor, or if the average access time over the run is equivalent, the assumption will be valid.  
With IND modules that perform a fair amount of processing each relative to the DELTA_T 
window, and a well designed OS for parallel processors, this assumption should remain valid. 
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Producing Optimal Software Architectures 
 

 In the typical case, run times must fall within a specified time constraint to meet 
simulation requirements.  One then looks to minimize the number of processors required to meet 
that constraint.  We start by assuming that b meets the time constraint.  Looking at Figure 19-7, 
from a statistical standpoint the variance of PU’s in a (vertical bars PUa) is much more narrow 
than the variance of those in b.  If one can design an architecture such that the variance of the 
PU’s in a is minimized, it will be an optimal architecture using the least number of processors to 
produce the required speed.  If this is done for the worst case scenario for a particular 
application, then the optimal software architecture will have been produced for that application. 
 

 In summary, there are two dimensions of the problem.  The first is time and the second is 
the number of processors.  One must first meet the time constraint.  This may require splitting 
IND modules that can run in parallel.  Once an architecture is produced that meets the time 
constraint, one looks to group IND modules onto fewer processors. 
 
 
The Effect Of Independent Control On Speed 
 

 As indicated above, all of the IND modules in the GLOBAL_PLANNER simulation are 
independent with respect to control once initialization is complete.  Even initialization may be 
done using independent control by scheduling IP resource checks based upon the simulation 
clock.  This approach also holds for software systems using the same clock, which for real-time 
systems may be tied to the real-time clock.  This begs the question: When is it more effective to 
use cross-schedules instead of maintaining independent control? 
 

 To address this issue, consider that the GLOBAL_PLANNER simulation includes 
message transmissions between platforms (and therefore IND modules) and that message receipt 
requires propagation path loss checks to determine if enough power is available at the receiver 
antenna.  The fastest way to process these checks is to perform a sequence of operations.  The 
sequence depends upon transmitters and receivers having access to the record of latest changes 
that affect each other. 
 
 
Information Exchanges Between XMTRs and RCVRs 
 

 Figure 19-8 below illustrates the nature of time slotted communications between mobile 
radios, each with transmitters (XMTR) and receivers (RCVR), exchanging messages.  The time 
slotted approach is used to increase the probability of reception in a noisy environment.  Time 
slots (TSN, TSN+1) may be assigned in advance to support a channel between a transmitter and 
one or more receivers, and may be reused by other channels when free.  When broadcasting 
messages to many receivers, the transmitters may not care if all messages were received.  When 
messages must be received, the transmitters must receive an acknowledgement of reception. 
 

 When building a simulation of such a system, one must model the message traffic in 
detail to determine if and when messages are lost.  This requires that the receiver models must 
determine if they have received sufficient power at their antennas to overcome the noise and 
receiver thresholds to correctly receive the desired signal.  This requires determining the loss of 
power along the path from the transmitter to receiver, including the effects of terrain and foliage. 
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Figure 19-8.  Communication protocol between transmitter and receiver. 
 
 
 In the actual system, message reception is determined by the electronic circuits in the 
receiver.  In the model, the receiver must determine how much signal and noise power have hit 
the antenna before it can perform the computations necessary to decide on message reception 
within a particular time slot.  For accurate models, this requires a knowledge of the information 
listed over the transmitter (X) resource symbol in the drawing for all transmitters transmitting in 
that time slot.  By knowing which transmitters may send messages to that receiver in a given 
time slot, it can access the information it needs from the IP resources attached to those 
transmitters and proceed to perform the determination. 
 

 When a transmitter turns on, off, changes power, moves, or sends a message, it puts this 
information into the IP resource available to all receivers that receive messages from that 
transmitter.  This is done during UT1 in the first interval, ΔT1, within time slot TSN.  This 
information is available for use by the receivers to perform the computation that determines 
whether the signal was received during UT2 in the second interval, ΔT2, within time slot TSN.  
If the message requires an acknowledgment, the return message is placed in the IP resource, R, 
shared by that receiver with transmitters that require the information.  Transmitters looking for 
an acknowledgment use UT3 in ΔT3, within time slot TSN+1. 
 
 
Alternative Solutions 
 

 The important point to be derived from this example is that there are many ways to 
exchange the information described above.  For example, it may be done with or without Cross-
SCHEDULES from transmitters and receivers.  They have not been used in the approach 
described here.  If used when performing broadcast to many receivers, scheduling may take 
significant additional time when confined to a single processor.  However, by using cross-
schedules, one may be able to support the information exchange using a single ΔT interval within 
a time slot TS.  Because of the nature of such exchanges, this approach is subject to inaccuracies. 
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 There are also different ways to split the work over many processors.  For example, one 
may put all platforms of a given type on a single processor, especially if they interchange 
messages much more frequently than those between different platform types.  This will also 
depend upon the computation time for each platform, and the consideration of the terrain 
databases required to support a single platform. 
 

 When sending messages between platforms, one must be concerned about the timing of 
the messages being sent and received from different platforms on the same or different 
processors.  Specifically, messages sent in a given time slot must be received in the time slot.  
The following cases must be considered. 
 
Case 1: A message is sent from a platform on one processor to a platform on another processor. 
 

• The sending platform may cross-schedule the receiving platform to receive the 
message.  This ensures that the message will be received within the same ΔT interval. 

 

• The receiving platform may schedule itself to run again within the same ΔT interval.  
This implies that, when it runs again, the information shared in the IP resource with 
the sending platform has been updated with the message.  This gets more complex if 
platforms on other processors can send messages to the receiving platform within the 
same time slot. 

 
Case 2: Two platforms are grouped onto the same processor to increase the PUE 
 

• The sending platform may cross-schedule the receiving platform to receive the 
message at a slightly later time.  This ensures that the message will be received within 
the same ΔT interval. 

 

• The receiving platform may schedule itself to run again - at a later time - within the 
same ΔT interval to check for messages.  This implies that, when it runs again, the 
information shared in the resource with the sending platform has been updated with 
the message.  This gets more complex if platforms on other processors can send 
messages to the receiving platform within the same time slot. 

 

 As indicated in prior sections, it is best to split the work to take advantage of multiple 
processors operating in parallel provided the inherent parallelism exists.  However, as indicated 
in the fine grain model analysis, this can work against the speed constraint if the models that 
must exchange information run faster when combined on a single processor. 
 

 Potential approaches and decisions such as this require detailed knowledge of the 
application, i.e., a subject area expert.  That person is in the best position to consider all of the 
requirements and options regarding the models in the simulation and its resulting accuracy.  
Improvements in speed of the simulation are determined by the placement of IND modules on 
processors, and the resulting data taken from runs.  This data must be easily interpreted with 
respect to the even distribution of useful time over the available processors.  One must not forget 
the ability to easily understand the models for purposes of validation, as well as for expansion by 
a newcomer to the project.  Model architecture is critical to both of these important and 
potentially costly functions. 
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TRANSACTION PROCESSING EXAMPLE 
 

 Figure 19-9 illustrates a simplified look at parallel processing architectures for a 
transaction processing system.  The starting assumption is that communication software is used 
to field transactions coming in from large numbers of sources over a large geographical area 
using multiple channels.  These transactions are presented to the transaction processing 
subsystem in multiples stacks of transaction records, potentially in some predefined order.  
Transactions are to be applied against multiple databases or segments thereof depending upon 
parameters in the incoming record fields.  Various databases may then be updated, and responses 
sent back to the originators as well as to other destinations via communications channels. 
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Figure 19-9.  On-Line Transaction Processing. 
 In this particular example, IND modules contained in a communications processing 
subsystem are assigned to communications channels, each handling multiple incoming 
transactions.  These modules may perform preliminary edits on the incoming transactions and 
stack transaction records for input to the transaction processing subsystem.  IND modules within 
the transaction processing subsystem are assigned transactions that are further edited.  Based 
upon one or more keys, information is then passed to and sought from the database processing 
subsystem where IND modules handle segments of one or more databases. 
 

 Using the architecture in this example, multiple IND modules in each subsystem operate 
in parallel to speed transaction processing.  These modules may be instanced within a subsystem.  
We note that there are many ways to control the selection of IND modules within the transaction 
processing subsystem and the database processing subsystem.  This may be done internally 
where IND modules pick the next transaction to be processed.  Or IND modules may be assigned 
by a manager of the subsystem.  Selection of the number of incoming communications channels 
and segmentation of the databases may be changed on an irregular basis depending upon the 
transaction statistics. 
 

 Clearly an architecture must be tailored to the particular application.  In complex systems 
it may be highly beneficial to simulate the architectural design of the subsystems using potential 
worst case incoming transaction scenarios before building or modifying the actual system. 
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FAST SORT-MERGE 
 

 When sorting huge files, one is faced with the optimal use of memory and particularly the 
corresponding trade-offs one can take advantage of when using memory to gain speed.  Solutions 
to this problem go back to the days of punched cards and magnetic tape, and the size of core 
memory.  This became a trade-off between sorting and merging.  Core sorts were fast, but 
memory was limited.  With file sizes that were N times larger than that which would fit into core, 
one had to break the files into N subfiles to perform the sorts.  Subfiles were then merged using 
large secondary memory, e.g., magnetic tape or disk.  We note that the fastest core sorts use a 
statistical approach to produce a sorted set of keys. 
 

 With disk, merge operations could be performed fast using blocked records tuned to the 
disk segment sizes.  In a multi-tasking OS environment, multiple merges could be performed in 
parallel using different tapes or disks.  A good SORT-MERGE design can select the optimal 
parameters based upon the layout of the records on the file, and control use of the hardware at 
hand to minimize the time to sort a huge file. 
 

 On a parallel processor, multiple sorts and merges can be performed in parallel.  Sizes of 
subfiles can be tuned to the file and record layouts, the keys to be used for sorting, the number of 
processors, etc.  Determination of the optimal parameters can be automated using a generalized 
model of multiple keyed files.  RTS code can be automatically generated, translated and linked 
into a final set of IND modules that will minimize the time required to perform sort-merge 
operations on large files. 
 
 
SEARCHING FOR CORRELATIONS IN HUGE DATABASES 
 

 To gather intelligence on various subjects, one may need to search huge databases to 
determine if correlation exists between certain specified properties and the contents of the 
database.  When using relatively simple techniques, e.g., linear correlation, this may be done 
using embarrassingly parallel approaches.  However, when the properties are non-linear or 
stochastic (time-varying), the property of inherent independence is lost, and one cannot expect 
linear correlation to work.  This implies that the problem is no longer embarrassingly parallel. 
 

 Nonlinear correlation approaches are required when critical properties of the data are 
interdependent.  This implies that information stored in one area affects the interpretation of that 
stored in another.  This loss of independence implies that correlation searches must exchange 
information as the search proceeds.  Such algorithms are similar to those used for nonlinear 
optimization described below, and are easily developed using the VisiSoft CAD approach 
 
 
NONLINEAR OPTIMIZATION 
 

 Nonlinear optimization is used in engineering to produce difficult designs.  An example 
is determining the parameters to be used in systems or devices that operate in a nonlinear 
fashion.  By nonlinear we imply that there is no correlation between the directional derivative of  
design vector and the optimization function.  To further understand this, consider trying to find 
the highest hilltop in an area with many hills.  The directional derivative will find the nearest - 
not the highest - hill. 
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 Similar to the fastest core sorts, solving this problem is best done using a statistical 
approach to locate the optimal solution.  This involves taking samples to form a distribution.  In 
complex nonlinear systems, this implies running a simulation to obtain a sample.  Each 
simulation is generally an independent run with a different parameter vector so that each sample 
can be obtained from a separate parallel processor.  Processing the samples to obtain a new 
distribution is very simple and fast compared to the nonlinear simulation itself. 
 
 
REAL-TIME CONTROL SYSTEMS 
 

 Our interest here is in large complex real-time control systems.   Figure 19-10 is a simple 
illustration of such a system.  In the problems of interest, the control system may contain a large 
number of observable inputs provided by many sources.  In certain cases, these inputs may be 
processed by human intelligence to help make decisions on controlling the system.  Once a plan 
(a sequence of control inputs) is made, the corresponding control actions are promulgated down 
to the subordinate people or systems to be carried out. 
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Figure 19-10.  Simplified representation of a control system. 
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 The sophisticated part of most control systems is the embedded prediction subsystem.  
This is characterized generically in Figure 19-10.  The prediction subsystem takes in a selected 
control sequence and observable inputs up to the current time T, and produces a prediction of the 
resulting system response out to some desired T+τ.  To accomplish this, the prediction system 
must contain models that represent all of the complexities required to produce the predicted 
outcomes with sufficient accuracy to support the desired control inputs and desired system 
outputs.  Our focus here is on nonstationary systems that require multi-step prediction. 
 
The Embedded Prediction Component Of A Control System 
 

 For nonstationary systems requiring accurate prediction models, one may use discrete 
event simulation.  In this case, the control system produces sets of control sequences to the 
prediction system and gets back corresponding sets of predicted system responses.  The optimal 
control problem is to come up with the control sequence that meets the constraints required of 
the system while optimizing some prescribed objective function. 
 

 In the case of interest here, the prediction system requires a simulation, possibly of the 
type described in the GLOBAL_PLANNER experiment.  Many simulations may be required to 
support optimization of the control sequence to be produced at each real-time clock step when 
new observation inputs are received.  This is an excellent application requiring multiple runs of 
large-scale simulations within very short time increments. 
 
 
SUMMARY 
 

 As indicated in the above analysis, optimization of a parallel processor software design 
must be tailored for a particular application.  To produce an optimized design, one must account 
for the many factors described in this book.  Although these factors may appear to be 
considerably different from those typically used for a single processor, they can also simplify 
single processor architectures while substantially increasing speed. 
 

 Parallel processors are used to cut the time to run an application, typically by one or more 
orders of magnitude.  Achieving such speed increases may imply a more significant investment 
over a single processor design.  Once one understands the trade-offs of a particular application, a 
reasonable estimate of the return on investment can be made, along with a determination of risk.  
For most applications, whole number multipliers can be achieved with a minimal investment 
using a 16 or 32 processor PC.  Using the CAD system described here, the design and 
development efforts have proven to be easier than prior efforts using a single processor. 
 

 Ensuring fairness of comparisons should not require explicit emphasis.  However, it 
appears that there are many traps one can fall into when making comparisons of parallel 
processing approaches.  For example, if the option exists to buy and use a single processor at a 
much reduced price, one must compare the fastest parallel processor approach to the fastest 
single processor for a given application.  Similarly, if a Parallel PC can meet the application 
constraints, huge savings in both time and cost of development and operations may be available.  
This may make an otherwise unaffordable solution a reality. 
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CHAPTER 20 
 

NONSTATIONARY APPLICATION ARCHITECTURES 
 
 
 Those who have worked many parallel processor applications, such as those enumerated 
below, know that each class of applications is very different. 
 

1. Wave Guide simulation 
 

2. Human Body simulation 
 

3. Electro-Magnetic Wave simulation 
 

4. Global HF Power Transmission 
 

5. Global Climate prediction 
 

6. Fluid Flow simulation 
 

7. Biological Particle simulation 
 

8. Chemical - Molecular Structure simulation 
 

9. Scanning, Sorting, and Correlating massive databases 
 

10. Weather Prediction in Mountainous Terrain 
 

11. Power Distribution simulation 
 

12. Global Military Planning simulation 
 
 To meet the economic requirements of these applications, one must minimize the cost 
(number of processors) while meeting run-time performance constraints for a given application. 
 

 To solve the technology problem, one must take maximum advantage of the inherent 
parallelism in each particular application to minimize running time.  This requires designing the 
best space in which to map the inherent parallelism to solve the problem. 
 

 In fine-grain problems, e.g., those of molecular structures, and fluid flow, one is typically 
concerned with the dynamics of particles under the influence of one or more fields, e.g., 
gravitational, electric, magnetic, pressure and temperature, etc.  These systems are typically 
represented by a large number of cells in a 3D space, such as those used to descretize the system 
of partial differential equations that represent the smoothed dynamics of the system elements. 
 

 Mapping cell blocks in (X,Y,Z) space  into hardware (X’,Y’,Z’) space is relatively 
easy, especially when the application space is a rectangular tank.  Chapter 19 showed that spaces, 
e.g., (R, Θ, Φ), or even sets of different connected spaces are also mapped easily into hardware 
(X’,Y’,Z’) space.  Wave guides using different complex connected spaces are easily mapped. 
 

 To speed up the models of a complex communication space around the globe while 
maintaining high accuracy, the earth’s (LAT, LON, ALT) coordinates are transformed into a 
large number of sets of  (X,Y,Z) coordinates mapped over the earth’s surface to eliminate sines 
and cosines and thus speed calculations as waves travel through space in straight lines. 
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 Another application that is based on the earth’s surface and its surrounding layers is the 
computation of signal power received on the surface of the earth from an antenna on or near the 
surface of the earth using transmitters in the HF frequency range.  These signals bounce off the 
ionosphere and can be received far from the transmitter - e.g., on the other side of the earth.  
These calculations use application spaces similar to those described above.  Consequently, they 
map conveniently into the hardware space. 
 

 When approaching fine-grain problems, one is typically concerned with the dynamics of 
particles under the influence of fields, e.g., gravitational, electro-magnetic, or temperature.  Field 
forces typically depend upon distance from the source of the force, decreasing as 1/R2 in most 
cases.  Forces on each particle depend upon those emanating from the other particles.  These 
models are typically described by systems of partial differential equations in three dimensions as 
well as time, and the state vectors may be large, involving position, velocity, acceleration, etc.  
When describing particle motion on a computer, one typically uses a discrete time space, ΔT.  
However, the forces typically move with the speed of light and must be determined at those 
particles affected - instantaneously - at the end of each ΔT.  
 

 But the most difficult parallel processor problem occurs when the connectivity of 
elements in an application is nonstationary (see Definitions in Appendix A).  As described in 
Chapter 19, there is a connectivity matrix between platforms or cells on each processor that is 
designed to support the maximum number of platforms or cells of influence around those on a 
given processor.  In very special cases, the connectivity matrix may be nonstationary, making the 
architecture much more critical.  Each of these stationary cases is described below. 
 
 
Particle Movement 
 

 Particles move relative to each other so that at T1 a particle is influenced by the gravity 
of one group of particles and at TN it is influenced by the gravity of another group.  The changes 
generally occur slowly so that loss of particles from the original group and gain of particles to a 
new group occur - at most - one or a few at each ΔT 
 

 In the case of particle physics, it is the number of particles in each cell within the 
predefined area of influence around a cell of interest that must be tracked.  Since cells do not 
move with respect to the coordinate system, the connectivity matrix around each cell is fixed, 
and so is that around a group of cells.  It is the changing influence within each cell in the 
connectivity matrix around a given cell of interest that is changing.  In effect, the connectivity 
matrix around each cell or group of cells simply contains maximum pointer ranges to cells of 
influence in each direction.  Depending on the cell coordinate system, these numbers will likely 
be the same in each direction for each cell.  But unless the coordinate system itself changes, they 
are stationary. 
 

 In the case of particle physics, each particle can be identified by type with specific effects.  
Thus, organization of the connectivity matrix itself is stationary, and the pointers to the cells 
containing the changing number of particles are fixed.  The most important result is that the 
connectivity matrix is stationary with respect to processor allocation.  As particles move from 
cell to cell and processor to processor, only the count of particles of a given type in a given cell 
changes.  Their influence always points to the same surrounding cells, and these can all be on the 
same processor by using copies of that cell information on adjacent processors. 
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Radio Network Communications On Moving Platforms 
 

 Platforms containing radios move relative to each other so that at T1 a platform is 
connected to one group of elements and at TN it is connected to another group (Note: this is not 
a cell phone system with connections to base stations that are part of a fixed infrastructure).  
Changes may occur slowly so that loss of connections from the original group and gain of 
connections to a new group occur one or a few at each ΔT at most.  This depends upon both the 
speed of the platforms and the surface of the earth (connectivity may change rapidly in 
mountainous regions). 
 

 Moving communication system platforms must be identified and tracked separately.  As 
platforms move, and their connectivity changes, they may be connected to platforms on different 
parallel processors that are far from their own processor, and no longer connected to those on the 
same or nearby processors.  One must find the best application space architecture to minimize 
the memory boundary crossing effects caused by this nonstationary (unpredictable) movement. 
 

 Of major interest are platforms flying close to the earth’s surface, or satellites connected 
to platforms close to the earth’s surface.  These may be connected to each other or to stationary 
(fixed position) platforms on the ground.  Or they may be connected to satellites whose paths are 
fixed and therefore their movement paths are stationary.  In this case, platforms whose 
movement is nonstationary may contain the path databases of those with whom they may be 
connected and whose movement is stationary with respect to the clock.  The calculations of 
connectivity to these stationary platforms can then be performed directly by the nonstationary 
platform modules.  To pick the best space, application experts must determine the types, 
quantities, paths and positions of each platform, and how they will be connected. 
 

   For example, each type of platform may be equipped with more than one type of radio 
receiver and transmitter.  Each type may have different connectivity depending upon the 
spectrum, antenna, orientation, signal processing, distance, and environment (terrain, foliage, 
buildings, noise, etc.).  The connectivity of each pair of potential communicators may have to be 
determined using different models relative to the radio type, and most of these determinations 
require substantial calculations. 
 

 Most of these calculations require knowledge of the surface of the earth and some require 
properties of the atmosphere and ionosphere surrounding the earth.  To anyone having 
substantial experience in performing these calculations, it is apparent from the types of 
computation required that the most convenient physical coordinate system is the WGS-84 
spheroid representing the earth’s surface (the earth is not a sphere).  Representation of the 
environment is important when sufficient accuracy - of Electro-Magnetic wave propagation 
calculations at RF frequencies of interest - is required.  To perform these calculations requires 
large databases containing detailed data on the earth’s environment. 
 

 When using this application space to support fast calculations, it becomes necessary to 
track the positions of the individual platforms with regard to this space.  An approach to 
performing these operations fast on a parallel processor is explained in the next sections. 
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REPRESENTING COMPLEX RADIO NETWORK COMMUNICATIONS 
 
 The most complex communication systems currently in existence are those military radio 
networks that combine Time Division Multi-Access (TDMA), Frequency Division Multi-Access 
(FDMA) and Code Division Multi-Access (CDMA) into a single waveform, e.g., the JTIDS / 
MIDS / LINK16 and EPLRS radio systems.  Additional factors contributing to the complexity of 
these radio networks are enumerated below, refer to Figures 20-1, 2, and 3. 
 
1. All of the network nodes may be moving, with little if any fixed-position infrastructure.  
Moving platform positions are generally unpredictable relative to the time in a scenario.  This is 
particularly true when decision processes are built into the platforms, so that movement depends 
upon the changing state of the system, e.g., those based upon C2 inputs, sensor inputs, INTEL 
inputs and other factors.  In other words, the scenario will unfold differently depending upon the 
relative timing of outcomes.  Thus, one must assume that most platform positions are 
unpredictable, being totally dependent upon the changing scenario as it unfolds.  However, 
satellites follow predictable orbits, so their movement is generally stationary, a property that can 
be used to simplify the determination of connectivity at the other platforms. 
 

2. Message transmission also depends upon the scenario, so that transmission of messages is 
also unpredictable, except that messages will be transmitted on the next available time slot 
allocated for that message.  Once the message is put into the queue to be sent, the next time slot 
for transmission of that message is predictable using TDMA. 
 

3. Each message may use a different FDMA hopping pattern and CDMA coding patterns.  
These contribute to the determination of probability of reception of the message (PCOM). 
 

4. Each message may use a different power level for the particular message / time slot used 
for transmission.  Interferer/jammer power, temporal and spectral coverage must also be known 
at the time of reception of the message. 
 

4. The position of each participating platform must be known at the time of transmission 
and reception, including those of interferers and other noise contributors. 
 

5. The antenna patterns and directions of the participating platforms are important as well as 
the platform orientations.  If an adaptive antenna is available, then the pattern, direction, and 
orientation of the antenna must be known relative to the platform for the particular time slot used 
for transmission.  This includes patterns as a function of spectral coverage. 
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Figure 20-1.  Determination of Probability of Communications (PCOM). 
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Figure 20-2.  Determination of Probability of Communications (PCOM) in mountainous terrain. 
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Figure 20-3.  Determination of Power at the receiver’s antenna. 
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RADIO NETWORK MODELS FOR PARALLEL PROCESSORS 
 

 Given that the space for allocating processors is based upon WGS-84 (LAT, LON, ALT) 
UTM Zone coordinates transformed into (REL_X, REL_Y, REL_Z) Quad coordinates, the 
designer is dealing with (REL_X, REL_Y) Quads.  Figure 20-4 illustrates a portion of the globe 
containing on the order of 30 zones.  Figure 20-5 illustrates a single REL QUAD corresponding 
to a northern hemisphere UTM Zone.  It is broken into sections to improve algorithm speed. 
 

 
 

Figure 20-4.  UTM Zone boundaries. 
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Figure 20-5.  Example of a REL QUAD (ZONE) in the Northern Hemisphere. 
 
 
 The above figures illustrate how the globe surface may be decomposed into large 
standardized mapping areas that overlap.  These coordinate systems are currently used to store 
data describing the earth’s surface, e.g., terrain, water, foliage, etc.  Figure 20-2 has been 
produced using extremely fast draw software using terrain data stored in the REL coordinate 
system. 
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Hierarchical Platform Databases Mapped Into Hierarchical REL Coordinates 
 

 To put the Global Planner simulation onto parallel processors, one can map sufficient 
numbers of entities to be simulated into each of the designated geographical areas of interest.  
Each geographical area can be modeled based on the particular scenario sizes in that area.  For 
example, only those Quads containing entities of interest need be modeled.  Those Quads of 
interest that are physically adjacent on the map can be placed similarly on adjacent processors.  
Quads with fewer entities can be grouped onto a single processor.  Space entities, e.g., satellites, 
may be grouped onto a single processor, or copied onto multiple processors as needed since 
those models are small.  Aircraft generally stay within 20 Km of the earth’s surface, so they are 
related directly to the earth’s REL coordinates. 
 
 
Platform Movement From Quad To Quad 
 

 As platforms move within measured time scales (typically not greater than 4 minutes and 
most often much less) they may cross a Quad boundary.  When moving from Quad to Quad, they 
may be moving from processor to processor.  This is easily modeled by transferring copies of 
their databases to that adjacent processor holding the adjacent Quad. 
 

 To accomplish this, the designer must provide enough instances of each platform to cover 
the maximum that may be active in that processor at any point during the scenario.  We note that 
this is independent of the area of coverage, and only dependent upon the number of platforms 
that may reside within that area covered by that processor. 
 
 
Communication Between Platforms In Different Quads 
 

 When communications span multiple Quads, one must consider the levels of computation 
required.  If a space platform must communicate with an air or sea platform where terrain is not a 
factor, then Line-Of-Sight (LOS) must be determined relative to blocking by the earth’s surface.  
LOS determination is done using the earth LOS library utility.  This utility will be included in 
each IND module that needs it.  If LOS exists, then messages can be passed between the IND 
module with the space platform and the air or sea platform. 
 

 If the communication is with a platform where terrain may affect the LOS path, then a 
determination must be made using the positions of both platforms.  This is best done by the 
lowest platform where the data on terrain most likely to interfere is available.  The need for 
additional Quads to be available to that IND module can be determined in advance by the 
application architect.  Other approaches will be much more complex. 
 

 Position and other information necessary on the higher platform must be available from 
that platform.  This information is sent to the lower platform to perform the calculation of path 
loss due to the earth’s surface and other environmental factors.  Note that path loss can be 
computed from either end since it is the same in both directions due to the isotropic nature of the 
media surrounding the earth. 
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NONSTATIONARY MODEL INTERFACE ARCHITECTURES 
 

 To model the dynamic interaction of wireless entities accurately while ensuring that the 
models are fast computationally, one must analyze the sequence of steps to be taken when 
critical events occur.  This section describes the set of critical events that must be carefully 
accounted for in a wireless mobile network with all nodes moving.  These events must be 
accounted for in the architecture of the host message processor, transmitter, link, and receiver 
models in the simulation. 
 

 Figure 20-6 provides a map of interactions of transmitters (T1-T12), receivers (R1-R12), 
and interferers (J1-J4) in different bands (time slot sets).  It is used to determine the effects of 
events of one entity on another as they affect the connectivity of networks sharing the same time 
slots.  Handling these events is critical due to the very dynamic nature of the actual interactions.  
This is because of the number of potential calculations required as transceivers and interferers 
turn on and off, change power, and move.  Models that affect these actions must be designed to 
minimize the computational burden of determining the probability that a message has been 
received correctly. 
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Figure 20-6.  Effects of RF transmission and jamming on different time slots. 
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EVENT PROCESSING 
 

 Figure 20-7 illustrates multiple transmitters transmitting and multiple receivers listening 
on the same time slot.  The events defined below trigger follow-on events at the link or radio 
level. 
 

E_M_
ENVIRONMENT

ConnectMatrix  12/02/04

TRANSMITTER RECEIVER

TRANSMITTER RECEIVER
 

 
Figure 20-7.  Multiple transmitters transmitting and receivers receiving on a given time slot. 

 
 
Transmitter Turns On, Off, Or Otherwise Changes Power Level 
 

 When a transmitter or interferer turns on, off, or changes its power level, the Connectivity 
matrix (an example column is shown in Figure 20-8) in the E_M_Environment link model must 
be updated with the information that the transmitter power level has changed, i.e., a new time 
and a P are entered. 
 
 
Antenna Moves 
 

 When the antenna of an active transceiver moves or changes direction, the link model 
must be updated with the new position (X,Y, Z) and the new ERP (based upon the position, 
direction, and orientation of the antenna).  The new time must also be put in along with an M (an 
example column is shown in Figure 20-8). 
 

CONNECTIVITY MATRIX - A SAMPLE COLUMN FOR ONE RECEIVER 

Transmitter 
Number 

Last Update 
Time/Cause 

Last Link 
Update  

Position (X, Y, Z) Effective 
Radiated Power 

(ERP) 

Path Loss

1 T1, P T31 X1, Y1, Z1 dB dB 
2  T2, M T32 X2, Y2, Z2 dB dB 
3  T3, M T33 X3, Y3, Z3 dB dB 
4 T4, P T34 X4, Y4, Z4 dB dB 
5  T5, M T35 X5, Y5, Z5 dB dB 
6  T6, M T36 X6, Y6, Z6 dB dB 
... ... ... ... ... ... 

 

Figure 20-8.  One receiver column in the connectivity matrix. 
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Transmitter Scheduled To Transmit 
 

 When a transmitter is scheduled to transmit on a given time slot, it must enter its 
transmitter number in the time slot transmission table shown in Figure 20-9 and schedule the 
receivers that are to receive the message. 
 

TIME SLOT 
TRANSMISSION 

TABLE 
Number of 

Transmitters 
Trans 1 
Trans 2 
Trans 3 
Trans 4 
Trans 5 
Trans 6 

... 
 

Figure 20-9.  Table of transmitters transmitting on a given time slot. 
 
 When using parallel processors in a linear homogeneous application, the time steps can 
be fixed to a maximum time that still ensures sufficient accuracy.  In these cases, instead of using 
the SCHEDULE statement, it is best to use the RELEASE and ACCESS statements. 
 
 
Receivers Scheduled To Receive 
 

 When a receiver is scheduled to receive a message, it must check the time slot 
transmission table to determine what transmitters it will receive (noise) power from in addition to 
the one transmitting the desired signal.  For each one transmitting, it must then compare the last 
time its link with that transmitter was updated to the last time that transmitter was updated and 
determine if and how the link should be updated.  If only the power level changed, and not the 
position of the platform / antenna, received power calculations are not required.  If the antenna 
has only rotated, then only the Effective Radiated Power (ERP) need be recalculated along with 
the received power.  The path loss remains the same 
 

 Receivers should only perform those calculations that must be done.  If no one has moved, 
no path loss calculations have to be performed.  If only one other transmitter contributing noise 
has moved, then only that path loss calculation must be done at the time the receiver is to receive. 
 
 
ADDITIONAL CONSIDERATIONS 
 

 There are many other aspects to this application that make it even more difficult.  These 
include multiple types of radio equipment on each platform and how they are connected.  They 
also include human as well as automated decision processes that determine movement and other 
actions.  Finally, end users must run on the order of 100 simulations in short periods of time to 
perform parameter optimization or parametric analysis to make real-time decisions. 



Software Theory                Page 20 -  12  

OBSERVATIONS AND SUMMARY 
 

 The first page of this chapter lists applications with which the authors are familiar.  Of 
these applications, only the Global Military Planning simulation is known to be nonstationary.  
Certainly others must exist.  What is important is the following: 
 

• It takes substantial application expertise to create the complex application space 
architectures that are necessary to take advantage of simplified parallel processor 
architectures.  This is true even for the stationary applications listed on the first page. 

 
• VisiSoft provides the ability to map all of these complex application spaces and 

architectures into simplified parallel processor hardware architectures, especially the 
nonstationary Global Planner example presented above. 

 
• The running times of applications built using VisiSoft are typically 2 to 4 orders of 

magnitude faster than those produced using currently popular languages and approaches 
to building software on parallel processors.  These claims have been substantiated by 
numerous experiments, including many side-by-side comparisons by independent parties 
on single processors. 

 
 Although the authors have worked diligently to present the material provided here in a 
manner that is relatively easy to digest, this is not a simple technological area.  Substantial 
knowledge is necessary to digest many portions of the material presented.  Therefore, readers are 
encouraged to call VSI (see the inside cover) to talk to the authors to investigate the claims 
presented, or simply to discuss specific topics or results. 
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APPENDICES 
 
 
 
APPENDIX A - Definitions 
 

 Ever since Moore’s curve leveled off, applications bound by significant computer speed 
increases are forced to rely on parallel processing.  This supposedly difficult task becomes 
simple when using VisiSoft application spaces to transform software architectures into hardware 
architectures.  Just by separation of applications into the two hardware environments defined 
below, the hardware architectures for each are simplified.  Specifically, parallel processor 
applications are much different from those of a server.  Those applications requiring both 
capabilities are easily split into separate software architectures.  Mapping a speed-bound 
application space architecture into a good parallel processor architecture is simple using VisiSoft. 
 
 

Server Systems 
 

 These typically support large I/O Bound applications requiring communication networks 
for transaction processing, and database access and management.  A large server system must 
interface with many I/O facilities, including networks of workstations and big disk management.  
Servers are composed of large numbers of processors, where each processor typically runs 
multiple tasks with fat communication channels to fast I/O, including teleprocessing channels 
and big disk facilities.  Applications include large commercial data processing, huge database 
management including query, and remote teleprocessing for cloud type applications.  Given 
enough processors, it can also support embarrassingly parallel applications defined below. 
 
 

Parallel Processors 
 

 These are required to support true Speed Bound applications that are not embarrassingly 
parallel (definition below).  Parallel processor applications have substantial inherent parallelism.  
These parallel elements can be put into independent modules that influence each other but can 
run in parallel on a large number of processors to meet the time constraints for a single task.  
They require limited one-way I/O (typically initialization prior to running, and output during and 
after running).  They typically require intensive internal processing of large mathematical 
systems or decision processes that are processed in parallel.  Examples of parallel processor 
applications are EM wave simulation, meteorological simulation, and fluid dynamic simulations 
(e.g., fluid flow through multiple container surfaces; moving particle physics; and dynamic 
biological, and chemical particle interactions, etc.). 
 
 

Embarrassingly Parallel Applications 
 

 These may be broken into multiple separate tasks running on separate processors.  Once 
they start to run, they need little if any communication between processors.  They may run 
sufficiently fast on a server with many processors  or on a cluster of PCs.  Scientific applications, 
e.g., Monte Carlo simulation and fast approaches to large scale Linear Programming (LP) are 
embarrassingly parallel.  These applications are poor examples of the requirements for real 
parallel processors applications. 



Software Theory                Page A -  2  

Linear Versus Nonlinear Applications 
 

 When using parallel processors in a linear application, the application time steps (may be 
different from the VPOS ΔT) can be set to a maximum time that still ensures sufficient accuracy 
for a particular module.  In nonlinear applications, a subset of modules or instances typically use 
smaller time steps to achieve sufficient accuracy when operating in nonlinear regions.  Other 
modules will be waiting while those in the nonlinear region converge and complete.  This 
conserves time when modules are on the same processor.  These time differences can be 
achieved using SCHEDULE statements. 
 
 

Homogeneous Versus Nonhomogeneous Applications 
 

 Homogeneous implies that all IND modules perform functions with each ΔT.  In 
nonhomogeneous applications, a subset of the IND modules does not perform any functions 
within a potential string of ΔTs.  In homogeneous applications, Cross-SCHEDULE statements 
are generally unnecessary and it is best to use the SET EVENT, WAIT UNTIL, RELEASE, and 
ACCESS statements.  Nonhomogeneous applications are typically influenced by outside factors 
or events that are best invoked using the SCHEDULE statement. 
 
 

Stationary Versus Nonstationary Applications 
 

 In stationary applications the connectivity matrix of application modules or module 
instances remains constant.  In nonstationary applications the connectivity matrix of modules or 
module instances changes.  This causes access data transfer delays to increase unless the module 
databases are moved to different processors to maintain an optimal mapping of the diagonalized 
application connectivity matrix with respect to the processor connectivity matrix.  In these cases, 
copies or instances of the module can remain stationary on those processors that use them.  Only 
the databases need be moved. 
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APPENDIX B - Process & Resource Size Statistics 
 

 To ensure best use of memory space for speed, it is desirable to break large resources into 
pre-specified segment sizes, and to bring them in as they are used.  To make decisions on 
segment sizes, one must analyze the statistics of cutoff sizes when loading resources into 
memory.  Figure B-1 shows a statistical distribution of process sizes from a sample of models.  
All processes fit within a single page.  The largest takes slightly more that a half page.  Figure 
B 2 shows a statistical distribution of resource sizes from a sample of models.  It is a bi-modal 
distribution with most resources being far less than a page and one under two pages.  The other 
mode has larger resources that are spread from 100 Kb to well over 100 Kb. 
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Figure B-1.  Statistical distribution of process sizes. 
 

Distribution of Size of Resources (bytes)
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Figure B-2.  Statistical distribution of resource sizes. 
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Additional Process Size Statistics 
 
 The following is an analysis of instruction memory utilization for the Joint Airborne 
Network Control (JANC) simulation.  Figure B-3 represents the main JANC modules.  It must be 
qualified with the following points. 
 

• It contains all of the library modules and utility modules. 
 

• It represents the entire JANC set of modules - which includes the initialization 
facilities and interactive graphical facilities - that are not part of the instanced IND 
Modules.  It contains all of the instanced models (as opposed to a single instance). 

 

• It is a static representation of memory by process and does not represent the amount of 
time spent running that process. 
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Figure B-3.  Distribution of instruction memory utilization for JANC. 

 
Summary Statistics: 
 

TOTAL USER PROCESSES:                         417 
TOTAL PROCESS SIZE       (Bytes):  1,020,656  -  256   pages 
AVERAGE PROCESS SIZE (Bytes):         2,447  -      2+ pages 
MEDIAN PROCESS SIZE    (Bytes):         1,200  -      1+ page 
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APPENDIX C - Expanded Memory Maps For Better Use Of Chip Space 
 

 The following tables indicate how cache memory could be expanded with the removal of 
hardware memory management techniques which are unnecessary when using VisiSoft.  These 
breakpoints are best determined using simulations of various applications.  This can be done by 
taking in the source code for a given application and creating a pseudo-assembly code that is 
used by parameterized models of the internal hardware processor and resulting speeds. 
 

N 2**N BYTES

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1,024 KILO
11 2,048
12 4,096 1 PAGE
13 8,192
14 16,384
15 32,768
16 65,536 16 PAGES L1 Instruction CACHE 1 Processor
17 131,072
18 262,144 64 PAGES L1 Data CACHE 1 Processor
19 524,288
20 1,048,576 MEGA
21 2,097,152
22 4,194,304 1024 PAGES
23 8,388,608
24 16,777,216 4096 PAGES L2 Chip CACHE 18 Processors / Chip
25 33,554,432
26 67,108,864
27 134,217,728
28 268,435,456
29 536,870,912
30 1,073,741,824 GIGA
31 2,147,483,648
32 4,294,967,296 L3 CACHE 256 X L2 CACHE 72 Processors / Box
33 8,589,934,592
34 17,179,869,184
35 34,359,738,368
36 68,719,476,736
37 137,438,953,472
38 274,877,906,944
39 549,755,813,888 BOX RAM 128 X L3 CACHE
40 1,099,511,627,776 TERA
41 2,199,023,255,552
42 4,398,046,511,104
43 8,796,093,022,208
44 17,592,186,044,416 Platform RAM 32 X BOX RAM 32 Boxes - 2304 Processors

 
 

Figure C-1.  VisiSoft Memory Mapping Table. 
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Software Theory for Parallel Processors
The technology described in this book is a revelation in software, a field that lost
its scientific direction over three decades ago.  Too many engineering people have
dropped out of the field because of the lack of experimentation and measurement
needed to improve quality, productivity, and run-time speed.  To the best of my
knowledge, this is the first publication that provides a sound scientific basis for
improving these measures and heading the software field in the right direction.
Bob Santos, BSEE/MIT, formerly Sr. Vice Pres AT&T, Basking Ridge, NJ.

This book explains the theory and application of a totally new approach to
building software.  Without this approach, the software field is clearly stuck
in a rut compared to hardware approaches being developed by engineers to
build computers today, particularly those with multiple processors.  This will
become apparent as more processors are put into computers to speed up run times.
Ron Maslo, Ph.D., P.E., formerly with AT&T Bell Laboratories, Holmdel, NJ.

I have tracked the technology described here since its early beginnings and am
familiar with many of the huge simulations built for the military using it.  I am not
aware of a technology that comes close to this for productivity, as well as maintaining
high quality and tight control over extremely large complex software systems.
Alan Salisbury, Maj Gen U.S. Army (ret.), Ph.D. EE/Stanford

If you want to know where the software field is headed in the next three decades,
read this book.  It is the most significant innovation in software since the compiler.
The fact that it takes an engineering background to understand the hard science
underlying the concepts should no longer be of concern.  In fact, use of the
CAD system it describes can be learned at the high school level as well as by
subject area experts who want to build their own software.
 Jerry Tuttle, VADM US Navy (ret.)

IETC Publications, Spring Lake, NJ  07762
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